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Abstract

Glioma is one of the most challenging types of brain tumors totreat or control locally. One
of the main problems is to determine which areas of the apparently normal brain contain glioma
cells, as gliomas are known to infiltrate several centimetres beyond the clinically apparent lesion
that is visualized on standard Computed Tomography scans (CT) or Magnetic Resonance Images
(MRI). To ensure that radiation treatment encompasses the whole tumor, including the cancerous
cells not revealed by MRI, doctors treat the volume of brain that extends 2 cm out from the
margin of the visible tumor. This approach does not considervarying tumor-growth dynamics
in different brain tissues, thus it may result in killing some healthy cells while leaving cancerous
cells alive in the other areas. These cells may cause recurrence of the tumor later in time, which
limits the effectiveness of the therapy.

Knowing that glioma cells preferentially spread along nerve fibers, we propose the use of
a geodesic distance on the Riemannian manifold of brain diffusion tensors to replace the Eu-
clidean distance used in the clinical practice and to correctly identify the tumor invasion margin.
This mathematical model results in a first-order Partial Differential Equation (PDE) that can be
numerically solved in a stable and consistent way. To compute the geodesic distance, we use
actual Diffusion Weighted Imaging (DWI) data from 11 patients with glioma and compare our
predicted infiltration distance map with actual grwoth in follow-up MRI scans. Results show
improvement in predicting the invasion margin when using the geodesic distance as opposed to
the 2 cm conventional Euclidean distance.
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1. Introduction

Primary brain tumors are those which start from a glial cell in the nervous system. High-
grade variations of these tumors grow very fast, always leading to a life-threatening condition
and low two-year survival rate. Although magnetic resonance imaging (MRI) is the imaging
mode of choice for the assessment and treatment planning of brain tumors, it is known that
conventional MR imaging cannot show tumor infiltration (lowconcentration of glioma cells).
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Infiltrating glioma cells extend beyond the visible enhancement of both T1-weighted and T2-
weighted images [1]. Current clinical practice is to segment visible tumor using T2-weighted
image, then add an additional 2cm margin uniformly into apparently normal brain to form the
treatment volume. This treatment volume receives post surgery radiotherapy in time. However
this defined volume is a gross approximation, and for small tumors the treatment volume can
often be 4 times larger than the visible tumor volume, potentially sacrificing much healthy brain
and unnecessarily degrading brain function and post treatment life quality. The 2cm margin is
motivated by biopsies and autopsies on a small population [2], then generalized to all patients.

To improve the therapeutic outcome, more accurate prediction of the tumor invasion margin
is necessary. Based on the generally accepted belief that glioma cells preferentially spread along
nerve fibers [3], we propose a new (geodesic) distance measure that is not the usual (Euclidean)
distance measures in pixels or mm but a distance in curved (Riemannian) space relevant to the
likelihood of cancer invasion. This formulation is easily transferable to radiation therapy soft-
ware by replacing the Euclidean distance currently used to define the 2 cm invasion margin with
the new geodesic distance. Moreover, the geodesic model is simple enough (having only one
parameter that is kept constant) to be easily tuned to work ina real setting. Instead of continuing
to the trend of increasing the model complexity with more parameters, we focus on clinical ap-
plicability and validation of our model on real clinical data. This is different in nature, from the
previous related work that model the tumor growth. To locateour model among related works
and elaborate more on the differences, we provide a brief history of similar and related works.

Many efforts have been made to mathematically model the glioma tumorgrowth. Follow-
ing [4], these approaches are classified based on the scale ofthe observation into two major
categories,Microscopicand Macroscopic. Microscopic models describe the growth process
at the cellular level, concentrating on activities that happen inside the tumor cell. They focus
on observations coming fromin-vitro and in-vivo experiments. Also, they describe the inter-
actions between tumor cells and their surrounding tissue, the complicated chemical networks
inside the tumor cells and also nutrition and oxygen availability. Macroscopic methods, on the
other hand, formulate tumor growth in a clinically observable scale, as seen in medical images
at millimeter resolution. The images currently used in mathematical modeling include CT scans,
MRI and DWI. The only information that is currently extracted from large-scale observations
is very limited, including only the tumor delineation area and brain deformation. Limited ob-
servations reduce the number of factors included in the modeling, which result in a simpler
formulation compared to the microscopic case. Moreover, incontrast to microscopic models
that focus on theoretical aspects, macroscopic modeling research is driven by real clinical data,
e.g. real boundaries of the brain, tumor region resection and brain tissue characteristics. Hence,
evaluation of these models can be done using real patient data. For example, we can validate the
growth model using a sequence of MRI images obtained over a period of time.

Almost all macroscopic models formulate the growth processbased on two fundamental
characteristics of tumors: diffusion and proliferation. These two are formulated togetheras a
general equation called the diffusion-reaction formalism. This formalism was introduced by
Murray [5] in 1989 and has significant impact in growth modeling. Diffusion illustrates the fact
that tumor cells infiltrate into the surrounding brain tissue. Proliferation is a function representing
a reactive behaviour that primarily accounts for tumor cellgrowth and death. Based on the effect
of the tumor growth on the brain [6], macroscopic models are classified into two main subclasses,
mechanicalanddiffusive.

Mechanical modelsmainly focus on modeling the effect of tumor growth on deformation
of the surrounding tissue. This effect is known as a mass effect. These models couple two
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distinct formulations, one for growth and one for the mechanical deformation of the brain tissue.
Mohamedet al. [7] modeled the tissue as an isotropic and homogeneous hyper-elastic material
to generate the large deformations. In this model, tumor growth only consists of proliferation
with constant mitosis rate, and the mass effect is generated by the expansion of both the tumor
and its surrounding edema. Hogeaet al. [8] reformulated the same model in a general Eulerian
framework with a level-set based approach for the evolving tumor. The new formulation had
the advantage of using a regular grid and was more efficient. Hogeaet al. [8] also extended
their mechanical formulation based on Eulerian framework [9]. They later used this general
framework for patient-specific parameter estimation [10] and also for image registration [11].
Clatz et al. [12] combined the proliferation, anisotropic diffusion and mass effect together. In
their model, the brain tissue is considered as a visco-elastic material that can be modeled using a
static equilibrium equation. Two different mass effects were established in their model, one for
the tumor and the other for the edema.

