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Abstract

Glioma is one of the most challenging types of brain tumorseat or control locally. One
of the main problems is to determine which areas of the ajpigneormal brain contain glioma
cells, as gliomas are known to infiltrate several centinsgbeyond the clinically apparent lesion
that is visualized on standard Computed Tomography scafsaiMagnetic Resonance Images
(MRI). To ensure that radiation treatment encompasseshioéatumor, including the cancerous
cells not revealed by MRI, doctors treat the volume of brait textends 2 cm out from the
margin of the visible tumor. This approach does not consideying tumor-growth dynamics
in different brain tissues, thus it may result in killing some hsadiells while leaving cancerous
cells alive in the other areas. These cells may cause rema @ the tumor later in time, which
limits the efectiveness of the therapy.

Knowing that glioma cells preferentially spread along rmefibers, we propose the use of
a geodesic distance on the Riemannian manifold of brdtusion tensors to replace the Eu-
clidean distance used in the clinical practice and to ctigréentify the tumor invasion margin.
This mathematical model results in a first-order Partidfddential Equation (PDE) that can be
numerically solved in a stable and consistent way. To comfhe geodesic distance, we use
actual Ditusion Weighted Imaging (DWI) data from 11 patients with gieand compare our
predicted infiltration distance map with actual grwoth itida-up MRI scans. Results show
improvement in predicting the invasion margin when usirgdleodesic distance as opposed to
the 2 cm conventional Euclidean distance.
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1. Introduction

Primary brain tumors are those which start from a glial aeltfie nervous system. High-
grade variations of these tumors grow very fast, alwaysihepth a life-threatening condition
and low two-year survival rate. Although magnetic resomraintaging (MRI) is the imaging
mode of choice for the assessment and treatment planningaof tumors, it is known that
conventional MR imaging cannot show tumor infiltration (le@ncentration of glioma cells).
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Infiltrating glioma cells extend beyond the visible enhaneat of both T1-weighted and T2-
weighted images [1]. Current clinical practice is to segmasible tumor using T2-weighted
image, then add an additional 2cm margin uniformly into apptly normal brain to form the
treatment volume. This treatment volume receives postesyngdiotherapy in time. However
this defined volume is a gross approximation, and for smatiois the treatment volume can
often be 4 times larger than the visible tumor volume, paddigtsacrificing much healthy brain
and unnecessarily degrading brain function and post tresattiife quality. The 2cm margin is
motivated by biopsies and autopsies on a small populatipti@n generalized to all patients.

To improve the therapeutic outcome, more accurate predicti the tumor invasion margin
is necessary. Based on the generally accepted belief ibatgtells preferentially spread along
nerve fibers [3], we propose a new (geodesic) distance me#sairis not the usual (Euclidean)
distance measures in pixels or mm but a distance in curvesdr(&inian) space relevant to the
likelihood of cancer invasion. This formulation is easitgrisferable to radiation therapy soft-
ware by replacing the Euclidean distance currently useefioe the 2 cm invasion margin with
the new geodesic distance. Moreover, the geodesic modehesenough (having only one
parameter that is kept constant) to be easily tuned to woak@al setting. Instead of continuing
to the trend of increasing the model complexity with moreapaeters, we focus on clinical ap-
plicability and validation of our model on real clinical datThis is diferent in nature, from the
previous related work that model the tumor growth. To lo@atemodel among related works
and elaborate more on thef@irences, we provide a brief history of similar and relatedisio

Many dforts have been made to mathematically model the glioma twrawth. Follow-
ing [4], these approaches are classified based on the scéhe abservation into two major
categoriesMicroscopicand Macroscopic Microscopic models describe the growth process
at the cellular level, concentrating on activities that jep inside the tumor cell. They focus
on observations coming fromn-vitro andin-vivo experiments. Also, they describe the inter-
actions between tumor cells and their surrounding tissue complicated chemical networks
inside the tumor cells and also nutrition and oxygen avditpgbMacroscopic methods, on the
other hand, formulate tumor growth in a clinically obsefeadrale, as seen in medical images
at millimeter resolution. The images currently used in reathtical modeling include CT scans,
MRI and DWI. The only information that is currently extradtéfom large-scale observations
is very limited, including only the tumor delineation araadébrain deformation. Limited ob-
servations reduce the number of factors included in the fm@gewhich result in a simpler
formulation compared to the microscopic case. Moreovegontrast to microscopic models
that focus on theoretical aspects, macroscopic modelsggreh is driven by real clinical data,
e.g. real boundaries of the brain, tumor region resectiahbaain tissue characteristics. Hence,
evaluation of these models can be done using real patiesat Bat example, we can validate the
growth model using a sequence of MRI images obtained overiacbef time.

Almost all macroscopic models formulate the growth prodessed on two fundamental
characteristics of tumors: filision and proliferation. These two are formulated togetizea
general equation called thefidision-reaction formalism. This formalism was introduced b
Murray [5] in 1989 and has significant impact in growth modgli Diffusion illustrates the fact
that tumor cells infiltrate into the surrounding brain tissBroliferation is a function representing
a reactive behaviour that primarily accounts for tumor getiwth and death. Based on théeet
of the tumor growth on the brain [6], macroscopic models &ssified into two main subclasses,
mechanicabnddiffusive

Mechanical modelsnainly focus on modeling theffect of tumor growth on deformation
of the surrounding tissue. Thidtect is known as a masdfect. These models couple two
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distinct formulations, one for growth and one for the medtardeformation of the brain tissue.
Mohamedet al. [7] modeled the tissue as an isotropic and homogeneous{®ygstic material
to generate the large deformations. In this model, tumowtir@nly consists of proliferation
with constant mitosis rate, and the mafigeet is generated by the expansion of both the tumor
and its surrounding edema. Hogetaal. [8] reformulated the same model in a general Eulerian
framework with a level-set based approach for the evolvingdr. The new formulation had
the advantage of using a regular grid and was mdiieient. Hogeeet al. [8] also extended
their mechanical formulation based on Eulerian framew®ik [They later used this general
framework for patient-specific parameter estimation [1@] also for image registration [11].
Clatz et al. [12] combined the proliferation, anisotropicfiision and masstkect together. In
their model, the brain tissue is considered as a viscoielastterial that can be modeled using a
static equilibrium equation. Two fierent massféects were established in their model, one for
the tumor and the other for the edema.

