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Abstract. Gliomas are one of the most challenging tumors to treat or
control locally. One of the main challenges is determining which areas of
the apparently normal brain contain glioma cells, as gliomas are known
to infiltrate for several centimeters beyond the clinically apparent lesion
visualized on standard CT or MRI. To ensure that radiation treatment
encompasses the whole tumour, including the cancerous cells not revealed
by MRI, doctors treat a volume of brain extending 2cm out from the mar-
gin of the visible tumour. This expanded volume often includes healthy,
non-cancerous brain tissue.

Knowing that glioma cells preferentially spread along nerve fibers, we pro-
pose the use of a geodesic distance on the Riemannian manifold of brain
fibers to replace the Euclidean distance used in clinical practice and to
correctly identify the tumor invasion margin. To compute the geodesic
distance we use actual DTI data from patients with glioma and compare
our predicted growth with follow-up MRI scans. Results show improve-
ment in predicting the invasion margin when using the geodesic distance
as opposed to the 2cm conventional Euclidean distance.

1 Introduction

Primary brain tumors are tumors which start from a glial cell in the nervous
system. High grade variations of these tumors grow very fast often leading to
a life-threatening condition. Current imaging techniques such as CT and MRI
detect only the part of the tumor with a high concentration of tumor cells. The
conventional medical practice is to perform maximally safe surgical resection and
then irradiate the remaining tumor cells (visible and occult). The radiotherapy is
conventionally applied to a margin of about 2cm around the visible tumor which is
a very rough approximation of the probable location of tumor cells. This approach
does not consider tumor growth dynamics in different brain tissues, thus it may
result in killing some healthy cells while leaving alive cancerous cells in other
areas. These cells may cause re-occurrence of the tumor later in time which limits
the effectiveness of the therapy.

To improve the therapeutic outcome, more accurate prediction of the tumor
invasion margin is necessary. Based on the generally accepted belief that glioma
cells preferentially spread along nerve fibers [1], we propose here a new approach
of computing the tumor invasion margin that makes use of a geodesic distance
defined on a manifold of brain fibers. This formulation is very easily transferable to
radiation therapy software by replacing the uniform (Euclidean) distance currently



used to define the 2cm invasion margin (that will be radiated) with the geodesic
distance.

Many efforts have been made to mathematically model the Glioma tumor
growth. Following [2] these approaches are classified in three major categories:
microscopic, mesoscopic and macroscopic. Micorscopic models describe the growth
process in sub-cellular level, concentrating on activities that happen inside the tu-
mor cell. Mesoscopic approaches focus on interactions between tumor cells and
their surrounding tissue while macroscopic approaches focus on tissue level pro-
cesses considering macroscopic quantities such as tumor volume and flow. As
we are interested in modeling tumor invasion, we will restrict our discussion to
macroscopic models.

Most models on macroscopic tumor growth use a reaction-diffusion term based
on diffusion equation introduced by Murray [3]. Swanson et al. [1] used this term to
generate a model assuming different motility of tumor cells in gray and white mat-
ter. They further enhanced their model to simulate the virtual gliomas [5]. How-
ever, this is an isotropic model which only simulates high grade glioma while low-
grade gliomas exhibit complex shapes and are not well simulated by an isotropic
model. More recent approaches use anisotropic diffusion along white matter fibers
as given by the diffusion tensors (from Diffusion Tensor Images-DTI) to simulate
more complex tumors. With limited availability of DTI data, existing techniques
simulate growth based either on atlas tensors registered with the patient [6] or
tensors from a healthy subject [7] unregistered with the patient. Recently a me-
chanical model of the mass effect was added to the reaction diffusion equation [6,5]
resulting in a more physically plausible growth simulation.

In this paper, we introduce a novel model more directly driven by the partic-
ular patient DTI data to predict the tumor invasion margin using the geodesic
distance defined on the Riemannian manifold of brain. The formulation of white
matter as a Riemannian manifold was first introduced by O’Donnell et al. [9]
and later formalized by Lenglet et al. [10]. They used this model for white matter
connectivity mapping (tractography). Our geodesic growth model is concerned
with predicting only the current tumor spread (invasion) that is not visible in
the MRI images for better radiation therapy planning and therefore doesn’t in-
clude mass effect. Konukoglu et. al [11] has previously used the diffusion equation
to find tumor invasion margin but their method was tested only on synthetically
grown tumors. Our geodesic model can more easily be incorporated into radiation
planning software that already makes use of a distance (Euclidean) in defining the
target region.

In addition to introducing the geodesic distance in the tumor growth concept,
another contribution of the paper is the application of the method on actual
patient specific DTT data. Furthermore, our method takes into account natural
barriers to glioma growth such as the skull, the tentorium cerebelli and the falx
cerebri. We tested our model on eight different patients by growing the tumor
on the DWI scan of the patient and comparing the predicted distance with real
growth shown on later MRI scans of the same patient. Comparative results of
using geodesic distance show an improvement vs. uniform (Euclidean) distance.



2 Material and methods

2.1 Tumor invasion using geodesic distance on brain fibers manifold

The brain tumor infiltrating component can be mathematically modeled using
anisotropic diffusion [7,6].
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where c is the normalized concentration of tumor cells and D is the diffusion tensor
of the tumor cells. Knowing that tumor diffusion is similar to water diffusion [1], D
can be replaced with the diffusion tensor obtained from diffusion tensor imaging.