Diffusive Modelsformulate the invasion of the tumor in the surrounding braintissue. This
group of methods is based on the reaction-diffusion equation, which has the following general
format 





∂u
∂t = div(D∇u)

︸     ︷︷     ︸

Diffusion Term

+ f (u)
︸︷︷︸

Proliferation Term

− T(u)
︸︷︷︸

Treatment law

D∇u.~n∂Ω = 0

(1)

whereD is the diffusion tensor andu is the normalized tumor cell density (u ∈ [0, 1]). The
second row defines the Neumann boundary conditions and~n is the normal to the boundary.Ω
shows the domain (3D image) and∂Ω is its boundary.

We present this family of macroscopic models based on the diffusion tensor used in the
diffusion equation that defines the motility direction of the tumor cells. In early research, a
mathematical model of glioma growth and diffusion was developed based on the analysis of
serial CT scans of a patient with recurrent anaplastic astrocytoma. The developed model was
an isotropic diffusion model that allowed tumor cells to diffuse equally in all directions with
the same speed for all tissues [13], [14], [15]. Obviously, these models use simple isotropic
tensors for the brain. But, the experimental results of Giese et al. [16] established that tumor
cells move faster in white matter than in gray matter. Swanson et al. [17], [18] incorporated this
experimental fact into the growth model by multiplying the isotropic diffusion tensors in white
matter with a scaling factor. This isotropic model, which always results in spherical cell invasion,
cannot simulate the complex finger-like shapes that characterizes high-grade glioma growth.

Extending Swanson’s work, Clatzet al. [12], Jbabdiet al. [19] and recently Konukogluet al.
[20, 21] included anisotropy to the invasion mechanism of tumor cells. By adding anisotropy to
the numerical simulation of the tumor diffusion process, the “cloudy like” tumor shapes observed
in MRI scans is better captured by the model. These models assume that tumor cells move faster
in white matter compared to gray matter and also they follow the white matter fiber tracts in
the brain. The Tumor Diffusion Tensor (TDT) in these models are formed from water diffusion
tensors extracted from DWI data. Diffusion tensors extracted from DWI data form Diffusion
Tensor Images (DTI). TDT is computed from DTI with different methods. The underlying idea
of all these methods is to assign an isotropic diffusion to the gray matter and an anisotropic
diffusion to the white matter, with the greatest diffusion along the main eigenvector of the water
diffusion tensor (see Section 2.5 for more details on the construction of TDT).

One main difference between our work and most macroscopic tumor growth models is that
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Paper Model Goal Tensor Type Source of Tensor Comparison
Swanson [17] D SG IT N/A N/A
Jbabdi [19] D SG DT Healthy Case Visual Comparison
Clatz [12] DM SG DT Atlas 1 Patient
Hogea [9] DM SG DT Atlas 1 Patient

Konukoglu [22] D IM DT Atlas Synthetic Data
Konukoglu [20] D SG DT Real Tensors 2 Patients

Our approach [20] D IM DT Real Tensors 11 Patients

Table 1: Summary of related methods in brain tumor growth prediction. The Model comparisons are Diffusion (D) and
Diffusion+ Mass effect (DM). The Goal comparison is between Simulate Growth (SG) and Invasion Margin (IM). The
Tensor Type abbreviations are Isotropic Tensor (IT) and Diffusion Tensor (DT). N/A is used when the information is not
given.

we directly define the tumor invasion margin, not the tumor growth. Konukogluet al. [22,
21] are among the few who had the same approach in capturing the tumor invasion margin by
extrapolating the low tumor densities in MRI images. For extrapolation, they considered the
traveling solution of the reaction-diffusion equation in an infinite cylinder. We summarize related
macroscopic tumor models in Table 1, providing the comparison between the previous researches
and our work.

1.1. The Contributions of This Study

We can summarize the contributions of our study as follows.

1.1.1. DTI-based Geometric Model
This study is the extension of our preliminary study [23], where we introduce a novel model

to predict the tumor invasion margin using the geodesic distance defined on the Riemannian
manifold of brain diffusion tensors. The formulation of white matter as a Riemannian mani-
fold was first introduced by O’Donnellet al. [24] and later formalized by Lengletet al. [25].
Our modified distance model is designed for predicting only the current tumor spread (invasion,
not visible in regular MRI) at the time of imaging. The purpose is to better target immediate
treatment following the imaging. Our plans are to use it for better radiation therapy planning.
Therefore, the diffusion-based geodesic distance model does not include components of a growth
model like mass effect or proliferation. The proposed distance formulation iseasily transferable
into radiation treatment planning software that currentlymakes use of a distance (Euclidean) in
defining the target region, as it predicts the distance occult cells have reached beyond the visi-
ble tumor margin. In addition, this formulation results in afirst-order PDE that has stable finite
differences solutions. However, anisotropic models based on the 2nd order diffusion equation
( [19, 12, 21]) cannot be implemented in a stable way using thecommon basic finite difference
schemes in the literature and more complicated methods and careful stability analysis would have
to be performed [26].

1.1.2. Test on Real Data
In addition to introducing the geodesic distance as a measure of glioma cell infiltration, an-

other contribution of this study is the validation of our model on actual patient-specific DTI data.
A main limitation of the published DTI-based models is the lack of validation with real patient
DTI data. We concentrate here on getting a model that best agrees with real data and therefore
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can be useful in a clinical setting. Some of the mentioned models use non-patient DTI data, ei-
ther on atlas tensors registered with the patient (Clatzet al. model [12]) or tensors from a single
healthy subject that are unregistered with the patient (Jbabdi [19]). Konukogluet al.[22] validate
their model by simulating a synthetic tumor on a healthy brain and by comparing the simulation
result with the simulation result of another method. Bettervalidation methods compare the visi-
ble tumor growth in MR images with the one simulated by the model [20]. However, none of the
models are validated on more than two cases.

