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Abstract—The proportions of muscle and fat tissues in the
human body, referred to as body composition is a vital measure-
ment for cancer patients. Body composition has been recently
linked to patient survival and the onset/recurrence of several
types of cancers in numerous cancer research studies. This paper
introduces a fully automatic framework for the segmentation
of muscle and fat tissues from CT images to estimate body
composition. We developed a novel finite element method (FEM)
deformable model that incorporates a priori shape information
via a statistical deformation model (SDM) within the template-
based segmentation framework. The proposed method was vali-
dated on 1000 abdominal and 530 thoracic CT images and we
obtained very good segmentation results with Jaccard scores in
excess of 90% for both the muscle and fat regions.

Index Terms—Finite Element Method (FEM), Thoracic CT,
Abdominal CT, Muscle segmentation

I. INTRODUCTION

Body composition, i.e., the proportion of fat and muscle
tissues in the human body is related to the risk factors
associated with a host of medical conditions such as growth
failure in children, obesity, cachexia syndromes (in chronic
disease of lung, liver, heart or kidney), malnutrition, lipodys-
tropy, metabolic syndrome and frailty. In particular, body
composition has important implications for cancer patients.
It has been found that the presence of a relatively high body
fat content makes the patients more vulnerable to the onset
or recurrence of several types of cancers [1]. On the other
hand, sarcopenia, a wasting syndrome which involves the loss
of muscle tissues has been correlated with poor response
to chemotherapy treatment and reduction in overall survival
of the patients [2]. The muscle and fat tissues are target
locations for the water- and fat-soluble drugs respectively used
for cancer treatment. Consequently, the proportions of these
tissues are believed to determine the chemotherapy toxicity
and efficacy. Similarly, in patients suffering from diabetes,
body composition has been linked with metabolic alteration
such as insulin resistance [3]. Therefore, it is of considerable
interest to understand the complex relationships between body
composition and the various health ailments.
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Fig. 1. Illustration of the challenges in abdominal and thoracic CT
segmentation. Muscle tissue (red), fat tissue (blue) and thoracic cavity (green).
It can be seen that segmentation solely based on thresholding the muscle tissue
[−29 150] and fat tissue [−190 − 30] HU ranges results in a lot of errors
due to the significant overlap of intensities between the muscle tissues and
neighboring organs.

Revolutionary advances in body composition research were
brought about by the introduction of computed tomography
(CT) imaging technique, which has a very high precision and
specificity for different tissues in the human body [4], [5].
In body composition studies using CT images, it is sufficient
to acquire 2D cross-sectional images taken at specific skeletal
landmarks instead of whole body 3D scans. This is because the
proportion of muscle and fat tissues at these specific skeletal
landmarks correlates well with the whole body muscle to fat
ratio [6], [7]. Further, this localized image acquisition also
prevents the patients from unnecessary radiation exposure.
In current practice, abdominal and thoracic 2D CT images
taken at the 3rd lumbar vertebra (L3) and the 4th thoracic
vertebra (T4) respectively have been widely used for body
composition analysis [8], [9]. These studies rely on the manual
segmentation of muscle and fat tissue regions from CT images
using pre-defined windows of Hounsfeld units (HU, units of
radiation attenuation) for each tissue. However, the manual
segmentation of large databases of CT images used in these
studies is not practical and hence automatic segmentation
methods are needed.

The segmentation of the fat region from CT images using
automatic methods [10], [11] is relatively straightforward due
to the unique HU range of the fat tissue [−190 −30]. But, the
automatic segmentation of the muscle region is quite challeng-
ing as there exists a significant overlap between the HU ranges
of the muscle tissue [−29 150] and surrounding organs (see
Figure 1). Very few works exist on muscle segmentation from
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CT images [12], [13]. Moreover, these works only consider
the segmentation of a specific muscle group as opposed to the
segmentation of the total muscle region captured in the image.
Our method is the first work to address the segmentation of
the whole muscle area contained in a CT image and thus
fully automate the estimation of body composition given the
abdominal and thoracic axial CT images corresponding to the
L3 and T4 vertebrae locations respectively. In this work, we
propose a template-based segmentation method that uses a
non-uniform finite element method (FEM) mesh to segment
the muscle region in abdominal L3 and thoracic T4 images.
In abdominal CT images, the muscle region has a well defined
shape (see Figure 5a) except for the variation between different
patients and the variability due to operator errors in the manual
identification of the L3 vertebrae. But, this is not valid for
thoracic CT images where the shape of the muscle does not
conform to a specific class of shapes (see Figure 5b). However,
in thoracic CT images the thoracic cavity containing the lungs,
ribs and other organs (see Figure 1) exhibits a consistent
shape across the patient population, modulo the inter-patient
variation and the variability in the manual identification of the
T4 vertebrae. Hence, in the case of abdominal CT images
we utilize the a priori shape knowledge about the muscle
region to disambiguate the muscle tissue from the nearby
organs that have overlapping intensities. Whereas, in thoracic
CT images we use a shape prior model of the thoracic cavity
for discriminating the muscle tissue from the organs inside the
thoracic cavity.

