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Abstract

In registration-based motion tracking precise pose between a reference template and the current

images is determined by warping image patches into the template coordinates and matching pixel-

wise intensities. Efficient such algorithms are based on relating spatial and temporal derivatives using

numerical optimization algorithms. We extend this approach from planar patches into a formulation

where the 3D geometry of a scene is both estimated from uncalibrated video and used in the tracking

of the same video sequence. Our tracking algorithm is different than traditional SSD tracking as it

trackers a 3D pose global to all patches and not individual 2D image warps. Experimentally we compare

convergence and accuracy of our uncalibrated 3D tracking to previous approaches. Notably, the 3D

algorithm can successfully track over significantly larger pose changes than ones using only 2D planar

regions. It also allows for the detection of occlusions and removal/insertion of tracking regions as

appropriate in response.

Index Terms

visual tracking, image registration, 3D model

I. INTRODUCTION

In visual tracking motion information from a video sequence is distilled and unified to

determine pose parameters of a moving camera or object. One way of classifying tracking

methods is into feature based, segmentation based and registration based.

In feature based tracking a feature detector is used to locate the image projection of either

special markers or natural image features. Then a 3D pose computation can be done by relating

2D image feature positions with their 3D model. Many approaches use image contours (edges

or curves) that are matched with an a-priori given CAD model of the object [7], [15], [18]. Most

systems compute pose parameters by linearizing with respect to object motion. A characteristic of

these algorithms is that the feature detection is relatively decoupled from the pose computation,

other than sometimes past pose is used to limit search ranges, and the global model can be used

to exclude feature mismatches [2], [15].

In segmentation based tracking some pixel or area based property (e.g. color, texture) is used

to binarize an image. Then the centroid and possibly higher moments of connected regions are

computed. While the centroid and moments are sufficient to measure 2D image properties, it
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is typically not used for precise 3D tracking alone, but can be used to initialize more precise

tracking modalities [22].

In registration-based tracking the pose computation is based on directly aligning a reference

intensity patch with the current image to match each pixel intensity as closely as possible.

Often a sum-of-squared differences (e.g. L2 norm) error is minimized, giving the technique its

popular name SSD tracking. Unlike the two previous approaches which builds the definition of

what is to be tracked into the low level routine (e.g. a line feature tracker tracks just lines),

in registration-based tracking any distinct pattern of intensity variation can be tracked. Since

the type of target (or feature) is not pre-defined, typically the user points to desired patches

in the first frame. This technique can also be used in image alignment to create mosaics [21].

Early approaches used brute force search by correlating a reference image patch with the current

image. While this works reasonably well for 2D translational models, it would be unpractical for

planar affine and projective (homography) image transforms. Instead, modern methods are based

on numerical optimization, where a search direction is obtained from image derivatives. The first

such methods required spatial image derivatives to be recomputed for each frame when “forward”

warping the reference patch to fit the current image [16], while more recently, efficient “inverse”

algorithms have been developed, which allow for real time tracking of the above mentioned 6D

affine [9] and 8D projective warp [3]. An appearance model can be used to compensate changes in

intensity [9] or can be learned as a mixture of stable image structure and motion information [5],

[12]. In a recent paper, Lee and Kriegman [14] extend Black and Jepson’s idea ’eigentracking’

by incrementally learning an appearance manifold that is approximated with a collection of

submanifolds and the connectivity between them. Benhimane and Malis [4] proposed a SSD

tracking algorithm based on a second order minimization method (the ESM method [17]) that

has a high converge rate like the Newton method but does not require the computation of the

Hessian. A related approach [8], [13], where instead of using spatial image derivatives, a linear

basis of test image movements are used to explain the current frame, has proven equally efficient

as the inverse methods during the tracking, but suffer from much longer initialization times to

compute the basis, and a heuristic choice of the particular test movements.

The extension of 2D SSD tracking to 3D has been recently addressed. Baker et. al [25]

calculates a 3D model from a 2D active appearance model (AMM) and use it to improve the

tracking. The main difference in our approach is that we use an estimated rigid Euclidean model
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so we can track 3D camera position while their approach tracks a deformable model and does

not estimate the camera pose. Baker et al. [3] presented another related extension of the original

Lucas-Kanade tracking algorithm applied to either 3D volumetric data (e.g CT, MRI data) or

projection of 3D data in images. The difference compared to our approach is that they track

points on a 3D surface and therefore the 3D-2D inverse compositional algorithm is not valid. In

our case the tracking is performed in 2D but the warp is implicitly constrained by a 3D model

(using control points). So the inversion is valid as the warp is ultimately performed on 2D image

points.

In this paper we extend the registration based technique by constraining the tracked regions

with a 3D rigid scene model, estimated from the same uncalibrated video. The algorithm is thus

able to track full 3D camera position like in the model-based approaches, but eliminates the

need for explicit feature matching. The update is based on the same SSD error as the classical

registration-based techniques with the difference that the update is done directly on the 3D

parameters and not on the 2D warp parameters.