We tested our model on 11 different patients by comparing the predicted infiltration distance
map computed based on an initial DTI scan with real growth shown on later MRI or DTI scans
of the same patient. Our method takes into account natural barriers to glioma growth such as the
skull, the tentorium cerebelli and the falx cerebri. Comparative results of using geodesic distance
show an acceptable improvement vs. uniform (Euclidean) distance.

1.1.3. Relation to existing work
2. Materials and Methods

2.1. Tumor Invasion Using Geodesic Distance on Brain Fiber Manifold

In this section, we introduce a new method that directly calculates the glioma cell infiltration
in the format of a distance function from the original visible tumor location. Based on the general
belief that that tumor cells infiltrate (diffuse) along white matter fibers [3], the proposed method
calculates a geodesic distance on a Riemannian manifold characterized by the anisotropic diffu-
sion operator defined by DTI (Riemannian manifold of of brainfibers).

O’Donnellet al. [24] and Lengletet al. [25] introduced the formulation of the white matter
as a Riemannian manifold characterized by the infinitesimalanisotropic diffusion operator. They
made the link between the diffusion tensor dataD and white matter manifold geometry and
showed that the diffusion operator can be associated with a metricG = D−1. This metric allows
computation of geodesic paths and distances between pointson the brain, and it was used in [25]
to compute fiber connectivity.

To explain this geometric idea, we employ an analogy with city traffic. Using the Euclidean
distance for the tumor margin corresponds to the assumptionthat it takes the same time to drive
to any point on a city map at a particular radius from home. However, transport time to a certain
point in a city depends to a large extent on the road net geometry and traffic flow. The same is
true for glioma spread, which depends on the brain structures in its vicinity. The DTI technique
that measures water diffusion in brain tissue gives us the key to design a roadmap of the brain.
We make maps that consistently mark every 3D voxel (space unit) in the brain with a modified
distance from the current tumor. The mathematically correct way to do this is to compute a
geodesic distance on a Riemannian (curved) manifold of brain fibers.

An advantage of this new formulation is that it results in a first order Hamilton-Jacobi equa-
tion, while prior works on tumor growth modeling [19, 12, 18]directly solve the second order
parabolic diffusion Equation 1. The first order Hamilton-Jacobi has a stable finite difference-
based numerical solution. But, solving the second order anisotropic diffusion equation with finite
difference method has many stability issues. The stability issues are more difficult to tackle in the
3D case. The numerical aspects are explained in further details in Section 2.6 and Appendix A,
while details on the stability of finite difference methods for solving the 2D anisotropic diffusion
PDEs are presented by Weickert [27].
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2.2. Geometry of Manifold from Diffusion Processes

First we define the manifold geometry from the water diffusion process. We represent the
motion of water molecules by Brownian motionXt. Transition mechanisms are determined by
a probability density functionp or an infinitesimal generatorL. The infinitesimal generator
characterizes the Brownian motion as a molecular diffusion process.

∂u
∂t
= div(D∇u) = Lu (2)

whereD is the positive definite order-2 tensor andu is the cell density. Lengletet al. [25] show
that under some technical hypothesis onL and the Brownian motionXt, it is possible to define
anL-diffusion process on a Riemannian ManifoldM from thed-dimensional stochastic process
Xt. Here we follow their theory on building the connection between theL-diffusion process and
the Riemannian Manifold. The main focus is on the case of diffusion processes with a time-
independent infinitesimal operatorL that is assumed to be smooth and non-degenerate elliptic.
We define the Laplace-Beltrami differential operator for a functionf on a Riemannian manifold
M,

∆M f = div(gradf ) (3)

Denoting the discrete manifold metricG = {gi j } with its inverse{gi j }, the Laplace-Beltrami
operator can be written as

∆M f =
1√
G

∂

∂x j

(√
Ggi j ∂ f

∂xi

)

= gi j ∂2 f
∂xi∂x j

+ bi ∂ f
∂xi

(4)

where

bi =
1√
G

∂(
√

Ggi j )
∂xi

(5)

We can omit the second term of 4, since∆M is second order and strictly elliptical.

Definition: The operatorL is said to be an intrinsic Laplacian generating a Brownian motion on
M if

L = 1
2
∆M (6)

For a smooth and non-degenerate elliptic differential operator onM, L is written as

L = 1
2

di j
∂2

∂xi∂x j
(7)

wheredi j are the components of the diffusion tensorD =
{

di j

}

i, j=1...d
. Equations 4, 5 and 7 con-

clude in the following lemma:

Lemma: If
{

di j
}

i, j=1...d
denotes the inverse matrix ofD, theng = di j dxidxj defines a Riemannian

metricg onM.

Conclusion: This ends up in a very important concept in diffusion tensor imaging, that the
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diffusion tensorD estimated at each voxel point, after inversion, defines the metric of the mani-
fold. In this way, the link between the diffusion tensor data and the manifold geometry of brain
fibers is made.

G = D−1 (8)

Now that we have the metric of the manifold, we are able to define the tumor invasion margin
as the distance from the initial tumor location on the Riemannian ManifoldM. The idea is that
water molecules starting from a given pointx0 on M can reach to any pointx on M through a
geodesic under Brownian motion. Here, the geodesic distance between the two points shows the
pathway of molecular Brownian motion (along fibers in the brain).

We can compute these geodesics using the metricgof the manifold. Let us define Riemannian
distance from a fixed starting pointx0 ∈ M to another pointx on the manifold asr(x) = φ(x0, x)
wherer : M →ℜ+. Based on [25], under the assumption thatM is geodesically complete, there
is a unique distance minimizing the geodesic between each two points on the manifold. The
distance function is Lipschitz on allM, smooth onM/Cutx0 whereCutx0 is the location of all the
points where the geodesic starting orthonormally fromx0 stops being optimal for the distance.
The distance function onM/Cutx0 has the property|gradφ(x)| = 1 where gradφ(x) denotes the
gradient of the distance function on the tangent plane of themanifold. This results in the general
definition of the distance function.