A. Related work

We briefly review the relevant literature on the segmentation
of muscle and/or fat tissues from medical images. Further, as
we adopt a template-based approach for image segmentation
in this paper, a short survey of the current works on template-
based segmentation is also presented.

As mentioned before, owing to the distinct HU range of the
fat tissues, CT images are a natural choice for the estimation
of fat content in the human body [10], [11]. However, there
have been efforts to delineate fat tissue regions from magnetic
resonance images (MRI) as well, using user-defined thresholds
[14], [15] or automatic image-adaptive thresholding techniques
[16], [17]. We note that these works additionally sub-segment
the fat region into subcutaneous fat tissue (SFT) and visceral
fat tissue (VFT) respectively.

The general focus of the existing works on muscle seg-
mentation has been to extract a specific group of muscles
from whole body CT or MRI scans using statistical shape
models. Kamiya et al. devised a rule-based expert system for
the segmentation of the psoas major [12] and recuts abdominis
[13] muscles from CT images, where the muscle shape was
approximated by a simple quadratic function. A more elaborate
representation of the muscle shape can be considered through
the use of a point distribution model (PDM) constructed from
a set of training shapes with manually annotated landmark
correspondences. Such PDMs have been employed for provid-
ing shape information during the Markov random field (MRF)
based segmentation of the calf muscle [18] and the snake

based segmentation of the quadratus lumborum muscle [19]
from MRI images. Alternatively, in [20] an isometric log-ratio
(ILR) space embedding of the muscle shape was employed
for the segmentation of extensor and flexor muscles from
MRI images via a convex energy minimization framework.
Apart from statistical shape models, other approaches such
as multi-atlas fusion and fuzzy C-means clustering have also
been explored for the segmentation of psoas major [21] and
paraspinal [22] muscle groups respectively from CT images.

In this work, we take a template-based segmentation ap-
proach where a binary template defining an initial shape is
deformed via non-rigid or deformable registration to match the
region of interest in the input image. The desired segmentation
boundary is then implicitly defined by the contour of the
initial shape and the deformation field estimated between the
template and the input image. Existing works on template-
based segmentation either use a non-parametric representation
of the deformation field [23] or parametrize the deformation
field using B-spline basis functions [24], [25] on a uniform dis-
cretization of the image domain. Shape models can be directly
built from a training set of deformation fields and they are
commonly referred to as statistical deformation models (SDM)
[26]. Previously, SDMs have been explored for introducing
shape prior constraints into the template-based segmentation
process [27], [28]. In fact, in our earlier work we had used a
B-spline based SDM with great success for the segmentation
of muscle tissue from abdominal CT images [29].

B. Our contributions

• The main contribution in this paper is the introduction
of a completely automatic segmentation framework for
muscle and fat tissues in abdominal and thoracic CT
images. Such a framework has not been reported before
to the best of our knowledge. Further, our proposed
segmentation framework handles both abdominal and
thoracic CT images in a unified manner via the shape
modeling approach. This paper is an extended version of
our previous works [29], [30].

• We developed a computationally efficient finite element
method (FEM) based registration framework to solve
the template-based segmentation problem. Earlier works
on template-based segmentation parametrized the defor-
mation field on a uniform mesh using either the non-
parametric [23] or B-spline [24], [25] models. This is
inefficient because the deformation field is computed
with the same accuracy everywhere, even though detailed
deformations are only needed along the contour of the
initial shape in the template. Our proposed FEM-based
approach remedies this issue by employing a non-uniform
mesh well adapted to the contour of the initial shape in the
template and through the use of Lagrange basis functions
instead of the B-spline basis functions to parametrize the
deformation field.