Diffusive Modeldormulate the invasion of the tumor in the surrounding bttégsue. This
group of methods is based on the reactiofiudion equation, which has the following general
format

a9 .
& = div(DVu) + f(u) - T(u)

— S~ S~——

Diffusion Term Proliferation Term Treatment law (1)

DVU.ﬁ()g =0

whereD is the difusion tensor and is the normalized tumor cell density (e [0, 1]). The
second row defines the Neumann boundary conditionsisiadhe normal to the boundary
shows the domain (3D image) atif} is its boundary.

We present this family of macroscopic models based on tffasibn tensor used in the
diffusion equation that defines the motility direction of the ¢urnells. In early research, a
mathematical model of glioma growth andfdsion was developed based on the analysis of
serial CT scans of a patient with recurrent anaplastic egtomna. The developed model was
an isotropic difusion model that allowed tumor cells toffdise equally in all directions with
the same speed for all tissues [13], [14], [15]. Obvioudhgse models use simple isotropic
tensors for the brain. But, the experimental results of &e&tsal. [16] established that tumor
cells move faster in white matter than in gray matter. Swamrs$@l. [17], [18] incorporated this
experimental fact into the growth model by multiplying tisetropic difusion tensors in white
matter with a scaling factor. This isotropic model, whicays results in spherical cell invasion,
cannot simulate the complex finger-like shapes that cheniaes high-grade glioma growth.

Extending Swanson’s work, Clag al. [12], Jbabdiet al. [19] and recently Konukogleat al.
[20, 21] included anisotropy to the invasion mechanism ofducells. By adding anisotropy to
the numerical simulation of the tumortiision process, the “cloudy like” tumor shapes observed
in MRI scans is better captured by the model. These modalsresthat tumor cells move faster
in white matter compared to gray matter and also they follogwhite matter fiber tracts in
the brain. The Tumor Diusion Tensor (TDT) in these models are formed from watgusiion
tensors extracted from DWI data. fRision tensors extracted from DWI data formfiDsion
Tensor Images (DTI). TDT is computed from DTI withfidirent methods. The underlying idea
of all these methods is to assign an isotropifudiion to the gray matter and an anisotropic
diffusion to the white matter, with the greatedt$ion along the main eigenvector of the water
diffusion tensor (see Section 2.5 for more details on the castigiruof TDT).

One main diference between our work and most macroscopic tumor growtlelads that
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Paper Model | Goal | Tensor Type| Source of Tenso Comparison
Swanson [17] D SG IT N/A N/A
Jbabdi [19] D SG DT Healthy Case | Visual Comparison
Clatz [12] DM SG DT Atlas 1 Patient
Hogea [9] DM SG DT Atlas 1 Patient
Konukoglu [22] D IM DT Atlas Synthetic Data
Konukoglu [20] D SG DT Real Tensors 2 Patients
Our approach[20] D IM DT Real Tensors 11 Patients

Table 1: Summary of related methods in brain tumor growthlipt®n. The Model comparisons arefision (D) and
Diffusion+ Mass défect (DM). The Goal comparison is between Simulate Growth) (@&l Invasion Margin (IM). The
Tensor Type abbreviations are Isotropic Tensor (IT) anféuBion Tensor (DT). WA is used when the information is not
given.

we directly define the tumor invasion margin, not the tumawgh. Konukogluet al. [22,

21] are among the few who had the same approach in capturniyithor invasion margin by
extrapolating the low tumor densities in MRI images. Foragblation, they considered the
traveling solution of the reaction@lision equation in an infinite cylinder. We summarize related
macroscopic tumor models in Table 1, providing the compariztween the previous researches
and our work.

1.1. The Contributions of This Study
We can summarize the contributions of our study as follows.

1.1.1. DTI-based Geometric Model

This study is the extension of our preliminary study [23].emwe introduce a novel model
to predict the tumor invasion margin using the geodesiadist defined on the Riemannian
manifold of brain dffusion tensors. The formulation of white matter as a Riemammani-
fold was first introduced by O’Donneéit al. [24] and later formalized by Lenglett al. [25].
Our modified distance model is designed for predicting oné/durrent tumor spread (invasion,
not visible in regular MRI) at the time of imaging. The purpds to better target immediate
treatment following the imaging. Our plans are to use it fettdr radiation therapy planning.
Therefore, the diusion-based geodesic distance model does not include centsof a growth
model like massféect or proliferation. The proposed distance formulatiogasily transferable
into radiation treatment planning software that currentgkes use of a distance (Euclidean) in
defining the target region, as it predicts the distance ¢calis have reached beyond the visi-
ble tumor margin. In addition, this formulation results ifirat-order PDE that has stable finite
differences solutions. However, anisotropic models basede@rttl order dfusion equation
([19, 12, 21]) cannot be implemented in a stable way usingtmemon basic finite dierence
schemes in the literature and more complicated methodsartutstability analysis would have
to be performed [26].

1.1.2. Teston Real Data

In addition to introducing the geodesic distance as a measuglioma cell infiltration, an-
other contribution of this study is the validation of our nebdn actual patient-specific DTI data.
A main limitation of the published DTI-based models is theklaf validation with real patient
DTI data. We concentrate here on getting a model that beseagvith real data and therefore
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can be useful in a clinical setting. Some of the mentionedetsdse non-patient DTI data, ei-
ther on atlas tensors registered with the patient (&a&. model [12]) or tensors from a single
healthy subject that are unregistered with the patienb@ija9]). Konukogluet al.[22] validate
their model by simulating a synthetic tumor on a healthymeaid by comparing the simulation
result with the simulation result of another method. Bettidation methods compare the visi-
ble tumor growth in MR images with the one simulated by the ei¢@2D]. However, none of the
models are validated on more than two cases.