2.3. Geodesic Distance Function

The distance functionφ from a non-empty closed subsetK is the unique viscosity solution of
the Hamilton-Jacobi Equation [25]

{

|gradφ| = 1 in M\K
φ(x) = φ0(x) for x ∈ K

(9)

whereφ0(x) = 0 ∀x ∈ K in the class of bounded uniformly continuous functions. This is a
well-known eikonal equation on the Riemannian Manifold (M,g).
The general format of this Hamilton-Jacobi equation with Dirichlet boundary conditions is writ-
ten as {

H(x,Dφ(x)) = 0 in M\K
φ(x) = φ0(x) for x ∈ K

(10)

where the HamiltonianH : M × T∗M →ℜ is a continuous real function on the cotangent space
of the manifold (T∗M) . Equation 9 is achieved by settingH(x,Dφ(x)) = |grad(φ(x))| − 1 in 10.
We denote by|ν| the magnitude of a vectorν of T M (tangent plane ofM), defined as

√

g(ν, ν). In
matrix notation by formingG =

{

gi j

}

the metric tensor, this writes as
√
νTGν.

2.3.1. A Level Set Formulation for Distance Function
The viscosity solutionφ at x ∈ M of Equation 9 is not a smooth solution. But it has the

property that it is the minimum timet ≥ 0 for any curveγ to reach a pointγ(t) ∈ K starting

at x with the conditionγ(0) = 0 and
∣
∣
∣
∣
∂γ
∂t

∣
∣
∣
∣ ≤ 1. Based on this fact, Equation 9 can be solved as a

dynamic problem and we can apply a level set method for its numerical solution [28].
The level set formulation introduces the use of an implicit function of one higher dimension

to solve the dynamic equation. In this way, the problems of instabilities, deformation of surface
elements and topological changes are avoided. In the level set formulation, the distance function
φ is the zero level of an implicit smooth functionψ(x, t) at timet. φ is the zero level set which
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means the set of points of the manifold that have already beenvisited. ψ(x, t) is a compact
functional of higher dimension, which dividesM into Γ ∈ M and its complementΓc ∈ M. We
call Γ the interior part (which means points of the manifold that have already been visited) and
Γc the exterior (the points not visited). As a result,ψ(x, t) has the following property att = 0






ψ(x, 0) = 0 ⇔ x ∈ φ0

ψ(x, 0) > 0 ∀x ∈ Γ
ψ(x, 0) < 0 ∀x ∈ Γc

(11)

ψ(x, 0) is a uniformly continuous and monotonic strictly decreasing function of distance nearφ0.
We can initializeψ with a Euclidean signed distance function. We requireφt to evolve so that:

ψ(x, t) = 0⇔ t = φ(x) (12)

The level set generated by Equation 12 is the viscosity solution of 9 if ψ is the viscosity solution
of [25]

{

ψt + F(t, x,Dψ(t, x)) = 0 ∀t > 0
ψ(x, 0) = ψ0(x)

(13)

F > 0 does not change sign and it is defined as

F(t, x,Dψ) = H(t, x,Dψ) + 1 (14)

So Equation 13 becomes
{

ψt + |gradψ| = 0 ∀t > 0
ψ(x, 0) = ψ0(x)

(15)

whereψ0 is the signed distance function ofφ0. The viscosity solution of this PDE gives us the
geodesic distance function as the zero level ofψ in time.

2.4. Geodesic Distance for Tumor Growth Prediction

When using the geodesic distance in the context of growth prediction, the subsetK from
where we initiate the growth represents the visible tumor margin. In addition, as the brain con-
tains several obvious natural barriers to glioma growth such as the skull, ventricular system, the
tentorium cerebelli and the falx cerebri,M is defined as the brain volume that does not contain
those barriers.

2.5. Extracting Tumor Diffusion Tensor (TDT) from DTI

Tumors grow with different speed in white vs. gray matter (with a factor of about 10[17]).
While ideally this should be directly reflected by the diffusion tensors (DT) magnitude, due to
noise and discretization problems and the fact that the tumor might grow at a different speed as
water diffusion, so thatD , DT.

So-far published transformation of DTI data into TDT are rather heuristic [19], [20]. TDT
is typically constructed by assigning an isotropic diffusion to the gray matter and an anisotropic
diffusion to the white matter, with the greatest diffusion along the main eigenvector of the DT,
corresponding to the direction of white matter fibers. In principle, more elaborate models could
be developed by estimating better TDT parameters from tumorgrowth observed in real patient
data. For example one could estimate a functionD(x) = C(x)DT(x) whereC(x) is a spatial
transform function. In practice such an approach requires large amounts of patient growth data,
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(a) Barriers (b) Geod. dist. (c) Geod. dist. on (d) Geod. dist.
white matter isocontour on FA

Figure 1: The result of applying the geodesic distance modelto a DTI atlas. Colors in (b) (c) show the geodesic distance
from the initial position (scale: yellow=close, red=far). (d) Shows a 2D cut through an isosurface of the geodesic
distance.

a better understanding of what TDT models would be physiologically plausible, and, at the same
time, the models should be simple enough to yield a numerically well conditioned estimation
problem.

Figure 1(a) shows an example of segmented barriers (ventricles, falx, tentorium). Figure 1(b-
d) shows examples of geodesic distance computed on the ICBM DTI-81 atlas [29]: (b) shows
the geodesic distance computed with linearly weighting thetensors that originates from a sphere
(green circle in the figure) until it reaches the skull boundary; (c) shows the geodesic distance but
with thresholding only the white matter tensors instead of scaling the whole brain tensors; (d)
shows an isocontour of the geodesic distance aligned with FAvalues. Notice how the distance
follows the fiber directions.

2.6. Numerical Aspects of the Geodesic Model

To numerically solve the hyperbolic Hamilton-Jacobi Equation 15, we approximate the con-
tinuous flux|gradψ|2 as [25]

|gradψ|2 = ∑3
i=1 gii

(

max(D−xi
ψ, 0)2 +min(D+xi

ψ, 0)2
)

+
∑

i, j gi j minmod(D+xi
ψ,D−xi

ψ)minmod(D+x j
ψ,D−x j

ψ)
(16)

wheregi j
i, j=1...3 are components of the inverse matrixG−1, D±xi

ψ are the upwind approximation
of the gradient ofψ in xi and minmod(a, b) = min(a, 0)+ max(b, 0). With this approximation
of the flux, we used an explicit method to solve Equation 15 on the whole domain, using a
fast-marching method for reinitializing the signed distance function [30] after each iteration.