Our method starts by tracking the image motion of several surface patches using conventional

SSD tracking. In this initialization phase the motion is relatively restrictive to ensure convergence

for the 2D trackers. After some time (typically ≈ 100 frames) a 3D model is computed using

uncalibrated structure-from-motion (SFM), and from this point the system switches to full 3D

tracking of camera rotation and translation using the estimated 3D model. The improved stability

of the 3D tracking allows larger motions to be performed for the rest of the sequence. The

algorithm does not require complete scene decomposition in planar facets, but works with few

planar patches identified in the scene. Experiments prove furthermore that the algorithm is also

quite robust to patches not being perfectly planar. One advantage of using a global 3D model

imposed on local surface patches are that only surfaces with salient intensity variations need to

be processed, while the 3D model connects these together in a physically correct way. We show

experimentally that this approach yields more stable and robust tracking than traditional SSD

tracking, where each surface patch motion is computed individually.

To summarize, our main contributions presented in contrast with previous work are:

• SSD tracking: We propose an image registration algorithm that track full 3D camera

position using an estimated 3D model, instead of tracking 2D warp parameters. In our

case the 2D warp parameters are defined as a function of control points on the model and
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the current camera pose. Hence the 2D warp parameters are no longer independent but

unified by the same rigid motion through the model.

• Model-based tracking: Compared to feature-based tracking approaches, our method com-

putes an optimal 3D alignment with respect to the chosen measure (sum of square differences

SSD) in image space. This is not the case for feature-based methods (or in the so-called

structure from motion - SFM - algorithms) where the feature matching (tracking) is decou-

pled from the camera position estimation. Therefore, even though in feature-based methods

individual patches are tracked using traditional 2D SSD tracking, the locally estimated 2D

parameters are in general not the same as the ones giving one optimal global 3D alignment.

One other advantage of the global registration algorithm is that individual features don’t

loose track even if one image signature is weak. This happens because the restricted motions

of the 2D patches are constrained to motions that are consistent with the 3D model.

• Structure-from-motion: The 3D model that constrains the tracking is estimating using SFM

from individually tracked features in a bootstrapping phase. For the rest of the sequence

the model is used to constrain the registration-based tracking but the 3D pose is computed

in one unified step, optimal w.r. to the SSD error.

The rest of the paper is organized as follows: we start with a presentation of the general tracking

algorithm in Section II, and then present the details for useful combinations of motions (3D

models and 2D planar image warps) in Section III. A complete model acquisition and tracking

system algorithm is describeed in Section IV. The qualitative and quantitative evaluation of the

algorithm is presented in Section V followed by conclusions and a discussion in Section VI.

II. GENERAL TRACKING PROBLEM FORMULATION

We consider the problem of determining the motion of a rigid structure in a video sequence using

image registration. We assume that an initial sparse 3D structure is calculated from images using

structure-from-motion (SFM) (see Section IV). A sparse 3D structure represented by a set of

3D points Yi, i = 1, N is calculated in a training stage using uncalibrated SFM techniques (see

Section IV). The structure points define Q image regions that are tracked in the sequence. Each

region Rk is determined by a number of control points Ykj that define its geometry. For example,

a planar surface region can be specified by 4 corner points. The model points are projected onto

the image plane using a projective transformation. First we develop the general theory without
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committing to a particular projection model and denote the 3× 4 projection matrix for image It

by Pt. Hence, the model points are projected in image It using:

yti = PtYi, i = 1, N (1)

where yti denotes the projection in image t of control point i. Throughout the paper we use i

as an index for the control points, t for indexing frames (time) and k for indexing regions. Let

xk = {x1,x2, . . .xKk
} denote all the (interior) image pixels that define the projection of region

Rk in image I . We refer to I0 = T as the reference image and to the union of the projections of

the model regions in T ,
∑

k T (xk) as the reference template. The goal of the tracking algorithm

is to find the (camera) motion Pt that best aligns the image template with the current image It.

A more precise formulation follows next. Refer to Figure 1 for an illustration of the tracking

approach.

3D Model

I tI0

Rk

P

P0 P

P  = inv(   P) P

k t−1

∆

k µ ∆

t−1

W(x  ;  (p    ))µ

W(x  ;  (p  ))k µ t
W(x  ;  (  p))

t ∆ t−1

Fig. 1. Overview of the 2D-3D tracking system. In standard SSD tracking 2D surface patches are related through a warp W

between frames. In our system a 3D model is estimated (from video alone), and a global 3D pose change ∆P is computed,

and used to enforce a consistent update of all the surface warps.