We tested our model on 11frent patients by comparing the predicted infiltrationatise
map computed based on an initial DTI scan with real growtlwshon later MRI or DTI scans
of the same patient. Our method takes into account naturaéb@to glioma growth such as the
skull, the tentorium cerebelli and the falx cerebri. Congpige results of using geodesic distance
show an acceptable improvement vs. uniform (Euclideandulée.

1.1.3. Relation to existing work
2. Materials and Methods

2.1. Tumor Invasion Using Geodesic Distance on Brain Fibanbld

In this section, we introduce a new method that directlywalkes the glioma cell infiltration
in the format of a distance function from the original vigibtimor location. Based on the general
belief that that tumor cells infiltrate (fluse) along white matter fibers [3], the proposed method
calculates a geodesic distance on a Riemannian manifotdctesized by the anisotropicfti-
sion operator defined by DTI (Riemannian manifold of of bifdders).

O’Donnellet al. [24] and Lenglekt al. [25] introduced the formulation of the white matter
as a Riemannian manifold characterized by the infinitesanedotropic difusion operator. They
made the link between theftlision tensor dat® and white matter manifold geometry and
showed that the éfusion operator can be associated with a merie D~1. This metric allows
computation of geodesic paths and distances between poitite brain, and it was used in [25]
to compute fiber connectivity.

To explain this geometric idea, we employ an analogy with twéffic. Using the Euclidean
distance for the tumor margin corresponds to the assumftadrit takes the same time to drive
to any point on a city map at a particular radius from home. el@v, transport time to a certain
point in a city depends to a large extent on the road net gegrast trdfic flow. The same is
true for glioma spread, which depends on the brain strustuarés vicinity. The DTI technique
that measures waterftlision in brain tissue gives us the key to design a roadmapeadbitain.
We make maps that consistently mark every 3D voxel (spadgiarthe brain with a modified
distance from the current tumor. The mathematically camweay to do this is to compute a
geodesic distance on a Riemannian (curved) manifold ohlfitaérs.

An advantage of this new formulation is that it results in stforder Hamilton-Jacobi equa-
tion, while prior works on tumor growth modeling [19, 12, 1d8tectly solve the second order
parabolic dffusion Equation 1. The first order Hamilton-Jacobi has a stfibite diference-
based numerical solution. But, solving the second ordecardpic difusion equation with finite
difference method has many stability issues. The stabilitgssare more dicult to tackle in the
3D case. The numerical aspects are explained in furtheitslgtésection 2.6 and Appendix A,
while details on the stability of finite @ierence methods for solving the 2D anisotropi€udiion
PDEs are presented by Weickert [27].
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2.2. Geometry of Manifold from Pusion Processes

First we define the manifold geometry from the watefidiion process. We represent the
motion of water molecules by Brownian motiof. Transition mechanisms are determined by
a probability density functiorp or an infinitesimal generataf. The infinitesimal generator
characterizes the Brownian motion as a moleculfiugion process.

ou = div(DVu) = Lu (2
ot
whereD is the positive definite order-2 tensor amds the cell density. Lengledt al. [25] show
that under some technical hypothesis£m@and the Brownian motioix;, it is possible to define
an L-diffusion process on a Riemannian Manifddrom thed-dimensional stochastic process
X;. Here we follow their theory on building the connection beén theL-diffusion process and
the Riemannian Manifold. The main focus is on the case fitision processes with a time-
independent infinitesimal operatdrthat is assumed to be smooth and non-degenerate elliptic.
We define the Laplace-Beltramiftérential operator for a functiohon a Riemannian manifold
M,

Am f = div(gradf) 3)

Denoting the discrete manifold metrie = {g;;} with its inverse{gl}, the Laplace-Beltrami
operator can be written as

19 Lot ot of
- -2 19T _ g i ot
At =B ax, (\/69l 6xi) 9 axax P ax @
where -
. J
b~ L a(VGg) 5)
G ox

We can omit the second term of 4, sintg is second order and strictly elliptical.

Definition: The operator is said to be an intrinsic Laplacian generating a Browniationmn
M if

1
==A 6
L >Am (6)
For a smooth and non-degenerate ellipti€etential operator oM, L is written as
1 82
=Zdij—— 7
L 2" 9%0x; (7)

whered;; are the components of theffilision tensoD = {dij}
clude in the following lemma:

e Equations 4, 5 and 7 con-

Lemma: If {d”}
metricg on M.

, denotes the inverse matrix B, theng = d'/dxdx; defines a Riemannian

ij=

Conclusion This ends up in a very important concept irffdsion tensor imaging, that the
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diffusion tensoD estimated at each voxel point, after inversion, defines tagioof the mani-
fold. In this way, the link between theftlision tensor data and the manifold geometry of brain
fibers is made.

G=D1 (8)

Now that we have the metric of the manifold, we are able to @dfie tumor invasion margin
as the distance from the initial tumor location on the Riemian ManifoldM. The idea is that
water molecules starting from a given poigton M can reach to any point on M through a
geodesic under Brownian motion. Here, the geodesic distaatween the two points shows the
pathway of molecular Brownian motion (along fibers in thefya

We can compute these geodesics using the ngetrithe manifold. Let us define Riemannian
distance from a fixed starting poir§ € M to another poink on the manifold as(x) = ¢(Xo, X)
wherer : M — R, . Based on [25], under the assumption thlais geodesically complete, there
is a unique distance minimizing the geodesic between eaclptints on the manifold. The
distance function is Lipschitz on all, smooth orvl/Cut,g whereCuty is the location of all the
points where the geodesic starting orthonormally fnanstops being optimal for the distance.
The distance function oM/Cutyy has the propertjgrads(x)| = 1 where grad(x) denotes the
gradient of the distance function on the tangent plane offrtagifold. This results in the general
definition of the distance function.