Equation 15 is a Hamilton-Jacobi equation that is a first order hyperbolic (wave-like) PDE
of the formφt + H(φx) = 0. Hamilton-Jacobi equations are very similar to classicalhyperbolic
conservative laws [30]. The finite difference method of Equation 16 is spatially stable and its
time stability is simply satisfied by adjusting the temporalresolution. Appendix A gives details
on the stability and consistency of our solution.
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Initialization
Diffusion
margin Invasion

(a) (b) Time 1 (c) Time2

margin margin
Invasion

Figure 2: Synthetic diffusion-growth simulation on a DTI atlas to motivate our validation. The experiment shows that
the visible tumor margin at later scans (Time 2) is close to the actual (invasion) tumor margin in earlier scans (Time 1).
We set the density of visible cancer cells to 0.05. Synthetictumor growth is generated from a seed region show in (a)
using diffusion. (b)Time 1: after simulated growth we show tumor margin - visible in blue (iscontour of density=0.05)
and actual in green (isoconour of density 0) (c)Time 2: after running diffusion few more iterations the visible margin
(isconour of density=0.05) is very close to the actual tumor margin from time1.

3. Experiments

3.1. Validation with Real Data

We have proposed a modified distance to better capture tumor invasion margin by taking into
consideration preferential spread along white matter fibers. Unfortunately, we cannot use any
direct method to evaluate our mathematical model since the invasion margin is not observable
in any of the available imaging techniques. We instead validate our model using subsequent
MRI scans that show actual tumor growth (typically 3 month later). Our main assumption is
that the visible growth in the subsequent times occurs over the invisible but already-infiltrated
regions at the initial time. Figure 2 presents a simple diffusion-based growth simulation that uses
Equation 1 to support our assumption. We synthetically generate two stages of growth using
anisotropic diffusion in a DTI atlas and show that the visible tumor margin (choosing a threshold
of 0.05 for visible cell density) at later scans (time 2) is close to the invasion (actual tumor)
margin in the earlier scans (time 1).

Based on this assumption, we compare the geodesic distance generated from datatime 1
with the segmented visible tumor in the latertime 2scan. For a fair comparison we calculated
the volume change between the segmented tumor intime 2andtime 1and chose the isocontour
corresponding to this volume change. We also compared our geodesic model with a uniform
Euclidean model where the corresponding isocontour for theEuclidean model was calculated
the same way. One challenge in such validation system is thatwhat we see in a later scan is
actual growth that includes mass effect and proliferation. We ignore proliferation and accountfor
the mass effect through image registration. We excluded proliferationfrom our model because
the effect of proliferation cannot be isolated from the effect of diffusion [20]. While this is
only an approximate validation procedure, it still gives a good indication that our new distance
would better predict tumor infiltration than the uniform distance that is currently used in clinical
practice.

Fig. 3 shows an overview of ourvalidationsystem, and Fig. 4 pictorially illustrates validation
steps. A brief explanation and motivation is provided belowand more details in the following
subsections.
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Validation data To minimize the effect of radiation treatment, we chose the first or second DTI
scans after treatment as thetime1(initial) scan. Thetime2(reference) scan used for com-
parison is taken as subsequent clinical MRI-FLAIR scan typically after 3 month. While
ideally a later DTI scan could have been used for comparison,for most patients, due to
their degraded health condition, we do not have a second DTI scan (the DTI study is not
part of their clinical scan and therefore not mandatory).

Tumor /edema segmentationThe geodesic model is initialized from the visible tumor seg-
mented ontime1FLAIR image taken at the same time as the DTI scan. The reference
tumor used for comparison is segmented in thetime2 FLAIR scan. This segmentation
corresponds to the tumor and edema region. We chose to do segmentation on a FLAIR
image because there is evidence that occult cells are present at about 2cm distance from
edema as visible on a FLAIR/T2 [2]. The FLAIR abnormality is also the reference tumor
volume enhanced with a 2m margin that is currently considered for radiation treatment.
This time2segmentation is used to calculate the volume change that is used to identify the
isocontour in thetime1geodesic distance corresponding to thetime2visible tumor. To be
able to compare the two scans they need to be registered.

Tumor barriers Tumor spread barriers (ventricular system, falx cerebri and tentorium cere-
belli), which are also required by the geodesic distance model, are manually delineated in
time1scan.

Data Registration Registration betweentime2andtime1need to be performed in order to do
the validation. The presence of mass effect between the two scan, would suggest that
a non-linear registration should be used to ’undo’ this process. Although, we applied
different techniques to tackle the mass effect problem with non-linear registration (one
method is described in [23]), since the available non-linear registration techniques do not
work accurately on images with pathological abnormalities, using non-linear registration
did not improve the results. We therefore chose to do a simplelinear registration between
the two scans.

Measurements We compared the accuracy of the predicted infiltration usingthe geodesic and
Euclidean model with the actual tumor growth fromtime2. Both distances are computed
up to the volume change between the two time scans. Since in clinical practice, the 2cm
margin does not take into account natural brain barriers we analyzed two cases for the Eu-
clidean distance: with and without barriers. While the firstone represents current clinical
practice, the later one is a more fair comparison with the geodesic distance that accounts
for brain barriers. We report Jaccard scores as results of our comparison in Table 2 and we
show visual comparison on selected slices in Figure 6 and Figure 7.

3.2. Patients and Data

We have 64 patients involved in the DTI glioma study1. After processing all data we only
found 11 patients that were useful for our study (showing tumor growth between the first DTI
scan and subsequent scans). The 11 patients included in the validation have mostly 4 grade
glioblastoma (8 cases), one has grade 3 glioma and two have grade 2 malignant glioma.