A corresponding physically correct 2D-to-2D image warp is associated with a particular camera
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model. Assume that the image motion in frame t for each individual model region k can be

perfectly modeled by a parametric motion warp model W (xk; µ(Pt,Yk)) where µ are 2D motion

parameters that are determined by the projection of the region control points ytkj = PtYkj. As

an example, for a planar region the corresponding 4 control points in the template image and

target image t define a homography (2D projective transformation) that will correctly model all

the interior region points from the template image to the target image t. Note that the motion

of the 3D model is global but each individual local region has a different 2D motion warp Wk.

The coupling of all the different 2D motion warps Wk through a single global motion model

P constrains the feasible parameters for each individual warp Wk such that its 2D motion is

consistent with the rigid 3D motion. This is unlike approaches where independent 2D trackers

[3], [9] or feature detectors [19], that can move arbitrarily in the image plane, are first used to

determine corresponding 2D-3D points that are then used to compute the 3D camera pose [20].

For convenience, the 2D warp is denoted by W (xk; µ(pt)) where pt are column vectors of the

3D motion parameters that define the camera projection matrix Pt. Note that W (xk; µ(pt)) refers

to the warped points so xw = W (x; µ(p)). Later in the paper we also denote by W (µ(p)) the

warp transformation (matrix) with the interpretation that xw = W (µ(p))x.

We next relate the above geometric description to image intensity variation. Under the common

image constancy assumption used in motion detection and tracking [11], the tracking problem

can be formulated as finding (tracking) the current state pt such that:

T (xk) = It(W (xk; µ(pt))), k = 1 . . . Q (2)

Note the difference from the traditional 2D SSD tracking algorithms [3], [16] where the goal is

to find for each region the 2D warp parameters µkt such that the image constancy assumption

is valid:

T (xk) = It(W (xk; µkt)) (3)

Therefore the traditional algorithm estimates, at each time step t, K independent 2D motions

µkt while we estimate one set of global 3D motion parameters pt global for all Q regions.

The new aspect is that here the parameters are directly computed from the global motion and

conversely global motion is computed directly from image derivatives. The consequences of this

for different global models is further elaborated in Section III.
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The tracking problem is simplified by expressing the current pose pt in terms of the previous

frame pose pt−1 subjected to a small change ∆p, and then linearized. Here the change is

modeled through function composition (“◦”) instead of simple addition to allow a more general

set of transforms. Mathematically pt = pt−1 ◦∆p can be obtained by minimizing the following

objective function with respect to ∆p:

∑

k

∑

xk

[T (xk) − It(W (xk; µ(pt−1 ◦ ∆p)))]2 (4)

For efficiency, we switch the role of the target and template image, to express the geometric

variation ∆p on the constant template image T instead of the current frame It. In the terminology

of [3] this gives an inverse compositional algorithm. The goal then is to find ∆p that minimizes:

∑

k

∑

xk

[T (W (xk; µ(∆p))) − It(W (xk; µ(pt−1)))]
2 (5)

where in this case the 3D motion parameters are updated as:

Pt = inv(∆P ) ◦ Pt−1 (6)

The notation inv(∆P ) means inverting the 3D motion parameters in a geometrically valid way,

i.e. in the calibrated camera case when ∆P = K[R|t], the inverse motion is given by inv(∆P ) =

K[R′| −R′t] (see Section III). As a consequence, if the 2D warp W is invertible, the individual

warp update is (see Figure 1):

W (xk; µ(pt)) = W (xk; µ(∆p))−1 ◦ W (xk; µ(pt−1)) (7)

Next we linearize Equation 5 through a Taylor expansion:

∑

k

∑

xk

[T (W (xk; µ(0))) + ∇T
∂W

∂µ

∣

∣

∣

∣

µ=µ(0)

∂µ

∂p

∣

∣

∣

∣

p=0

∆p − It(W (xk; µ(pt−1)))]
2 (8)

where ∇T represents the gradient of the template, ∂W
∂µ

∣

∣

∣

µ=µ(0)
is the derivative of the warp

with respect to the 2D parameters µ at position 0 (template image motion is assumed 0) and
∂µ

∂p

∣

∣

∣

p=0
denotes the derivatives of the dependency between 2D and 3D motion parameters µ(p)

also evaluated at position 0. We assume that the 3D motion for the template image is zero

T = T (W (xk; µ(0))). This assumption is not a limitation as the constraint can be easily achieved

by rotating the model in order to aligned it with the first frame at the beginning of tracking.

We denote the derivative images with M = ∇T ∂W
∂µ

∂µ

∂p
(matrix notation) and the column vector
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image error with et = T −It(W (xk; µ(pt−1))). Under Gauss-Newton approximation the problem

is equivalent to solving the linear least square:

M∆p ' et (9)

which can be solved for in the least square sense using the normal equations or better QR

factorization. The derivative images are evaluated on the constant template image and hence

they are constant across iterations and can be precomputed. (Unlike the case where variability

∆p is expressed on the time varying video images and hence derivatives have to be recomputed

at every frame [16].

This results in an efficient tracking algorithm that can be implemented in real time (see Section

IV).