2.3. Geodesic Distance Function

The distance functiost from a non-empty closed subd€is the unique viscosity solution of
the Hamilton-Jacobi Equation [25]

{ lgrads| =1 in M\K

d(X) = po(x) for xeK 9)

wherego(X) = 0 Yx € K in the class of bounded uniformly continuous functions. sTisi a
well-known eikonal equation on the Riemannian ManifaWid).
The general format of this Hamilton-Jacobi equation withidilet boundary conditions is writ-
ten as
{ H(X,Dg(x)) =0 in M\K (10)
d(X) = do(X) for xeK

where the Hamiltoniail : M x T*M — R is a continuous real function on the cotangent space
of the manifold T*M) . Equation 9 is achieved by settitt(x, D¢(X)) = |grad¢p(x))] — 1 in 10.
We denote byy| the magnitude of a vecterof T M (tangent plane o), defined asy/g(v, v). In

matrix notation by formings = {gij} the metric tensor, this writes aévT Gv.

2.3.1. A Level Set Formulation for Distance Function

The viscosity solutiorp at x € M of Equation 9 is not a smooth solution. But it has the
property that it is the minimum time > O for any curvey to reach a poiny(t) € K starting
at x with the conditiony(0) = 0 and|‘3)—¥| < 1. Based on this fact, Equation 9 can be solved as a
dynamic problem and we can apply a level set method for itsarigal solution [28].

The level set formulation introduces the use of an impligitdtion of one higher dimension
to solve the dynamic equation. In this way, the problems stiabilities, deformation of surface
elements and topological changes are avoided. In the lev@isnulation, the distance function
¢ is the zero level of an implicit smooth functigr(x, t) at timet. ¢ is the zero level set which
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means the set of points of the manifold that have already bes#ted. y(x,t) is a compact
functional of higher dimension, which dividdd intoT" € M and its complemerit® € M. We
call T the interior part (which means points of the manifold thatéhalready been visited) and
I'® the exterior (the points not visited). As a resylfx, t) has the following property dt= 0

U(x,0)=0 © Xe g
Y(x,00>0 VxeTl (12)
Y(x,00<0  V¥xeI®

(X, 0) is a uniformly continuous and monotonic strictly decireg$unction of distance neai.
We can initializey with a Euclidean signed distance function. We requijre evolve so that:

U(xt) =0 t=9¢(X (12)

The level set generated by Equation 12 is the viscosity isolatf 9 if ¢ is the viscosity solution
of [25]

Y+ F(t,x,Dy(t,x)) =0 VYt>0 (13)
¥(X,0) = ¥o(X)
F > 0 does not change sign and it is defined as
F(t,x, Dy) = H(t,x,Dy) + 1 (14)
So Equation 13 becomes
Ye+grads] =0 Vt>0
15
{ w(x.0) = vo(¥) (15)

wherey is the signed distance function ¢§. The viscosity solution of this PDE gives us the
geodesic distance function as the zero levet af time.

2.4. Geodesic Distance for Tumor Growth Prediction

When using the geodesic distance in the context of growttigtien, the subseK from
where we initiate the growth represents the visible tumorgina In addition, as the brain con-
tains several obvious natural barriers to glioma growtthsaagthe skull, ventricular system, the
tentorium cerebelli and the falx cerebh, is defined as the brain volume that does not contain
those barriers.

2.5. Extracting Tumor Qfusion Tensor (TDT) from DTI

Tumors grow with diferent speed in white vs. gray matter (with a factor of aboutlT().
While ideally this should be directly reflected by théfdsion tensors@dT) magnitude, due to
noise and discretization problems and the fact that the tumight grow at a dierent speed as
water dffusion, so thaD # DT.

So-far published transformation of DTI data into TDT aréneatheuristic [19], [20]. TDT
is typically constructed by assigning an isotropiffusion to the gray matter and an anisotropic
diffusion to the white matter, with the greatedfusion along the main eigenvector of the DT,
corresponding to the direction of white matter fibers. Impiple, more elaborate models could
be developed by estimating better TDT parameters from tigrmwth observed in real patient
data. For example one could estimate a functiw) = C(X)DT(x) whereC(x) is a spatial
transform function. In practice such an approach requanggel amounts of patient growth data,
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(a) Barriers (b) Geod. dist. (c) Geod. dist. on (d) Geod. dist
white matter isocontour on FA

Figure 1: The result of applying the geodesic distance mmdgIDTI atlas. Colors in (b) (c) show the geodesic distance
from the initial position (scale: yellowclose, reetfar). (d) Shows a 2D cut through an isosurface of the geodesic
distance.
a better understanding of what TDT models would be physio#ily plausible, and, at the same
time, the models should be simple enough to yield a numéyiea!l conditioned estimation
problem.

Figure 1(a) shows an example of segmented barriers (viasrfalx, tentorium). Figure 1(b-
d) shows examples of geodesic distance computed on the ICBMD atlas [29]: (b) shows
the geodesic distance computed with linearly weightingénsors that originates from a sphere
(green circle in the figure) until it reaches the skull bouygéc) shows the geodesic distance but
with thresholding only the white matter tensors insteadcafieg the whole brain tensors; (d)
shows an isocontour of the geodesic distance aligned withidfides. Notice how the distance
follows the fiber directions.