1The data collection protocol was approved by REB and the patients that have signed and given informed consent.



/ Procedia Computer Science 00 (2011) 1–22 12

Segment Tumour
Register with Time1
Warp tumour volume
Calculate growth volume

Extract TDT from DTI

Segment Tumour
Segment Barriers
Extract DTI

Visible
tumour
size

Visible tumour volume

Simulated 
geodesic
volumeGeodesic

distance
calculation

Evaluation

Scan

Scan
Time1

Time2

Figure 3: Overview of the tumor growth validation system

DWI images have been acquired on a research-dedicated 3T Philips Achieva located at a
local hospital. The relevant DWI acquisition parameters for full brain coverage are: single-shot
echo planar imaging with a SENSE factor of 2, 60 2.3 mm thick slices with no gap, field-of-view
= 220× 220 mm2, 2.3 mm3 isotropic resolution, echo time= 88 ms, repetition time= 8.8 s,
2 averages, acquisition time= 5 min, diffusion sensitivityb = 1000s/mm2, and 15 diffusion-
sensitizing gradient directions. In addition, a 3-dimensional isotropic T1-weighted image depict-
ing the tumor is also acquired at 3T with 1× 1 × 1 mm3 resolution in 5.5 min for anatomical
comparison and co-registration with the 1.5T images. Routine MRI scans (T1 pre- and post-
contrast, T2, FLAIR) are all acquired on the clinical 1.5T Philips scanner as part of the patient’s
standard follow-up. The resolution of DWI data is 128× 128× 60 and the resolution of FLAIR
data is 512× 512× 21.

Each patient has a pre-RT (Radiation Therapy) MRI scan. Follow-up DWI or MRI scans
have been made after treatment at intervals of about 3-6 months for the duration of life of the
patient. Typically at least one or two DWI scans are acquiredafter radiation and the rest of the
scans are conventional MRI images (T2, T1C, FLAIR). After processing all data we only found
11 patients that were useful for our study (showing tumor growth between the first DTI scan and
subsequent scans).

3.3. Data processing

3.3.1. Segmentation and Tensor Extraction
For the validation procedure and for initializing the growth simulation, the area of tumor cells

visible in the MRI data has to be segmented. The region containing the tumor and its associated
edema is the high signal area visible in FLAIR data. We used ana semi-automatic segmentation
software that we have developed in our lab [31] to do all segmentations. In addition to the tumor
region, growth barriers (ventricular system, falx cerebriand tentorium cerebelli), which are also
required by the growth prediction model, are manually delineated using the same software. An
expert radiation oncologist validated all segmentations.

We use ExploreDTI [32] as the tensor processing tool to extract the tensor data from 15
diffusion-weighted images on a voxel-by-voxel basis. ExploreDTI has the post processing op-
tion for correcting eddy current distortions that are unique for each diffusion-encoding direction
and also for correcting the motion distortions. We post-process water tensors (DTI) to make
tumor diffusion tensors (TDT) as explained in Section 2 by weighting the tensors based on their
Fractional Anisotropy (FA) value.
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Figure 4: We compute the geodesic distance ontime1corresponding to the same volume as the growth shown on the
registeredtime2scan. Even though this registration does not solve the non-linear effects caused by the mass effect, it is
still a good approximate alignment between the two time scans.

3.3.2. Registration
To be able to compare the simulated isocontours with the visible growth observed in a later

scan, we need registration.
Our registration includes two steps; registering FLAIR data from time2 with the FLAIR

data fromtime1and also registering the FLAIR and DWI-b0 data oftime1. For both cases, we
use affine (linear) registration. One source of registration errors is the difference in resolution
between DWI images (128× 128× 60) with FLAIR images (256× 256× 20). The difference
between the inter-slice distances is most notable. As Figure 5 shows a typical result of our
registration procedure.

The linear registration does not take into account the mass effect due to the tumor growth
from time1 to time2. This is easily noticed in Figure 4 (right-bottom) which shows the result
of affine registration: the growth-affected ventricle shape intime2is incorrectly registered with
data attime1. Even though a nonlinear registration would be more suitable to account for the
mass-effect, we have found, after applying different methods (one method is described in [23]),
that non-linear registration only makes results worse. Foraccounting the abnormal tissue, we
have masked the tumor region in both the target and source images before applying the non-
linear registration. Considering this, the abnormal tissue should not interfere with the registration
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Initial FLAIR Scan Initial FLAIR Scan after
Interpolation + Registration

Initial DWIb0 Scan
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Interpolation+Registration

Figure 5: The low inter-slice resolution FLAIR images attime1and time2scans are linearly registered to DWI-b0 at
time1scan.

process, but still the algorithm was not able to correctly register the two images. The failure of
non-linear registration methods is probably due to the factthat available techniques do not work
accurately on images with pathological abnormalities and masking the abnormal region is not
enough. For both linear and non-linear registrations, we use FSL tools [33] (FLIRT for linear
and FNIRT for non-linear registration).

3.4. Results on real DTI for geodesic distance validation

3.4.1. Comparison with the traditional uniform distance model
As a result of our validation procedure for the geodesic distance on real DTI data, we report

comparative results between the predicted infiltrations ontime1 scan using the geodesic and
Euclidean model with the actual tumor growth fromtime2. Both distances are computed up
to the volume change between the two time scans. For the Euclidean distance, we analyze two
cases: one that accounts for brain barriers (more fair comparison with the geodesic distance case)
and one that does not consider brain barriers (closer to the clinical practice).