Computing derivatives images

We compute the derivative images from spatial derivatives of template intensities and the inner

derivatives Jacobian of the warp. In conventional 2D image-plane tracking this only involves

taking derivatives w.r.t. the six (affine [9]) or eight (projective [3]) warp parameters. But as

mentioned before, in our 3D tracking the 2D motion parameters µ for a region k are functions

of the 3D motion parameters p, the 3D control points Yj and the position of the control points

in the template image y0j . The warp W (µ(p)) maps the projected control points in the current

image yj = PYj to the template image by:

y0j = W (µ(p))yj = W (µ(p))PYj, j = 1, N (10)

Note that here we used the notation W (µ(p)) for the warp as a 2D-2D homography transfor-

mation (3 × 3 matrix). Hence the warp W is a composed function, and its derivatives can be

calculated as:
∂W

∂p
=

∂W

∂µ

∂µ

∂p

First the warp derivatives with respect to the 2D motion parameters are directly computed

from the chosen warp expression (see Section III for some examples). However, the explicit

dependency between the 2D parameters µ and the 3D motion parameters p is not always

obtainable (see Section III-B), but Equation 10 represents their implicit dependency, so the
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∂µ

∂p
terms are computed using the implicit function theorem. Assume that Equation 10 can be

written in the form:

A(p)µ(p) = B(p) (11)

Taking the derivatives with respect to each component p of p we get:

∂A

∂p
µ + A

∂µ

∂p
=

∂B

∂p
(12)

Therefore, for a given p value, we can linearly compute µ from the Equation 11. Then ∂µ

∂p
is

computed from Equation 12.

III. PRACTICALLY USEFUL MOTION MODELS

Different levels of 3D reconstruction - projective, affine, metric Euclidean - can be obtained

from an uncalibrated video sequence [10]. A projective reconstruction gives more degrees of

freedom (15 DOF) so it might fit the data better under some conditions (e.g. poorly calibrated

camera). On the other hand, fitting an Euclidean structure will result in a stronger constraint on

the 3D structure, and fewer parameters can represent the model motion (6DOF). For our tracking

algorithm we investigated two levels of geometric models reconstructed under perspective camera

assumption - projective and Euclidean.

As mentioned before, the 2D image warp motion is determined by the region control points.

Different motion approximations are common for the 2D-2D image warps. Warps with few

parameters (e.g 2D translation) are in general stable for small regions or simple motion. To

better capture the deformation of a region, more general warp should be considered. But, typically

tracking with these warps need a large planar surface area or, as we will explore here, stabilization

from a 3D model. A natural parametrization, which also correctly captures motion of planar

regions, would be a homography warp for a perspective camera model (projective or Euclidean)

and an affine warp for a linear camera model (orthographic, weak perspective, para-perspective).

The next subsections give concrete examples of how the tracking algorithm can be applied to

three types of useful combinations of motions: an Euclidean model with either small translational

patches, or larger homography patches, and a projective model with small translational patches.
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A. Euclidean model with translational warps

A perspective calibrated camera has the following form in Euclidean geometry:

P = K[R|t] (13)

where K is the camera calibration matrix (internal parameters), R = Rx(αx)Ry(αy)Rz(αz)

represents the rotation matrix and t = [tx, ty, tz]
T is the translation vector. So the 3D motion

parameters are p = [αx, αy, αz, tx, ty, tz]. A translational warp is controlled by one model point

for each region and has the form:

W (xk; µ) = xk + µ (14)

where µ = [µx, µy]
T is the 2D image translation vector and is computed from the motion of the

control point Yk using:

µ(p) = y0k − K[R|t]Yk (15)

The inner derivatives ∂W
∂µ

and ∂µ

∂p
can be directly computed from Equation 14,15 without the

need of the implicit function formulation.

B. Euclidean model with homography warps

The image motion of a planar patch can be modeled projectively using a homography warp

that is determined by at least 4 control points Ykj. Denote the projection of the control points

in the current image by ytj . Note that k is dropped as here we show all the calculations for

only one region. With the Euclidean camera model, yj = K[R|t]Yj. A homography can be

represented using 8 independent parameters µ = [µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8]
T 1:

W (x; µ) =











µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 1











x = Hx (16)

1In the current parametrization of the homography warp we set the last value from the 3× 3 matrix µ9 = 1 (fixing the scale)

which does not allow this value to be 0. In the present case this is not a limitation since all points on the tracked patch remain

finite.