2.6. Numerical Aspects of the Geodesic Model

To numerically solve the hyperbolic Hamilton-Jacobi Edqoratl5, we approximate the con-
tinuous flux/grady|? as [25]

lgradsf® = 3, o' (max(y, OF + min(D%y, O) + (16)
2,¢Jng|nmod® W, D} w)mlnmodq}*w DXJ¢/)

Whereg _, 3 are components of the inverse maté@x?, Dy are the upwind approximation

of the grad|ent ofy in % and minmod4, b) = min(a, 0) + max(n 0). With this approximation

of the flux, we used an explicit method to solve Equation 15k whole domain, using a

fast-marching method for reinitializing the signed distafunction [30] after each iteration.
Equation 15 is a Hamilton-Jacobi equation that is a first ohg@erbolic (wave-like) PDE

of the form¢; + H(¢x) = 0. Hamilton-Jacobi equations are very similar to clasdigalerbolic

conservative laws [30]. The finite fiierence method of Equation 16 is spatially stable and its

time stability is simply satisfied by adjusting the tempaeaolution. Appendix A gives details

on the stability and consistency of our solution.
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Invasion
margin

margin
(b) Time 1 (c) Time2

Figure 2: Synthetic diusion-growth simulation on a DTI atlas to motivate our validn. The experiment shows that
the visible tumor margin at later scariErie 9 is close to the actual (invasion) tumor margin in earliensc{ime 1.

We set the density of visible cancer cells to 0.05. Syntheticor growth is generated from a seed region show in (a)
using difusion. (b)Time 1 after simulated growth we show tumor margin - visible ineb(iscontour of density0.05)
and actual in green (isoconour of density 0) Tehe 2 after running difusion few more iterations the visible margin
(isconour of density0.05) is very close to the actual tumor margin from timel.

3. Experiments

3.1. Validation with Real Data

We have proposed a modified distance to better capture tunvesion margin by taking into
consideration preferential spread along white matter sib&nfortunately, we cannot use any
direct method to evaluate our mathematical model sincenvesion margin is not observable
in any of the available imaging techniques. We instead aidicdour model using subsequent
MRI scans that show actual tumor growth (typically 3 montieda Our main assumption is
that the visible growth in the subsequent times occurs dweinvisible but already-infiltrated
regions at the initial time. Figure 2 presents a simptaudion-based growth simulation that uses
Equation 1 to support our assumption. We synthetically gegeewo stages of growth using
anisotropic difusion in a DTl atlas and show that the visible tumor margim¢sing a threshold
of 0.05 for visible cell density) at later scantinfe 2 is close to the invasion (actual tumor)
margin in the earlier scantirfie 1).

Based on this assumption, we compare the geodesic distemezaged from datime 1
with the segmented visible tumor in the latene 2scan. For a fair comparison we calculated
the volume change between the segmented tumtimia 2andtime 1and chose the isocontour
corresponding to this volume change. We also compared adegic model with a uniform
Euclidean model where the corresponding isocontour forEheidean model was calculated
the same way. One challenge in such validation system isanthat we see in a later scan is
actual growth that includes mad$ext and proliferation. We ignore proliferation and accdont
the mass fect through image registration. We excluded proliferafimm our model because
the efect of proliferation cannot be isolated from thffeet of difusion [20]. While this is
only an approximate validation procedure, it still givesad indication that our new distance
would better predict tumor infiltration than the uniformtdisce that is currently used in clinical
practice.

Fig. 3 shows an overview of owalidationsystem, and Fig. 4 pictorially illustrates validation
steps. A brief explanation and motivation is provided befowd more details in the following
subsections.
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Validation data To minimize the &ect of radiation treatment, we chose the first or second DTI
scans after treatment as ttime1(initial) scan. Theime2(reference) scan used for com-
parison is taken as subsequent clinical MRI-FLAIR scandsity after 3 month. While
ideally a later DTI scan could have been used for compari&smost patients, due to
their degraded health condition, we do not have a second €an &he DTI study is not
part of their clinical scan and therefore not mandatory).

Tumor/edema segmentationThe geodesic model is initialized from the visible tumor-seg
mented ontimel FLAIR image taken at the same time as the DTI scan. The referen
tumor used for comparison is segmented in tiee2 FLAIR scan. This segmentation
corresponds to the tumor and edema region. We chose to deeségion on a FLAIR
image because there is evidence that occult cells are pratsabhout 2cm distance from
edema as visible on a FLAJR?2 [2]. The FLAIR abnormality is also the reference tumor
volume enhanced with a 2m margin that is currently consitlése radiation treatment.
Thistime2segmentation is used to calculate the volume change thatsto identify the
isocontour in theéimelgeodesic distance corresponding to tinee2visible tumor. To be
able to compare the two scans they need to be registered.

Tumor barriers Tumor spread barriers (ventricular system, falx cerebd tamtorium cere-
belli), which are also required by the geodesic distanceahaade manually delineated in
timelscan.

Data Registration Registration betweetime2andtimelneed to be performed in order to do
the validation. The presence of madgkeet between the two scan, would suggest that
a non-linear registration should be used to 'undo’ this pssc Although, we applied
different techniques to tackle the masteet problem with non-linear registration (one
method is described in [23]), since the available non-limegistration techniques do not
work accurately on images with pathological abnormaljtiesng non-linear registration
did not improve the results. We therefore chose to do a sitir@ar registration between
the two scans.

Measurements We compared the accuracy of the predicted infiltration usiireggeodesic and
Euclidean model with the actual tumor growth fraime2 Both distances are computed
up to the volume change between the two time scans. Sincéinatlpractice, the 2cm
margin does not take into account natural brain barriersvadyaed two cases for the Eu-
clidean distance: with and without barriers. While the finsé represents current clinical
practice, the later one is a more fair comparison with thedgsiw distance that accounts
for brain barriers. We report Jaccard scores as resultsradauparison in Table 2 and we
show visual comparison on selected slices in Figure 6 anar€ig.

3.2. Patients and Data

We have 64 patients involved in the DTI glioma stlidwfter processing all data we only
found 11 patients that were useful for our study (showingdugrowth between the first DTI
scan and subsequent scans). The 11 patients included iralidation have mostly 4 grade
glioblastoma (8 cases), one has grade 3 glioma and two hade grmalignant glioma.