• Another contribution of our work is that we incorporate
a SDM using the Lagrange basis parametrization into the
FEM-based segmentation framework to better capture the
shape deformations of the muscle and thoracic cavity re-
gions respectively. As the SDM based on Lagrange basis
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parametrization is constructed from the deformations of a
non-uniform mesh, it encodes the shape variations more
compactly than the B-spline based SDMs [27], [28], [29]
improving the overall efficiency of our proposed FEM-
based framework.

• Recent publications using CT based body composition
analysis include several hundred images, often done in
duplicate, requiring many weeks of work by manual
segmentation [31], [32], [33]. In this context, an impor-
tant contribution of this work is the validation of the
proposed segmentation framework on a large database
of abdominal and thoracic CT images. This demonstrates
that the proposed automated segmentation method can
be employed to greatly reduce the time taken to do body
composition analyses on large databases.

The rest of the paper is organized as follows. In section II we
describe the proposed template-based segmentation method-
ology. In section III we discuss the automatic segmentation
framework for abdominal and thoracic CT images. In section
IV we provide implementation details. In section V we present
an evaluation our automatic CT segmentation system. Finally,
in section VI we present the conclusion.

II. SEGMENTATION VIA FEM-BASED DEFORMABLE

REGISTRATION WITH A GAUSSIAN SDM

The theoretical framework for our FEM-based template-
based segmentation method is presented in this section and an
overview of the proposed system is shown Figure 2. Given a
binary template (see Figure 2c), the method computes optimal
segmentation of a binary image (see Figure 2b). This segmen-
tation (see Figure 2d) is achieved by optimally deforming the
template such that it matches the input image. Image deforma-
tions are defined using a FEM-based deformable registration
framework that is described in Section II-A. This framework
is adapted to template-based segmentation as described in
Section II-B. For improving the convergence and to add ro-
bustness of the underlying minimization problem we constrain
the FEM mesh deformations using a Gaussian SDM described
in Section II-D.

A. FEM-based deformable registration framework

Given input I : Ω → R and template IT : ΩT → R images,
where Ω,ΩT ⊂ R

d, the task of deformable or non-rigid
registration is to find a dense deformation field U : ΩT → R

d

such that the input image warped using the deformation field,
I(x+U(x)) is similar to the template image IT . In a FEM-
based framework, the deformation field U is approximated as
a linear combination of a set of basis functions {φn}Nn=1:

U(x;Θ) =
N
∑

n=1

Unφn(x) ∀x ∈ ΩT , (1)

where Θ = [Un]
N
n=1 ∈ R

Nd. The basis functions {φn}Nn=1

are defined on a uniform or non-uniform tessellation of
the template image domain ΩT given by the mesh M =
({Pn}Nn=1,∆) , where {Pn}Nn=1 denotes the nodes of the mesh
and ∆ is the set of elements (triangles or rectangles - see Fig-
ures 3c, 3d). The deformable registration task is transformed

into finding the unknown nodal deformation field parameters
Θ through the finite-dimensional multivariate minimization of
an energy:

Θ
∗ = argmin

Θ∈RNd

ED(Θ; I, IT ) + αER(Θ), (2)

where ED is the data term which measures the similarity
between the warped input and the template images, ER is the
regularization term that enforces the smoothing constraints on
the estimated deformation field and α is the regularization
constant. Choosing the data term as the sum of squared
differences (SSD) similarity measure and the regularization

term as the diffusion regularizer 1
2

d
∑

i=1

∫

ΩT

∇UT
i ∇Ui dx [34],

we get the finite-dimensional formulations of these terms using
the FEM approximation in Eq. 1 as:

ESSD
D (Θ) =

∫

ΩT

(I(x +

N
∑

n=1

Unφn)− IT (x))
2 dx, (3)

Ediff
R (Θ) =

d
∑

i=1

N
∑

m,n=1

UniUmi

∫

ΩT

(∇φn · ∇φm) dx, (4)

where Un = [Uni]
d
i=1.

In order to minimize Eq. 2, we use a semi-implicit fixed-
point iteration scheme that involves solving the following
sparse system of Nd linear equations at every step k (where
IdNd is a Nd×Nd identity matrix):

(IdNd+τα∇ΘEdiff
R )Θ(k+1) = −τ∇ΘESSD

D (Θ(k))+Θ
(k).