April 27, 2006 DRAFT



12

The explicit dependency of the 2D warp parameters as function of 3D motion parameters is

difficult to obtain analytically in this case, but we can apply the method described in Section II

and compute the inner derivatives ∂µ

∂p
using the implicit dependency from Equation 10:

y0j = Hyj j = 1, N (N ≥ 4) (17)

which can be put in the form of Equation 11 A(p)µ = B(p) with

A(p) =





















y1
1 y2

1 1 0 0 0 −y1
1y

1
01 − y2

1y
1
01

0 0 0 y1
1 y2

1 1 −y1
1y

2
01 − y2

1y
2
01

...

y1
N y2

N 1 0 0 0 −y1
Ny1

0N − y2
Ny1

0N

0 0 0 y1
N y2

N 1 −y1
Ny2

0N − y2
Ny2

0N





















(18)

B(p) = [y1
01, y

2
01, . . . , y

1
0N , y2

0N ]T (19)

where [y1
j , y

2
j , 1]T are the normalized homogeneous coordinates for yj .

C. Projective model with translational warp

This final example is very similar to the first one except that the 3D motion is represented

by a projective 3× 4 camera matrix P with 11 independent parameters p = [p1p2 . . . p11]
T . The

2D warp parameters µ are related to p by:

µ(p) = y0k − PYk (20)

The translational warp is given by Equation 14.

This model presents difficulties in calculating a unique and numerically stable inverse of the

3D motion, as required in Equation 6. To avoid this problem, while we still compute a global

motion update ∆p we instead update each warp independently as in Equation 7. This solution is

closer to the original SSD tracking algorithm [3], [9] and, as demonstrated by the experimental

results, performs worse than our new algorithm described in Section II, but still better than the

simple unconstrained image plane SSD tracker.

IV. TRACKING SYSTEM AND MODEL ACQUISITION

We incorporated the proposed 3D tracking method in a system that first initializes the 3D

model from 2D image tracking over a limited motion in an initial video segment and then

switches to track and refine the model using 3D model based tracking.
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A. Bootstrapping phase

1) 2D SSD Tracking Several salient surface patches are manually selected in a non-planar

configuration from a scene image and tracked in about 100 frames using standard (image-

plane) SSD trackers as in [3], [9].

2) Model computation From the tracked points a 3D model is computed using structure-

from-motion and stratified reconstruction [10] (projective reconstruction that is upgraded

to a Euclidean structure using automatic self-calibration). There are several well known

estimation algorithms to recover the projective structure and motion of a scene using the

fundamental matrix (2 views), the trilinear tensor (3 views) or multi-view tensors for

more than 3 views. In our system we used the method developed by Werner et al [24] that

estimates the trilinear tensors for triplets of views and then recovers epipoles from adjoining

tensors. The projection matrices are computed at once using the recovered epipoles. New

views are integrated through the trilinear tensor between the new and two previous views.

Assuming that the cameras have zero skew and aspect ratio (au = av and s = 0) and the

principal point (uc,vc) is approximately known, the Euclidean projection is recovered using

self-calibration [23]. There is still an absolute scale ambiguity that cannot be recovered

without additional metric scene measurements, but since this scale remains fixed over a

video sequence, we can still use a 6DOF Euclidean motion model for tracking the motion

between frames.

In a previous paper [6] we compared the accuracy of the SFM algorithms for different

geometries (affine, projective, Euclidean) and we show that the model obtained from a

scene can be reprojected into new (different from the training) views with a reprojection

accuracy of about 1-3 pixels (if bundle adjusted). This accuracy is in the convergence

range for the tracking algorithm.

3) Initialize 3D tracking The 3D model is related to the start frame of 3D tracking using

the 2D tracked points yi. The camera matrix is computed using camera resection from

yi ↔ Yi 2D-3D correspondences (we used the non-linear algorithm for accuracy [10]).

Then the model based tracking algorithm is initialized by computing the gradient images

M at that position (Section II).
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B. Tracking phase

The tracking is now continued with the 2D surface patches integrated in the 3D model that

enforces a globally consistent motion for all surface patches.

1) Position update An incremental position update ∆p is computed based on image differ-

ences between the regions in the reference template and the warped regions from the

current images (Equation 9). The global camera pose Pt is updated using Equation 6.

2) Add new patches New patches visible can be added by first tracking their image projection

using 2D tracking, then computing their 3D coordinates through camera intersection in

n ≥ 2 views. In the current implementation the user specifies (clicks on) the image control

points yi that will characterize the new surfaces but in the future we plan to automatically

select salient regions.

3) Delete occluded patches During tracking, we calculate the visibility of each patch using

a Z-buffer algorithm. Patches that become occluded are eliminated and re-activated only

when they become visible.

V. EXPERIMENTAL RESULTS

Two important properties of tracking methods are convergence, stability and accuracy. Track-

ing algorithms based on optimization and spatio-temporal derivatives (Equation 8) can fail to

converge because the image difference between consecutive frames It−1, It is too large, and the

first order Taylor expansion (Equation 8) around pt−1 is no longer valid, or some disturbance

causes the image constancy assumption to be invalid. In the numerical optimization step pose

updates ∆p are computed by solving an overdetermined equation system, Equation 9. Each pixel

in a tracking patch provides one equation and each model freedom (DOF) one variable. The

condition number of the linearized motion model M affects how measurement errors propagate

into ∆p, and ultimately if the computation converges or not. In general, it is more difficult to

track many DOF. In particular, warp models W which cause very apparent image change, such

as image plane translations are easy to track, while ones with less apparent image change such

as scaling and out-of-plane rotations are more difficult. A general plane-to-plane transform such

as the homography contains all of these and tends to have a relatively large condition number.