1The data collection protocol was approved by REB and theptithat have signed and given informed consent.
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Figure 3: Overview of the tumor growth validation system

DWI images have been acquired on a research-dedicated 3psPAchieva located at a
local hospital. The relevant DWI acquisition parameterddidl brain coverage are: single-shot
echo planar imaging with a SENSE factor of 2, 60 2.3 mm thideslwith no gap, field-of-view
= 220x 220 mn¥, 2.3 mn? isotropic resolution, echo time 88 ms, repetition time- 8.8 s,

2 averages, acquisition time5 min, difusion sensitivitp = 1000s/mn?, and 15 difusion-
sensitizing gradient directions. In addition, a 3-dimensil isotropic T1-weighted image depict-
ing the tumor is also acquired at 3T withx11 x 1 mn? resolution in 5.5 min for anatomical
comparison and co-registration with the 1.5T images. ReuliRl scans (T1 pre- and post-
contrast, T2, FLAIR) are all acquired on the clinical 1.5Tlipk scanner as part of the patient’s
standard follow-up. The resolution of DWI data is 12828x 60 and the resolution of FLAIR
datais 512 512x 21.

Each patient has a pre-RT (Radiation Therapy) MRI scan.oellp DWI or MRI scans
have been made after treatment at intervals of about 3-6hmdat the duration of life of the
patient. Typically at least one or two DWI scans are acquaféer radiation and the rest of the
scans are conventional MRI images (T2, T1C, FLAIR). Aftasgessing all data we only found
11 patients that were useful for our study (showing tumowngndoetween the first DTI scan and
subsequent scans).

3.3. Data processing

3.3.1. Segmentation and Tensor Extraction

For the validation procedure and for initializing the growtmulation, the area of tumor cells
visible in the MRI data has to be segmented. The region aoingathe tumor and its associated
edema is the high signal area visible in FLAIR data. We usea sami-automatic segmentation
software that we have developed in our lab [31] to do all segat®ns. In addition to the tumor
region, growth barriers (ventricular system, falx ceretmd tentorium cerebelli), which are also
required by the growth prediction model, are manually delied using the same software. An
expert radiation oncologist validated all segmentations.

We use ExploreDTI [32] as the tensor processing tool to ektitze tensor data from 15
diffusion-weighted images on a voxel-by-voxel basis. Expldrefas the post processing op-
tion for correcting eddy current distortions that are ueifpr each difusion-encoding direction
and also for correcting the motion distortions. We postepes water tensors (DTI) to make
tumor difusion tensors (TDT) as explained in Section 2 by weightirgtémsors based on their
Fractional Anisotropy (FA) value.
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Figure 4: We compute the geodesic distancdimel corresponding to the same volume as the growth shown on the
registeredime2scan. Even though this registration does not solve the inea# dfects caused by the mas$eet, it is
still a good approximate alignment between the two time scan

3.3.2. Registration

To be able to compare the simulated isocontours with théleigirowth observed in a later
scan, we need registration.

Our registration includes two steps; registering FLAIRad&bm time2 with the FLAIR
data fromtimeland also registering the FLAIR and DWI-b0 datatiofiel For both cases, we
use dhne (linear) registration. One source of registration erisrthe diference in resolution
between DWI images (128 128 x 60) with FLAIR images (256 256 x 20). The diference
between the inter-slice distances is most notable. As Ei§ushows a typical result of our
registration procedure.

The linear registration does not take into account the mfisstedue to the tumor growth
from timelto time2 This is easily noticed in Figure 4 (right-bottom) which slsothe result
of affine registration: the growthf@cted ventricle shape time2is incorrectly registered with
data attimel Even though a nonlinear registration would be more swatédlaccount for the
mass-#ect, we have found, after applyingfidirent methods (one method is described in [23]),
that non-linear registration only makes results worse. d@mounting the abnormal tissue, we
have masked the tumor region in both the target and sourcgeisnbefore applying the non-
linear registration. Considering this, the abnormal #sslbould not interfere with the registration
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Figure 5. The low inter-slice resolution FLAIR imagestatelandtime2scans are linearly registered to DWI-b0 at
timelscan.

process, but still the algorithm was not able to correctyjister the two images. The failure of
non-linear registration methods is probably due to thetfzat available techniques do not work
accurately on images with pathological abnormalities amdking the abnormal region is not
enough. For both linear and non-linear registrations, wehRSL tools [33] (FLIRT for linear
and FNIRT for non-linear registration).

3.4. Results on real DTI for geodesic distance validation

3.4.1. Comparison with the traditional uniform distancedab

As a result of our validation procedure for the geodesiadist on real DTI data, we report
comparative results between the predicted infiltrationgilmel scan using the geodesic and
Euclidean model with the actual tumor growth framme2 Both distances are computed up
to the volume change between the two time scans. For thedeaclidistance, we analyze two
cases: one that accounts for brain barriers (more fair casgrawith the geodesic distance case)
and one that does not consider brain barriers (closer tditiieat practice).