(5)

B. Template-based segmentation via FEM-based registration

The above described FEM-based deformable registration
methodology can be directly adapted for the template-based
segmentation of a region of interest (ROI) from a given
input image I . This requires choosing a binary image IT :
ΩT → {0, 1} defining an initial shape of the ROI as the
template. Then, the initial ROI in the template is deformed
using FEM-based deformable registration to match the ROI to
be segmented from the input image. In this paper, we address
the muscle segmentation task by considering a template-
based segmentation method defined on binary input images
I : Ω → {0, 1} (see Figure 2). In our method, the SSD data
term in Eq. 3 is modified as:

ESSD
D (Θ) =

∫

ΩT

MT · [I(x+

N
∑

n=1

Unφn)− IT (x)]
2 dx, (6)

where MT : ΩT → R is a mask defined on the template
domain as:

MT (x) =

{

Hǫ(ΦT (x)) for Abdominal CT

1 for Thoracic CT
. (7)

In the above, ΦT : ΩT → R is the signed distance
transform of the binary template image IT and Hǫ(z) =
1
2 (1+

2
π
tan−1

(

z
ǫ

)

) is the regularized Heaviside function. The
mask MT is defined such that the data term is computed only
within the mean muscle region shape in the abdominal CT
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a statistical deformation model

Template-based segmentation via

FEM-based registration with

Gaussian
deformation prior

EPCA

S (Θ,ΣΘ)

Binarization
parameters
Optimal

Θ
∗

(a) (b) (c) (d)

Fig. 2. Illustration of ROI segmentation in the abdominal and thoracic CT image cases. (a) Input image (b) Binarized input image I (c) Mean ROI (IT )
with a non-uniform discretization. Note the relatively higher density of nodes near the boundaries compared to elsewhere (d) Final estimated ROI I

∗ (green
contour).

(a) Input image (b) Template (c) Uniform mesh (d) Non-uniform
mesh

(e) Initial tem-
plate contour

(f) Final contour
(B-spline)

(g) Final contour
(Lagrange)

Fig. 3. Comparison of FEM-based segmentation performance using a uniform
(Bspline basis) VS non-uniform (Lagrange basis) mesh with the same number
(N = 36) of nodes.

images, whereas in the thoracic CT images it is computed
on the whole template domain. The template IT is then
deformed through the energy minimization in Eq. 2 and the
final segmentation label I∗ : Ω → {0, 1} is given by inverse
warping the template using the optimal nodal deformation
parameters Θ

∗ = [U∗

n]
N
n=1 as:

I∗(x) = IT (x+U
−1(x;Θ∗)) ∀x ∈ Ω. (8)

C. FEM nodal basis functions

We considered two types of basis functions for the FEM-
based parameterization of the deformation field in Eq. 1,
namely the piecewise-linear Lagrange basis functions (see Ap-
pendix A) [35] and the popular cubic B-spline basis functions
[25]. However, we propose the use of Lagrange basis func-
tions instead of the B-spline basis functions. This is because
the Lagrange basis functions result in higher computational

efficiency, as they can be naturally defined on non-uniform
meshes that are adapted to the contours of the initial ROI
shape in the template. We illustrate this fact using a simple
example in Figure 3, where a “star” shaped ROI is segmented
from a ∼ 200 × 200 input image. It can be seen that the
ROI was successfully segmented using a Lagrange basis on a
non-uniform mesh generated from just 36 nodes (see Figure
3d, Figure 3g), whereas the use of a B-spline basis on a
uniform mesh with the same number of nodes (see Figure 3c,
Figure 3f) results in a failed segmentation. A more quantitative
comparison of the computational efficiency resulting from the
use of Lagrange and B-spline basis functions is presented in
Section V-A using real CT images.

D. Gaussian statistical deformation model

Let us assume that we obtained a set of M nodal deforma-
tion field parameters {Θ(m) = [U

(m)
n ]Nn=1}

M
m=1 by registering

M training images {I(m) : Ω → R}Mm=1 to a template
image IT , using the above discussed FEM-based deformable
registration method. For introducing a priori shape knowledge
into the future registration tasks, we now construct a statistical
deformation model (SDM) from the nodal deformation field
parameters {Θ(m)}Mm=1. Following [36], the space of defor-
mation parameters is modeled using a multivariate Gaussian
density N (Θ,ΣΘ), with a sample mean Θ and a Nd × Nd

sample covariance matrix ΣΘ. Further, the dominant modes
of shape variation are computed using principal component
analysis (PCA) and they are used to devise an additional shape-
based regularization term as follows:

EPCA
S (Θ) = ||B (Θ−Θ)||2 +

1

γσ2
0

||Θ−Θ||2, (9)

B = diag(η1 . . . ηK)[B1 . . . BK ]T,

ΣΘ = (1− γ)ΣΘ + γσ2
0IdNd,

η2k = ((1− γ)σ2
k + γσ2

0)
−1 − (γσ2

0)
−1,
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where, {Bk}Kk=1 is the PCA basis corresponding to the aug-
mented covariance matrix Σ

Θ
. Here, σ2

k are the eigen values of
the matrix ΣΘ and γ, σ0 are constants. The above regularizer
can be seen as imposing a shape prior on the deformation fields
by penalizing deviations from the Gaussian SDM as opposed
to strictly restricting the deformation fields to the span of the
PCA basis. Incorporating the shape-based regularizer into Eq.
2 we obtain the following statistically constrained FEM-based
deformable registration formulation:

Θ
∗ = argmin

Θ∈RNd

ESSD
D (Θ) + αEdiff

R (Θ) + βEPCA
S (Θ), (10)

where α, β are regularization constants. For minimizing the
above energy, a semi-implicit scheme similar to equation Eq. 5
is devised by incorporating the additional shape-based gradient
term ∇ΘEPCA

S (Θ(k)) as follows:

(IdNd + τα∇ΘEdiff
R )Θ(k+1) = −τ∇ΘESSD

D (Θ(k))

− τβ∇ΘEPCA
S (Θ(k)) +Θ

(k). (11)

The analytical expressions for the above gradient terms,
∇ΘESSD

D , ∇ΘEdiff
R , ∇ΘEPCA

S are given in Appendix B.

III. UNIFIED FRAMEWORK FOR AUTOMATIC

SEGMENTATION OF MUSCLE AND FAT TISSUES

We propose a unified framework for the segmentation of
abdominal and thoracic images. The main idea of the proposed
segmentation framework is to first determine a region of
interest (ROI) in the given CT image, using the template-
based segmentation method presented in the Section II. The
segmented ROI is then used to mask the CT image and the
final muscle and fat tissue regions are determined using the
pre-defined muscle and fat tissue HU ranges. The various steps
of the proposed unified framework for abdominal and thoracic
CT image segmentation are summarized below and illustrated
in Figure 2:
(0) ROI definition and binarization of input image:

• Abdominal CT - The ROI corresponds to the muscle
region. For segmenting the ROI, a binary version of the
input CT image (see Figure 2b) is considered, which
is obtained by setting the points in the image that lie
within the HU range of the muscle tissue to 1.

• Thoracic CT - Here, the ROI corresponds to the
thoracic cavity and the binarized CT image (see Figure
2b) used for segmentation is obtained by setting the
points in the input image that lie outside the HU ranges
of the muscle and fat tissues to 1.

(1) Computation of mean ROI shape: Given a training
set of binary ROI shapes {I(m) : Ω → {0, 1}}Mm=1, an
unbiased mean shape estimation approach [37] is followed
to compute the mean ROI shape IT (see Figure 2c).
The non-rigid registrations needed during the mean ROI
shape computation are implemented using the FEM-based
deformable registration method (see Section II-A).

(2) Building a SDM of ROI shape: The possible variations
of the ROI shape are represented by the set of nodal
deformation field parameters {Θ(m)}Mm=1 that are esti-
mated through the FEM-based deformable registration of

the training shapes {I(m)}Mm=1 with the mean shape IT . A
Gaussian SDM is built to compactly encode these shape
variations and the corresponding PCA-based regularizer
EPCA

S given in Eq. 9 is formulated for enforcing shape
prior constraints in the next step.

(3) ROI segmentation via SDM constrained FEM-based

registration: In order to initialize the segmentation, the
mean shape IT is affinely-aligned with the binarized image
I . The mean shape IT is then deformed towards the
binarized image I according to the minimization of the
energy in Eq. 10 incorporating the shape-based regularizer
EPCA

S . The desired final ROI shape I∗ (see Figure 2d) is
determined by warping back the mean ROI shape IT using
the inverse of the optimal deformation field (see Eq. 8).

(4) Muscle and fat region segmentation:

• Abdominal CT - The points in the input image lying
within estimated ROI (muscle region) are selected to
obtain the final muscle region and input image points
not belonging to the final muscle region are selected to
obtain the final fat region.