By tracking a 3D model, the convergence is no longer solely dependent on one surface patch
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alone, and the combination of differently located and oriented patches can give an accurate 3D

pose estimate even when each patch would be difficult to track individually.

One of the main advantages of the proposed method when using a 3D Euclidean models is

that actual 3D camera pose can be tracked. This is not the case with traditional SSD tracking

where image patches are tracked in a 2D image space. Therefore, one additional aspect that

characterize our model-based trackers is the recovered 3D position accuracy.

We have tested the three proposed trackers (described in Sections III-A,III-B and III-C) and

compare them with the corresponding 2D SSD trackers (translational and homography) and

described in [3] and mathematically equivalent with [9], [16]. Here are the notations that will

be used in the experiments section:

T : 2D SSD translational (as in [3], [9], [16])

TE : 3D Euclid. model + translation (Section III-A)

TP : 3D projective model + translation (Section III-C)

H : 2D SSD homography (as in [3], [9], [16])

HE : 3D Euclid. model + homohgraphy (Section III-B)
We divided the experimental results in four parts, the first two are performed on artificial data

and the last two on real images. The first experiment presented in Subsection V-A measures the

robustness and convergence of the trackers for different magnitude of motions (in image space).

The second experiment from Subsection V-B measures the sensitivity of the model-based trackers

(TE, TP, HE) to noise in the model. In Subsection V-C we test the stability of the trackers

in two real sequences with quite large motion, and the last experiment from Subsection V-D

measures the accuracy of the recovered 3D position for one of the model-based trackers (HE).

A. Convergence and stability: synthetic motion perturbations

We used a frame of the first real sequence from the third experiment along with the 3D model

(estimated as described in Section IV). The used homography trackers are shown in Figure 2

left and the translational trackers in Figure 2 right. We perturbed the model 1000 times with 10

different magnitudes of 3D pose changes ∆p (corresponding to 0.1 . . . 10 pixels projected in the

image space), and render an image containing the trackers warped with the corresponding 2D

warp µ(p).

Figure 3 (a) plots the frequency of convergence for the 5 tested trackers (ratio over 100 tests
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Fig. 2. Templates used for homography trackers (left) and translational trackers (right). Test images are produced by perturbing

the 3D pose of the model and rendering templates with the corresponding 2D homography.
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Fig. 3. Comparing the stability and convergence of different trackers. We tested 10 levels of motion magnitude. The SSD error

is in pixel intensity space [0,1]

in each motion level). For small ∆p there is not a huge difference in convergence rate among

different trackers but we notice a better convergence for the trackers that use the Euclidean

model (TE,HE). For large perturbations the model-based homography tracker HE fails only half

as often compared to the others. Figure 3 (b) shows the average convergence rate (mean over

the convergent tests). We notice again that the HE,TE and TP algorithms have somewhat a

better speed of convergence. The 2D translational tracker also converges quite well due to the

limited DOF (2) that it estimates. The last graph (Figure 3 (c)) shows average residuals over

all convergent tests depending on the motion magnitude. The HE and TE can tolerate larger

motions, while the 2D translational T gives the lowest residuals for low levels of motion. This

is again due to the reduced number of estimated parameters.

April 27, 2006 DRAFT



17

B. Sensitivity to model accuracy : synthetic images

As our model-based tracking system uses a model estimated with structure-from-motion (SFM)

and therefore the model is not perfect, we tested the sensitivity of the model-based trackers

TE,TP,HE to model deviations. We introduced two types of deviations, first we perturbed the

model control points (involved in the computation of the warps). In a second experiment we

tested the sensitivity of the homography based trackers to patch planarity.
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Fig. 4. Comparing the stability and convergence of different trackers when adding 10 levels of noise in the geometric model.

We performed the same experiment as in Section V-A with a mean perturbation (such as all

trackers have a high frequency of convergence) and added 10 levels of noise in the model points.

Note that this time the nature of the perturbation is different as in the first case (Section V-A)

we had a motion that we expect to be corrected by the tracking while now we introduce noise

in the model that will be used in the mode-based tracking. The results are displayed in Figure 4.

The convergence for the trackers that use a projective model (TP) deteriorates rapidly and the

trackers stop converging for model noise bigger than 2% (see Figure 4 (a)). Among the trackers

that use the Euclidean model ((TE,HE), the translational one (TE) has better convergence but

bigger residual (see Figure 4 (b) (c)). Overall both TE and HE can tolerate quite a lot of noise

as they have a frequency of convergence close to 1 for noise level up to 6%. In practice, for

an estimated model (see Section IV) the average reprojection error is less then one pixel and

therefore does not cause any problem.