Figure 6 presents comparative results between the geatiegoce and the Euclidean dis-
tance with no barriers (real clinical practice). We notitlkedt where the tensor values are less
noisy, the geodesic distance model can track the path o&fibaed therefore the model matches
tumor growth, as opposed to the Euclidean model. As predailites are parts of a 3D volume,
initial tumor contour is not present in two of the slices (tumhas not reached that slice but it
will later grow there). Notice how in the example from thetleswv of Figure 6 the Euclidean
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(a) Segmented edema (b) Segmented edema (c) Geod. dist. udld). Bist.
DWI-b0 attimel T2 attime2 no barriers

Figure 6: Comparative results for 5fidirent patients of (c) geodesic and (d) Euclidean distanessed clinically (no
barriers) models initiated from (a) segmented tumdina¢land (b) linearly registered followed up scansiae2(MRI-

T2 or DWI). Barriers are shown in blue. As presented slicespart of a 3D volume, initial tumor contour in (a) is not
present in two of the slices (row 3 and 5). This means thaigirtite tumor has not reached that slice but it will later
grow there. Notice how in the example from the last row theliHaan distance (d) has not reached the showed tumor
location (b) while the geodesic distance (c) correctly shive growth.
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(a) Segmented edema (b) Geod. dist. (c) Euclid. Dist. (d)ictuDist.
FLAIR time2 FLAIR timel FLAIR timel with no barriers

Figure 7: Comparative results for 2 patients showing: (ajuahedema segmentation on registered FLAtR1 (b)
geodesic distance, (c) Euclidean distance with barrieds(dj Euclidean distance with no barriers timel FLAIR.
Barriers are shown in blue artitneledema segmentation used to initialize all distances inJadcard scores between
(b-d) distances and (djme2segmentation are shown in white in the top right corner. Bhengh Jaccard scores are
higher when no barriers are used for Euclidean segmentétiprisual comparison shows that considering barriers (c)
gives a better distance approximation of the real growtte géodesic distance gives best overall results.

distance has not reached the particular tumor slice whilegytodesic distance correctly models
the growth.

Figure 7 shows sample comparative results between the telid€an cases (with and with-
out barriers) and the geodesic distance.

To provide numerical comparison, we calculated the Jacg@arerlap) scores as shown in
Table 2 for the three cases (geodesic versus two Euclidedrons). Numerical results show an
average Jaccard score improvement of 5% and up to 20% on tageds for simulated growth
using the geodesic distance compared to the Euclideamdes(@oth in presence of barriers).
For the Euclidean case that does not consider barrierguaththe Jaccard scores are higher,
but, as visual results in Figures 6 and 7 show, the calculdistgdnces do not properly match the
approximation of the real growth. The geodesic distancegjbest overall results.

3.4.2. Comparison with an isotropicffiision distance
3.4.3. Comparison of [Ferent Tensor Extraction Methods
4. Discussion and Future Work

This study focuses on defining the correct margin of tumoutiazlls that need to receive
radiation therapy. This helps to control glioma tumors meffectively. Based on the fact that
tumor cells dffuse in the same direction as water molecules, we used a gedd#ance model
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Jaccard score

Patient | Geodesic dist. (%) Euclidean dist. (%) Euclidean dist. (%)
with barriers no barriers

1 60 55 59

2 69 57 65

3 63 61 59

4 59 58 59

5 56 55 56

6 54 34 46

7 60 59 60

8 51 42 42

9 56 54 55

10 73 70 72

11 48 44 50

mean 59 53.54 56.63

Table 2: Jaccard (overlap) scores for comparing registgnedind truth with Geodesic and Euclidean growth.
Jaccardf\, B) = (An B)/(AU B)

to locate the tumor invasion in the direction of water moleguotion. We evaluated our model
on actual patient MRI and DTI data, which provide accurate personalized information of
white matter tracts, without requiring additional regagion steps of diusion tensors. Non of
the previous models have been verified on a large set of pstiétin DTI data. We have hitherto
tested our model on 11 dataset which were selected from daseteof 64 patients. The access
to this dataset enables us to be the first to test realigfigsibn-based invasion margin model on
a large collection of patient DTIs. The visual comparisonaf model with the conventional Eu-
clidean distance method reveals that the anisotrofficgion model can follow the tumor shape
changes along the fibers better in time. The numerical ealdd indicate slight improvement.
Some issues that we think are of high priority to study in fetwork include:

¢ A problem with the available data is the low resolution of tfega and the quality of data
acquisition. The patients cannot tolerate the long perfadl@scan needed for clean data
acquisition. Hence, the acquired data is rather noisy adowfjuality, which increases
the requirement of post processing. Figure 1 shows that taehtan successfully track
the clean tensors of the Atlas but results are somewhatdessate for noisy clinical data.

e One of the necessities of the validation process is the seti@n of tumor and natural
barriers. Therefore, we need at least fivatent structure segmentations (tumor in two
time scans and three barriers) for each patient. This is a-tiomsuming task for the
busy radio-anthologists. Despite the large amount of wankedto automate the tumor
segmentation process, there is no reliable segmentatitwese yet, especially for brains
with abnormal regions (tumor). We expedited the processdiyguthe semi-automatic
tool proposed in [31]. However, we believe that automalfcaggmenting the barriers
is not as dificult as the tumor, and it can save a considerable amount efdimd &ort.
Automatically segmenting barriers from the available MR#@W!I data is another future
work.
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(a) Edema atime2 (b) DTI-base ditusion (c) isotropic diusion (d) Euclidean
distance distance distance

Figure 8: Motivation for the use of real DTI tensors. Comgani between (b) DTl-based anisotropifasion distance,

(c) isotropic difusion distance generated using synthetic isotropic tensith different scales in WM and GM and the
(d) Euclidean (uniform) distance. (a) shows the manual segation of edema dime2used as reference (ground truth)
for comparison. Blue contours show this ground truth sedatiem and red contours show corresponding distances.
Distances (shown otimeldata) are initiated from segmentation timeland computed the same way as described in
Section 3.1 (using the volumeftérence betweetime2andtimelto identify corresponding isocontours). Jaccard scores
are shown in white in the top right corner.

e A main source of error in the validation procedure is caugethb approximate registra-
tion of several time scans of patient data. Deriving a regfistn method that explicitly
models the tumor masdfect can therefore improve the validation system. A proposed
registration technique in the presence of mdkeceincorporates a mechanical model into
the registration (similar to [34], [35]).

e As shown by Painter [36], anisotropicfilision might not be the optimal mathematical
formulation of the cell migration process, which can bedrathodeled using a transport
equation. Developing new mathematical models that usaithgdtential of DTl imaging,
instead of the current reactionfidision based models, can increase the accuracy of tumor
geometry and treatment margin prediction.