Figure 6 presents comparative results between the geodesicdistance and the Euclidean dis-
tance with no barriers (real clinical practice). We noticedthat where the tensor values are less
noisy, the geodesic distance model can track the path of fibers, and therefore the model matches
tumor growth, as opposed to the Euclidean model. As presented slices are parts of a 3D volume,
initial tumor contour is not present in two of the slices (tumor has not reached that slice but it
will later grow there). Notice how in the example from the last row of Figure 6 the Euclidean
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(a) Segmented edema (b) Segmented edema (c) Geod. dist. (d) Euclid. Dist.
DWI-b0 attime1 T2 at time2 no barriers

Figure 6: Comparative results for 5 different patients of (c) geodesic and (d) Euclidean distance asused clinically (no
barriers) models initiated from (a) segmented tumor attime1and (b) linearly registered followed up scans attime2(MRI-
T2 or DWI). Barriers are shown in blue. As presented slices are part of a 3D volume, initial tumor contour in (a) is not
present in two of the slices (row 3 and 5). This means that initial the tumor has not reached that slice but it will later
grow there. Notice how in the example from the last row the Euclidean distance (d) has not reached the showed tumor
location (b) while the geodesic distance (c) correctly shows the growth.
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(a) Segmented edema (b) Geod. dist. (c) Euclid. Dist. (d) Euclid. Dist.
FLAIR time2 FLAIR time1 FLAIR time1 with no barriers

Figure 7: Comparative results for 2 patients showing: (a) manual edema segmentation on registered FLAIRtime1 (b)
geodesic distance, (c) Euclidean distance with barriers and (d) Euclidean distance with no barriers ontime1 FLAIR.
Barriers are shown in blue andtime1edema segmentation used to initialize all distances in red.Jaccard scores between
(b-d) distances and (a)time2segmentation are shown in white in the top right corner. Eventhough Jaccard scores are
higher when no barriers are used for Euclidean segmentation(d), visual comparison shows that considering barriers (c)
gives a better distance approximation of the real growth. The geodesic distance gives best overall results.

distance has not reached the particular tumor slice while the geodesic distance correctly models
the growth.

Figure 7 shows sample comparative results between the two Euclidean cases (with and with-
out barriers) and the geodesic distance.

To provide numerical comparison, we calculated the Jaccard(overlap) scores as shown in
Table 2 for the three cases (geodesic versus two Euclidean methods). Numerical results show an
average Jaccard score improvement of 5% and up to 20% on our datasets for simulated growth
using the geodesic distance compared to the Euclidean distance (both in presence of barriers).
For the Euclidean case that does not consider barriers, although the Jaccard scores are higher,
but, as visual results in Figures 6 and 7 show, the calculateddistances do not properly match the
approximation of the real growth. The geodesic distance gives best overall results.

3.4.2. Comparison with an isotropic diffusion distance
3.4.3. Comparison of Different Tensor Extraction Methods
4. Discussion and Future Work

This study focuses on defining the correct margin of tumor occult cells that need to receive
radiation therapy. This helps to control glioma tumors moreeffectively. Based on the fact that
tumor cells diffuse in the same direction as water molecules, we used a geodesic distance model
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Patient
Jaccard score

Geodesic dist. (%) Euclidean dist. (%) Euclidean dist. (%)
with barriers no barriers

1 60 55 59
2 69 57 65
3 63 61 59
4 59 58 59
5 56 55 56
6 54 34 46
7 60 59 60
8 51 42 42
9 56 54 55
10 73 70 72
11 48 44 50
mean 59 53.54 56.63

Table 2: Jaccard (overlap) scores for comparing registeredground truth with Geodesic and Euclidean growth.
Jaccard(A,B) = (A∩ B)/(A∪ B)

to locate the tumor invasion in the direction of water molecule motion. We evaluated our model
on actual patient MRI and DTI data, which provide accurate and personalized information of
white matter tracts, without requiring additional registration steps of diffusion tensors. Non of
the previous models have been verified on a large set of patients with DTI data. We have hitherto
tested our model on 11 dataset which were selected from our dataset of 64 patients. The access
to this dataset enables us to be the first to test realistic diffusion-based invasion margin model on
a large collection of patient DTIs. The visual comparison ofour model with the conventional Eu-
clidean distance method reveals that the anisotropic diffusion model can follow the tumor shape
changes along the fibers better in time. The numerical results also indicate slight improvement.

Some issues that we think are of high priority to study in future work include:

• A problem with the available data is the low resolution of thedata and the quality of data
acquisition. The patients cannot tolerate the long period of the scan needed for clean data
acquisition. Hence, the acquired data is rather noisy and oflow quality, which increases
the requirement of post processing. Figure 1 shows that the model can successfully track
the clean tensors of the Atlas but results are somewhat less accurate for noisy clinical data.

•

• One of the necessities of the validation process is the segmentation of tumor and natural
barriers. Therefore, we need at least five different structure segmentations (tumor in two
time scans and three barriers) for each patient. This is a time-consuming task for the
busy radio-anthologists. Despite the large amount of work done to automate the tumor
segmentation process, there is no reliable segmentation software yet, especially for brains
with abnormal regions (tumor). We expedited the process by using the semi-automatic
tool proposed in [31]. However, we believe that automatically segmenting the barriers
is not as difficult as the tumor, and it can save a considerable amount of time and effort.
Automatically segmenting barriers from the available MRI and DWI data is another future
work.
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(a) Edema attime2 (b) DTI-base diffusion (c) isotropic diffusion (d) Euclidean
distance distance distance

Figure 8: Motivation for the use of real DTI tensors. Comparison between (b) DTI-based anisotropic diffusion distance,
(c) isotropic diffusion distance generated using synthetic isotropic tensors with different scales in WM and GM and the
(d) Euclidean (uniform) distance. (a) shows the manual segmentation of edema attime2used as reference (ground truth)
for comparison. Blue contours show this ground truth segmentation and red contours show corresponding distances.
Distances (shown ontime1data) are initiated from segmentation ontime1and computed the same way as described in
Section 3.1 (using the volume difference betweentime2andtime1to identify corresponding isocontours). Jaccard scores
are shown in white in the top right corner.

• A main source of error in the validation procedure is caused by the approximate registra-
tion of several time scans of patient data. Deriving a registration method that explicitly
models the tumor mass effect can therefore improve the validation system. A proposed
registration technique in the presence of mass effect incorporates a mechanical model into
the registration (similar to [34], [35]).

• As shown by Painter [36], anisotropic diffusion might not be the optimal mathematical
formulation of the cell migration process, which can be better modeled using a transport
equation. Developing new mathematical models that use the full potential of DTI imaging,
instead of the current reaction-diffusion based models, can increase the accuracy of tumor
geometry and treatment margin prediction.