In a second type of experiment we tested the sensitivity of the homography trackers (H,

HE) to patch planarity. We generated an artificial model (see Figure 5 (a)) and we added
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(a) Original model (b) Noise 0.05 (c) Noise 0.1

(d) Noise 0.2 (e) Noise 0.4

Fig. 5. (a) Synthesized model with four levels of plane perturbations. The numbers represent percentage of plane width.

(b)(c)(d)(e)

four levels of perturbations to the planes (using displacement maps with different magnitudes

5%, 10%, 20%, 40% of planes width- see Figure 5 (b), (c), (d), (e)).

For each perturbed model we measured the convergence rate and final residuals (see Figure 6

(a), (b)). The trackers did not get lost in any of the sequences, showing a good tolerance to

patch planarity. As expected, the residuals increase for higher levels of noise as the template

does not anymore quite fit the current image (because of parallax and occlusions caused by the

displacement map).

For the model-based tracker (HE) we also measured the accuracy of the recovered position as

compared to the ground truth. Figure 6 (c), (d) plots the recovered trajectory (translations) and

rotations for each level of perturbations. We noticed that while the recovered trajectory with no

noise (Figure 5 (a)) is very close to the ground truth (original trajectory), the error increases

while adding noise. The mean error in translation at the last level of noise ((Figure 5 (e)) is

about 0.4 matching the magnitude of the perturbation while the rotation error is about 6◦.
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Fig. 6. Sensitivity of homography based trackers patch planarity. We tested four levels of perturbations. (top) Measured

convergence (bottom) recovered position for tracker HE.

C. Convergence and stability: real sequence

We now tested the stability of the trackers for two real sequences.

In Figure 7 planar regions in the image sequence are tracked using an 8DOF homography.

When each patch is tracked individually as in [3] (top images) the first region is lost already

after 77 frames and all lost after 390 frames. (See video1 left [1]). The condition numbers for

M varies between 5 ∗ 105 and 2 ∗ 107, indicating a numerically ill conditioned situation. When
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instead the regions are related by the global 3D model using our algorithm, pose is successfully

tracked through the whole sequence of 512 frames (video1 right [1]). Additionally the model

allows the detection and removal of the region on the left roof side when it becomes occluded

and the introduction of three new regions on the right roof side and the smaller outhouse when

they come into view. The condition number of the 6DOF (3 rot, 3 trans) using a rigid 3D model

is 900, which is significantly better than that of the 8DOF planar 2D homography (above).

The next experiment uses a simpler 2DOF translation model to relate regions as described

in Sections III-A and III-C, through either an Euclidean or Projective global 3D model. In

Figure 8 three cases are compared. In the first, (figure top and video2 left [1]) no model is

is used standard individual 2D trackers as in [9], [16]), and almost half of the region trackers

are lost starting already from frame 80. Because only 2D spatial x and y derivatives are used

in M the condition number is very low at an average 1.3. In the middle sequence, a projective

model is used to relate the regions. This stabilizes the tracking until about frame 400, where

one tracker is slightly off target and further at about frame 430 some are lost due to occlusion.

The projective model has 11 DOF and the condition number is quite high at 2 ∗ 104. In the

final (figure bottom) sequence a Euclidean model relates the trackers, and provides handling of

occlusions. The condition number is a reasonable 600, and the whole 512 frame sequence is

successfully tracked.

The second sequence has a much larger overall motion showing the ability to maintain track

without concurrent visibility. The results for four trackers are displayed in Figure V-C (see also

video6,7 [1]). Like in the previous experiment new patches are introduced as they become

visible and the ones that are occluded are deleted. We can automatically detect occlusions using

Z-buffering for the model based tracking but not for the simple SSD one. To be consistent we

manually add/delete patches in all four cases. We see that the SSD homography tracker (H) looses

track quite early in the sequence while the model-based homography tracker (HE) trackers all

patches until the end. The translational tackers (T,TE) perform similar in this case and are able

to track all patches for the whole sequence.

D. Recovered pose accuracy

One of the main advantages of the proposed method when using a 3D Euclidean model is

that actual 3D camera pose can be tracked (as opposed to traditional SSD tracking where image
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Fig. 7. Top Tracking individual patches using a homography based on conventional SSD tracking as in [3]. Not all regions

can be tracked through the whole sequence and occlusion is not handled. Bottom Through the 3D model each region motion is

rigidly related to the model, and tracking succeeds through the whole sequence. The model also allows detection and removal

of occluded regions and introduction of new regions. See video1 [1]

Fig. 8. Top Translation tracking of individual regions based on conventional SSD tracking as in [9], [16]. Through the video

sequence many patches are lost. Middle A projective 3D model is used to relate the regions, and provide more stable tracking

through the whole sequence. Bottom An Euclidean model relates the regions, and also allows the deletion of occluded and

introduction of new regions. video2 [1]
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Homography tracking of individual regions (H); Sufficient number of tracked regions cannot be

maintained throughout the sequence; also video6 [1]

Homography tracking constrained with an Euclidean model (TE); also video7 [?]