5. Conclusion

In this paper, we introduced the use of a geodesic distan¢beoRiemannian manifold of
brain fibers, to detect the glioma brain tumor invasion nrargihe model was tested on several
real patients’ data and a DTl atlas. In contrast to most optlegious works in this area which
use registered tensors of the atlas, we used real tensdrs ptients obtained from the standard
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Jaccard score
Patient | Linear (%) | Square (%)| Jbabdi. (%)
1 60 33 60
2 69 27 65
3 63 43 62
4 59 59 57
5 56 49 54
6 54 14 54
7 60 62 60
8 51 23 49
9 56 52 55
10 73 71 72
11 48 33 50
mean 59 42.36 58

Table 3: Jaccard scores for comparing registered groutia with Geodesic model using féiérent tensor extraction
methods.

clinical procedure. Comparative results between real gramfollow up scans and simulated
growth based on geodesic distance and Euclidean distange firat the use of the geodesic
distance could significantly improve radiation therapwytneent. The geodesic distance obtained
by our method can directly replace the Euclidean distantedmadiation therapy software and
tools. State of the art radiation technologies enable veligate radiation treatments in the scale
of millimeters. Therefore, the complicated 3D shape ole@iwith the geodesic model can be
used in the treatment planning.

Appendix A. Details on numerical aspects of the geodesic d&ce Hamilton-Jacobi equa-
tion

Numerical methods used for solving PDEs must be stable. iShimportant in medical
applications where not considering stability issues of atiocal methods can cause incorrect
judgments of medical doctors which can lead to incorrectinent methods. To support our
statement, we use a visual example. Figure A.9 comparesudt 0f applying two dterent
numerical methods for solving the same PDE. Both methodsyapéed to the second order
anisotropic parabolic fliusion equation of type 1 to solve the tumor growth model. &ithage,
the red contour shows the initial tumor area and, blue caostsliow the result of growth after
a certain time. The left image shows the result of applyingiastable discretization method
which results in an inhomogeneous contour [19], while thexbgeneous right contour shows
the result of a stable method [26]. More details on this asiglgre given in [26].

In our study that we use full fusion tensors, we are dealing with nonlinear PDEs rather tha
the simple linear ones. The stability of a finitdfdrence solution to a nonlinear PDE cannot
be guaranteed only by adjusting temporal or spatial reisoist The method should meet cer-
tain criteria to be stable. Weickert [27] gives details attbe criteria for solving a nonlinear
anisotropic difusion equation in the 2D case. Obtaining stable solutionrordinear PDE is
even more diicult for the 3D case. Some prior works have used fufiudion tensors without
considering stability issues of their numerical solutifif8] as an example. This results in an
incorrect solution. We hereby prove that our used numenieghod is stable:
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Figure A.9: Test of dierent discretization methods on anisotropigidiion equation using real DTI data of patients with
glioma. Red contour shows the starting area of the growthlsition. Left: Result of applying an unstable method, the
blue contours show the result of an inhomogeneous growtbechby this method. Right: Result of applying a stable
method which results in homogeneous contours.

The geodesic distance calculation results in solving adidér hyperbolic Hamilton Jacobi
equation of the forng; + H(¥y) = 0:

Yi+|grads| =0 Vi>0
{ J(%.0) = o) (A1)

wherey is a levelset representation of the distance function aadhé continuous flujgrady|?
is discretized as shown in Equation 16. We next discuss theistency and stability of our finite
difference-based solution for the geodesic distance equation.

Appendix A.1. Consistency

Consistency is achieved by applying the discretizatiorhandirection of the wave motion
(it depends on the sign of the velocity). Generally, upwiretmods approximate derivatives by
biasing the finite dference stencil in the direction where the characteristarimation is com-
ing. The upwind method guarantees a consistent finftergince scheme. The combination of
the Euler dfferencing method with the upwindftBrence scheme givesansistenfinite differ-
ence scheme to the linear first order wave equation. But, titqua5 is a non-linear equation
of the general formf(u) = u?. Engquist-Osher introduced the upwind method for nonlinea
functions [37]. The numerical flux to the positive speed tiorcf is defined as:

f(u) = ((max@xu,0))* + (Min(D;u,0)°) . U=y, (A.2)

Consistency of this discretization scheme is proved in.[3%]s method is extended to 3D in [38]
for the quadratic Hamilton equation as defined in Equatian 16

Appendix A.2. Stability

A numerical method is said to be stable if small perturbatido not cause the resulting nu-
merical solution to diverge without bound [39]. Accordirmg80], stability guaranties that small
errors are not amplified in time. For a first order hyperbotjaation, stability is achieved by
forcing Courant-Friedrichs-Lewy condition (CLF conditlo which states that numerical waves
should propagate at least as fast as the physical wave. Baissithat the speed of the numerical
wave % must be at least as large as the physical wave spgedhe CLF condition for the
Hamilton-Jacobi equatiop; + H(yx) = 0 is given in [30] as

H H H
Atﬁ+ﬂ+E <1 (A.3)
AX Ay Az
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whereH1, H, andHj3 are the spatial derivatives éf with respect tajy, ¢y andy,, respectively.
Using this scheme, it is easy to find the CLF condition for Gesicl distance Hamilton-Jacobi
equation with nonlinear part

H() = |grads|? = ZZ(’”’ W g (A4)

P X BXk

wheregt are the elements of thefflision tensor. It is easy to see that

_%W o W a2 O a3
Hy = 6xlg +6ng +6x39 (A.5)

H, andH3 are computed in the same way.

To conclude, we have shown that the finit€elience method of Equation 16 used for solv-
ing the Hamilton-Jacobi equation is stable in space andnits stability is simply satisfied by
choosing an appropriate time step.
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