5. Conclusion

In this paper, we introduced the use of a geodesic distance onthe Riemannian manifold of
brain fibers, to detect the glioma brain tumor invasion margin. The model was tested on several
real patients’ data and a DTI atlas. In contrast to most of theprevious works in this area which
use registered tensors of the atlas, we used real tensors of the patients obtained from the standard
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Patient
Jaccard score

Linear (%) Square (%) Jbabdi. (%)
1 60 33 60
2 69 27 65
3 63 43 62
4 59 59 57
5 56 49 54
6 54 14 54
7 60 62 60
8 51 23 49
9 56 52 55
10 73 71 72
11 48 33 50
mean 59 42.36 58

Table 3: Jaccard scores for comparing registered ground truth with Geodesic model using different tensor extraction
methods.

clinical procedure. Comparative results between real growth in follow up scans and simulated
growth based on geodesic distance and Euclidean distance prove that the use of the geodesic
distance could significantly improve radiation therapy treatment. The geodesic distance obtained
by our method can directly replace the Euclidean distance inthe radiation therapy software and
tools. State of the art radiation technologies enable very delicate radiation treatments in the scale
of millimeters. Therefore, the complicated 3D shape obtained with the geodesic model can be
used in the treatment planning.

Appendix A. Details on numerical aspects of the geodesic distanceHamilton-Jacobi equa-
tion

Numerical methods used for solving PDEs must be stable. Thisis important in medical
applications where not considering stability issues of numerical methods can cause incorrect
judgments of medical doctors which can lead to incorrect treatment methods. To support our
statement, we use a visual example. Figure A.9 compares the result of applying two different
numerical methods for solving the same PDE. Both methods areapplied to the second order
anisotropic parabolic diffusion equation of type 1 to solve the tumor growth model. In the image,
the red contour shows the initial tumor area and, blue contours show the result of growth after
a certain time. The left image shows the result of applying anunstable discretization method
which results in an inhomogeneous contour [19], while the homogeneous right contour shows
the result of a stable method [26]. More details on this analysis are given in [26].
In our study that we use full diffusion tensors, we are dealing with nonlinear PDEs rather than
the simple linear ones. The stability of a finite difference solution to a nonlinear PDE cannot
be guaranteed only by adjusting temporal or spatial resolutions. The method should meet cer-
tain criteria to be stable. Weickert [27] gives details about the criteria for solving a nonlinear
anisotropic diffusion equation in the 2D case. Obtaining stable solution to anonlinear PDE is
even more difficult for the 3D case. Some prior works have used full diffusion tensors without
considering stability issues of their numerical solution,[19] as an example. This results in an
incorrect solution. We hereby prove that our used numericalmethod is stable:
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Figure A.9: Test of different discretization methods on anisotropic diffusion equation using real DTI data of patients with
glioma. Red contour shows the starting area of the growth simulation. Left: Result of applying an unstable method, the
blue contours show the result of an inhomogeneous growth caused by this method. Right: Result of applying a stable
method which results in homogeneous contours.

The geodesic distance calculation results in solving a firstorder hyperbolic Hamilton Jacobi
equation of the formψt + H(ψx) = 0:

{

ψt + |gradψ| = 0 ∀t > 0
ψ(x, 0) = ψ0(x)

(A.1)

whereψ is a levelset representation of the distance function and the the continuous flux|gradψ|2
is discretized as shown in Equation 16. We next discuss the consistency and stability of our finite
difference-based solution for the geodesic distance equation.

Appendix A.1. Consistency
Consistency is achieved by applying the discretization in the direction of the wave motion

(it depends on the sign of the velocity). Generally, upwind methods approximate derivatives by
biasing the finite difference stencil in the direction where the characteristic information is com-
ing. The upwind method guarantees a consistent finite difference scheme. The combination of
the Euler differencing method with the upwind difference scheme gives aconsistentfinite differ-
ence scheme to the linear first order wave equation. But, Equation 15 is a non-linear equation
of the general formf (u) = u2. Engquist-Osher introduced the upwind method for nonlinear
functions [37]. The numerical flux to the positive speed function f is defined as:

f (u) =
((

max(D−xu, 0)
)2
+

(

min(D+xu, 0)
)2
)

, u = ψx (A.2)

Consistency of this discretization scheme is proved in [37]. This method is extended to 3D in [38]
for the quadratic Hamilton equation as defined in Equation 16.

Appendix A.2. Stability
A numerical method is said to be stable if small perturbations do not cause the resulting nu-

merical solution to diverge without bound [39]. According to [30], stability guaranties that small
errors are not amplified in time. For a first order hyperbolic equation, stability is achieved by
forcing Courant-Friedrichs-Lewy condition (CLF condition), which states that numerical waves
should propagate at least as fast as the physical wave. This means that the speed of the numerical
wave ∆x

∆t must be at least as large as the physical wave speed|u|. The CLF condition for the
Hamilton-Jacobi equationψt + H(ψx) = 0 is given in [30] as

∆t

( |H1|
∆x
+
|H2|
∆y
+
|H3|
∆z

)

< 1 (A.3)
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whereH1, H2 andH3 are the spatial derivatives ofH with respect toψx, ψy andψz, respectively.
Using this scheme, it is easy to find the CLF condition for Geodesic distance Hamilton-Jacobi
equation with nonlinear part

H(φ) =
∣
∣
∣gradψ

∣
∣
∣
2
=

3∑

k=1

3∑

l=1

∂ψ

∂xl

∂ψ

∂xk
gkl (A.4)

wheregkl are the elements of the diffusion tensor. It is easy to see that

H1 =
∂ψ

∂x1
g11+

∂ψ

∂x2
g12+

∂ψ

∂x3
g13 (A.5)

H2 andH3 are computed in the same way.
To conclude, we have shown that the finite difference method of Equation 16 used for solv-

ing the Hamilton-Jacobi equation is stable in space and its time stability is simply satisfied by
choosing an appropriate time step.
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