• Thoracic CT - Both the final fat and muscle regions are
determined by selecting the points in the input image
that do not belong to the estimated ROI (thoracic cavity)
using the known fat and muscle HU ranges.

We note that, only the steps 0, 3 and 4 need to be performed
for every given new input image, while the steps 1 and 2 are
performed offline only once.

IV. IMPLEMENTATION DETAILS

The proposed FEM-based SDM constrained unified CT
segmentation method was implemented using both the B-
spline and the Lagrange basis functions in a multi-resolution
framework, and was coded in MATLAB using the MEX
facility.

A. Non-uniform mesh generation

The B-spline basis was defined on a uniform discretization
of the template image domain. On the other hand, to take
advantage of the Lagrange basis functions, a non-uniform
mesh was generated on the template using an image-adaptive
meshing strategy proposed by Yang et al. [38]. The central
aspect of this meshing strategy is to place a relatively higher
density of nodes in image regions with salient features as
opposed to homogeneous regions with a uniform intensity
profile. The salient features in the image are extracted based
on a double derivative map of the image. The double derivative
map is then converted into a binary image via halftoning. The
“white” locations in the halftoned image correspond to the
desired mesh nodes, which are input to Delaunay triangulation
and refinement to generate the non-uniform mesh. The non-
uniform meshes generated using this strategy on the binary
templates containing the mean ROIs in the abdominal and
thoracic cases are shown in Figure 2c. It can be clearly
seen that a dense discretization is achieved only around the
boundaries of the mean ROI, while the uniformly white/black
regions in the template are discretized sparsely. Such an
adaptive non-uniform mesh leads to a computationally efficient
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parametrization of the deformation field using Lagrange basis
functions.

B. Multi-resolution strategy

We followed the standard multi-resolution approach to per-
form template-based segmentation in a coarse-to-fine manner
using 4 resolution levels. The input and template images at
each successive resolution levels are obtained by successively
downsampling the original images by a factor of two. For
the B-spline basis, the uniform mesh at the next resolution
was obtained by halving the mesh spacing at the current
resolution. While for the Lagrange basis, a new non-uniform
mesh was generated on the downsampled template image at
each new resolution level. In both B-spline and Lagrange
basis cases, a separate Gaussian SDM shape prior (see section
II-D) was learned at each new resolution level. Starting at
the coarsest resolution level with a zero initial deformation
field, the estimated deformation field at the current level is
multiplied by a factor of two and then upsampled to the next
resolution level. It is then used to initialize the estimation of
the nodal deformation parameters at the next resolution level
and so on until the finest resolution level.

V. EXPERIMENTS

We evaluated the proposed FEM-based SDM constrained
unified CT segmentation framework on a large database of
CT images obtained from the Cross Cancer Institute (CCI),
University of Alberta, Canada. The CCI dataset consisted
of 1069 abdominal and 590 thoracic axial 512 × 512 CT
images taken at the L3 and T4 level respectively from patients
with head and neck cancers. The abdominal images were
obtained from 670 patients and the thoracic images were
obtained from 334 patients. Manual segmentations of the
muscle and fat regions were available for all the images in
the CCI dataset. The manual segmentation was performed by
a single expert operator using Slice-O-Matic V4.3 software
(Tomovision, Montreal, Canada). In the abdominal case, 69
images were used for training the SDM (see section II-D) and
1000 images were used for testing the proposed automatic
segmentation framework. In the thoracic case, 60 and 530
images were used for training and testing respectively.

In this section, we first compare the computational effi-
ciency obtained by the B-spline and the Lagrange basis on
a small subset of the CCI database. Then, we present the
overall muscle and fat region segmentation results obtained
on the complete CCI database. Both of the experiments below
were run on a Intel i7 3.60 GHz machine with 64GB RAM.

A. Comparison of FEM nodal basis functions

The goal of this experiment is to determine the effect of the
basis function choice on the computational efficiency of the
proposed FEM-based SDM constrained segmentation method.
We randomly selected 50 images from the test subset of the
CCI database in each of the abdominal and thoracic cases.
These images were segmented using both the Lagrange and
the B-spline basis based implementations of the proposed

Evaluation Abdominal Thoracic
Measure B-spline Lagrange B-spline Lagrange

DOF 43520 8160 43520 3700

Time (sec) 14.79± 1.23 0.60± 0.09 16.06± 1.40 0.67± 0.44

Muscle
Jaccard 90.16± 7.42 90.44± 7.49 91.34± 6.23 91.34± 6.19

(%)
Fat

Jaccard 91.20± 4.50 91.20± 4.50 89.74± 12.85 89.82± 12.57

(%)

TABLE I
COMPARISON OF RESULTS OBTAINED USING B-SPLINE AND LAGRANGE

BASIS. THE DOF OF THE B-SPLINE MESH CORRESPONDS TO A 128× 128
UNIFORM MESH RESOLUTION AT THE FINEST MULTI-RESOLUTION LEVEL.