Translational tracking of individual regions (T); also video7 [1]

Translational tracking constrained with an Euclidean model (HE); also video7 [1]

patches are tracked in a 2D image space and pose would have to be computed later). This is

useful for example in robotics or augmented reality applications. To test the accuracy of the

recovered camera position we tracked two trajectories composed from straight lines using the

homography model-based tracker (HE). Figure 9 shows two image frames of the scene that is

tracked, and video4 [1] shows a whole motion sequence.

The first trajectory was a straight line in the horizontal plane of about 1m. Figure 10 (left)

illustrates the recovered trajectory. To measure the accuracy of the tracking algorithm we cali-
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brated the 3D model for the planes assuming some given real dimensions (distance from camera

to one plane) so we could get the translation in meters. We found that the tracked trajectory

had about 0.95 cm mean deviation from a straight line and 5.1 cm mean deviation from the

horizontal plane. The recovered line length was about 1.08 m, resulting in an error of 8% with

respect to the measured ground truth. There was no camera rotation along the first trajectory.

Corresponding measured rotation was less than 1 degree on average.

The motion in the second trajectory was along two perpendicular lines in the horizontal plane.

In this experiment, the real physical motion did not turn out particularly smooth and the recorded

data therefore also somewhat jumpy. We measured the angle between the two lines fitted to the

recovered positions (see Figure 10) as 82◦. Hence it had an error of about 8◦ with respect to the

ground truth.

The experiments show that the accuracy of the measurements connected to properties that are

not directly related to calibrated properties of the structure (e.g. deviation from lines, planes) is

higher that the accuracy in measured distances. This is due to the difficulty in making calibrated

(Euclidean) measurements from an initially uncalibrated (projective) camera.

VI. DISCUSSION

We have shown how conventional 2D SSD tracking can be extended to 3D using a scene

model estimated from images alone. The method makes tracking of a-priori unknown scenes

more stable and handles occlusions by removing and introducing tracking regions as appropriate

when new views become available. A main feature of our method is that 3D pose change ∆P

is computed directly from image intensity derivatives w.r.t. P . Note that this guarantees the best

3D pose update available from the linearized model (here using L2 norm, but other e.g. robust

norms are also possible [9]). This is unlike the more common approach of first tracking 2D

image correspondences, and then computing a 3D pose from points, where first each 2D point

location is committed to based on a locally optimal image fit but without regards to the global

3D constraints.

In combining different types of 3D global models and 2D region warps we found that:

• Tracking planar regions using an 8DOF homography without a 3D model is unstable due

to the many DOF estimated, but limited image signature available from geometric change

of only one planar patch.
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• Using the estimated 3D model we constrain multiple individual patches to move in a

consistent way and achieve very robust and stable tracking of full 3D pose over long

sequences.

• With some loss in generality and magnitude of maximum trackable pose change, the image-

plane 8DOF homography can be replaced by simple and faster 2DOF translational trackers.

Each individual such tracker has to use only a small image region since it doesn’t deform

projectively, but instead many regions can be used. Using 2DOF regions with either an

Euclidean or projective 3D model this gives almost as good tracking as the homography +

3D model, and makes execution somewhat faster.

• The model-based trackers that use an Euclidean model and recover full 3D camera pose

are tolerant to noise in the model that is larger than the usual noise resulting from a

SFM estimation. The homography-based tracker performs better and can also accommodate

patches that are not perfect planes. But the accuracy of the recovered position degrades

when the noise increases.

Convergence for the translational only warp over large angular changes in camera viewpoint can

be improved by using a few view-dependent templates each associated with a smaller angular

range, and switch these in and out depending on the current angular pose computed from the

3D model. While this introduces a risk for drifts and errors from the templates being slightly

offset, in practice we have found it works well using 5-10 different templates over the visible

range of a patch.

Visual tracking has many applications in e.g. robotics, HCI, surveillance and model building.

Tracking and modeling are interrelated in that (as we have shown) a model improves tracking,

and tracking can also be used to obtain the image correspondences needed for a model. In

unstructured environments this used to represent a chicken-and-egg like problem: Without a

model it was difficult to track, and without tracking one couldn’t obtain a model. Our method

integrates both into a system which begins by defining regions to track in only a 2D image. First

2D tracking is used over an initial video segment with moderate pose change to obtain point

correspondences and build a 3D model from image data. After the model is built, the system

switches to 3D tracking and is now ready to handle large pose changes and provide full 3D pose

(rotation, translation) tracking.
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Fig. 9. Tracking 3D planes. Pose accuracy experiment. video4 [1]
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Fig. 10. Recovered positions for the straight line trajectory (left) and the 2 perpendicular lines trajectory (left). The red line

are the fitted 3D lines to each line segment.
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