(ALL VALUES ARE REPORTED AS MEAN ± SD).

method. For a fair comparison, the resolution of the uniform
mesh in the B-spline implementation was chosen dense enough
(128 × 128 at the finest multi-resolution level) so that it
obtained segmentation accuracies comparable to the Lagrange
basis. In Table I, we compare the B-spline and Lagrange basis
performance using three different measures, the number of
degrees of freedom (DOF) of the mesh, the computational
time and the Jaccard score. The number of degrees of freedom
(DOF) of a uniform or a non-uniform mesh is computed as
twice the sum of the number of nodes used in the mesh at each
multi-resolution level. The computational time corresponds to
the time taken for solving the equation system in Eq. 11, which
is the core optimization step of the proposed method. The
Jaccard score quantifies segmentation accuracy by measuring
the amount of overlap between the automatic and the manual
labels. We performed pairwise t-test comparisons to determine
the statistical significance of the differences in the performance
of the Lagrange and B-spline basis respectively. It can be seen
that, the use of the Lagrange basis results in a considerably
lower number of DOFs (5 − 10 times lower) compared to
the B-spline basis. This leads to the Lagrange basis being
10 − 20 times faster than the B-spline basis (significantly
lower computational time, p < 0.01 ), while obtaining similar
segmentation accuracies (no statistically significant differences
found, p >> 0.01) for both muscle and fat regions on an
average. Hence, as mentioned earlier in Section II-C, the
implementation of the proposed method using the Lagrange
basis is more computationally efficient.

B. Validation on the CCI database

The entire test subset of the CCI database consisting of
1000 lumbar and 530 thoracic images was segmented using
the Lagrange basis based implementation of the proposed
FEM-based SDM constrained segmentation method. Figure 4
shows the distribution (histogram) of segmentation accuracies
obtained for the muscle and fat regions on the CCI test
subset using our proposed method. For comparison, we also
report the distribution of accuracies obtained with the direct
thresholding-based segmentation of the CT images using the
known muscle tissue [−29 150] and fat tissue [−190 −30] HU
ranges. It can be seen that the proposed method on an average
obtains high (> 90%) muscle and fat region segmentation
accuracies in both the abdominal and thoracic CT image cases.
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Fig. 4. Thresholding-based vs FEM-based segmentation accuracies. Results from abdominal (N = 1000) and thoracic (N = 530) cases are shown. In
(a)-(d), the distribution (histogram) of Jaccard scores is shown along with the mean ± SD for each of the thresholding-based and FEM-based methods.

Also, it can be noted that the proposed method performs poorly
(< 80% Jaccard score) on only a small percentage (5− 10%)
of images in all the four different cases shown. As expected,
the proposed method is able to achieve a vast improvement
in the muscle region segmentation results compared to the
baseline thresholding-based approach. Further, in the thoracic
CT case, our proposed method obtains better segmentation
accuracies even for the fat region. In Table II, we compare
the tissue cross-sectional area estimates (cm2) obtained from
the proposed automatic segmentation method and the man-
ual segmentation method respectively. The tissue areas were
computed by summing up tissue pixels and multiplying by the
pixel surface area. The coefficient of variation (COV) between
the proposed and the manual methods is between 2−6% which
is comparable to the inter-operator COVs reported for manual
segmentation [39], [40].

In Figure 5, we show sample visual results representative of
the general segmentation performance of the proposed method
in the abdominal and thoracic cases. In the abdominal case,
the proposed method achieves very high (> 95%) muscle
and fat region accuracies when the images do not have
any abnormalities (Figure 5a, rows 1,2). The segmentation
performance slightly degrades in the presence of pathologies
such as kidney tumors (Figure 5a, row 3), that typically have
overlapping intensities with the muscle tissue. A complete
failure of the segmentation occurs only when either the muscle
tissue has significantly atrophied resulting in a poor contrast
between muscle and adjacent tissue (Figure 5a, row 4) or the
individual is so emaciated that only a few flecks of fat maybe
present (Figure 5a, row 5). In such situations, both manual
and automated segmentation are extremely challenging. A
similar trend is observed even in the thoracic case, where
an excellent performance (> 95% Jaccard score) is observed
in the absence of abnormalities (Figure 5b, rows 1,2), while

the presence of lung tumors (Figure 5b, rows 3,4) results in
relatively lower Jaccard scores for both the muscle and fat
regions. In the thoracic case also, the presence of only a
few flecks of sporadically found fat tissue (Figure 5b, row
5) causes the proposed segmentation method to completely
fail. In summary, the proposed segmentation method has
demonstrated a very good segmentation performance on the
CCI data set that consisted of a diverse collection of CT
images. The images with major segmentation errors typically
belonged to individuals who would be described clinically as
cachexic (i.e., emaciated). Notably, these individuals lacked
abdominal adipose tissue, subcutaneous adipose tissue and had
very poor contrast between tissues as the wasting process leads
to reduction of the attenuation values of muscle and increase
of attenuation values of adjacent fat.

VI. DISCUSSION

We presented a fast and accurate method for the segmen-
tation of muscle and fat tissues from CT images. We demon-
strated the robustness of our method by validating it on a large
database of CT images taken from cancer patients and obtained
very good segmentation results. As the proposed method is
completely automatic, it facilitates the undertaking of large
scale cancer research studies that require the measurement of
body composition.

APPENDIX A
LAGRANGE NODAL BASIS FUNCTIONS

Consider a non-uniform mesh M = ({Pn}
N
n=1,∆) , where

{Pn}Nn=1 denotes the nodes of the mesh and ∆ is the set of
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Fig. 5. CT muscle and fat region segmentation sample visual results. Manual label (green), automatic label (red) and overlap (yellow). The Jaccard scores
(%) are mentioned above each of the respective images.

Abdominal Thoracic
Tissue Proposed Proposed Manual COV Proposed Proposed Manual COV

Jacc. (%) Area (cm2) Area (cm2) (%) Jacc. (%) Area (cm2) Area (cm2) (%)
Muscle 90.61 ± 7.42 144.52± 38.01 143.68 ± 38.54 2.48± 3.36 92.01 ± 5.27 190.54 ± 46.82 182.66± 44.41 3.68± 4.24

Fat 90.72 ± 6.26 402.21 ± 227.62 386.87 ± 224.94 3.91± 3.49 90.96± 10.82 145.56 ± 80.59 138.91± 73.89 5.34± 11.86

TABLE II
MUSCLE AND FAT TISSUE AREA ESTIMATES USING THE PROPOSED FEM-BASED AND MANUAL APPROACHES ON ABDOMINAL (N = 1000) AND

THORACIC (N = 530) IMAGES. THE COEFFICIENT OF VARIATION (COV) BETWEEN THE PROPOSED AND MANUAL METHODS IS ALSO PRESENTED. ALL

VALUES ARE REPORTED AS MEAN ± SD.

elements. The Lagrange basis is defined as:

φn(x) =











is linear within each adjacent elements,

1 at each node Pn,

0 at every other node Pm 6= Pn.

(12)

APPENDIX B
ANALYTICAL EXPRESSIONS FOR THE GRADIENT TERMS

• The gradient of the data term in Eq. 6 is given as:

∇ΘESSD
D (Θ) = [∇Un

ESSD
D (Θ)]Nn=1, where :

∇Un
ESSD

D (Θ) = 2 ·MT ·

∫

ΩT

[I(ξ(x;Θ))− IT (x)]

∇I|x=ξ(x;Θ)φn(x) dx,

and ξ(x;Θ) = x+

N
∑

n=1

Unφn(x). (13)
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• The gradient of the diffusion regularizer in Eq. 4 is given
as:

∇ΘEdiff
R (Θ) = [∇Un

Ediff
R (Θ)]Nn=1, where :

∇Un
Ediff

R (Θ) = 2

N
∑

m=1

Um

∫

ΩT

∇φm · ∇φn dx. (14)

• The gradient of the PCA-based shape regularization term
in Eq. 9 is given as:

∇ΘEPCA
S (Θ) = 2((γσ2

0)
−1IdNd +B

T
B)(Θ−Θ).

(15)
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