Tumor grows with different speed in white vs gray matter (with a factor of
about a = 10 [4]). While ideally this should be directly reflected by the diffusion
tensors (DT') magnitude, due to noise and discretization problems and the fact
that tumor might grow at a different speed than water diffusion, D # DT. One
could estimate a function D(z) = C(x)DT(z) where C(x) is a matrix representing
a spatial transform function. However C'(z) is intractable to estimate from limited
data. Instead, after experimenting with real patient DTI data, we found that the
linear weights w(x) = aF A(x) produce good results. F'A represents the fractional
anisotropy computed from tensor data.

The diffusion tensors in white matter are anisotropic, indicating the direction
of fibers. As a consequence the anisotropic diffusion growth model would encour-
age diffusion of cancer cells along fibers [1]. We propose the use of a geodesic dis-
tance on the Riemannian manifold of white matter fibers to model the anisotropic
tumor growth. O’Donnell et al [9] and Lenglet et al. [10] introduced the formula-
tion of the white matter as a Riemannian manifold characterized by the infinites-
imal anisotropic diffusion operator £. They made the link between the diffusion
tensor data D and the white matter manifold geometry and showed that the dif-
fusion operator can be associated with a metric G = D~'. This metric allows
computation of geodesic path and distances between points on the brain and was
previously used for fiber connectivity.

Geodesic distance calculation Following [10], the distance @ from a non-empty
closed subset K is found by solving the eikonal equation on the 3-dimensional
Riemannian manifold (M, g) (connected and complete)

rad®| =1 in M\K
{g(z) :| Do (x) for x\e K (2)

where $g(x) =0 Vo € K.

Representing the distance function @ as the zero levelset of a signed distance
function ¥, ¥(x,t) = 0 < t = §(x), Equation 2 can be reformulated as finding ¥
the viscosity solution of

9+ |grad¥| = 0Vt > 0 3)
W(Ia O) = LT/O(.I)

where ¥ is the signed distance function of @.
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Fig. 1. The result of applying the geodesic distance model to a DTT atlas. Colors
show the geodesic distance from the initial position.

To numerically solve hyperbolic Hamilton-Jacobi Equation 3 we approximated
the continuous flux |grad¥|? as [10]:

lgrad?|? = 30| g% (max(D, ¥,0)? + min(D} ¥, 0)?) + (4)
> iz 99U minmod(Df ¥, D W)minmod(D ¥, D, W)

where gf_jj:l___g are components of the inverse matrix G~!, Di ¥ are upwind ap-
proximation of the gradient of ¥ in x; and minmod(a, b) = min(a, 0) + max(b, 0).

Geodesic distance for tumor growth prediction When using the geodesic
distance in the context of growth prediction, we chose as the origin of the grwoth
(subset K) the visible tumor margin. In addition, as the brain contains several
obvious natural barriers to glioma growth such as the skull, ventricular system,
the tentorium cerebelli and the falx cerebri, M is defined as the brain volume that
doesn’t contain those barriers. Fig. 1(a) shows an example of segmented barriers
(ventricles, falx, tentorium). Fig. 1(b-d) shows examples of geodesic distance com-
puted on the ICBM DTI-81 atlas [12]: (b) shows the geodesic distance computed
with linear tensor weighting that originates from a sphere (green circle in the fig-
ure) until reaches the skull boundary. (c) shows the geodesic distance computed
only in the white matter tensors instead of the whole brain tensors; (d) shows
an isocontour of the geodesic distance aligned with FA values. Notice how the
distance follows the fiber directions.

2.2 Patients and data

We used MRI and DTI data from clinical scans of patients with GBM.? Each
patient has a pre-RT MRI scan. Follow-up DTI or MRI scans have been made
after treatment at intervals of about 3-6 months. DTI data has a resolution of
128 x 128 x 60 while MRI data has a resolution of 512 x 512 x 21. Typically
at least one or two DTI data is acquired after radiation and the rest of the
scans are conventional MRI images (T2, T1, FLAIR). To minimize the effects of

3 The data collection protocol was approved by REB and the patients that have pro-
vided an informed consent.
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Fig. 2. Overview of validation system. Tumor growth is simulated on DTT data
from timel and compared with the manual segmentation on data at time2.

radiation treatment not accounted in our model, we use data from the first DTI
scan acquired after radiation for estimating the diffusion-based invasion margin
and compare our model with the actual growth observed in later MRI-T2 scans.

Both the tumor growth and the comparison is done based on segmentations
of the high signal region adjacent to the gross tumor on MRI-T2 or DWIO (the
DWT scan with zero b-value similar to T2). This region contains tumor, associ-
ated edema and microscopic tumor cell infiltration. Segmentations are done using
a semi-automatic tool developed in our lab. Growth barriers (ventricular system,
falx cerebri and tentorium cerebelli) are manually delineated using the same soft-
ware. An expert radiation oncologist validated all segmentations.

2.3 Data processing and validation procedure

Fig. 2 shows an overview of the growth wvalidation system. We grow the tumor
from timel to approximately its size at time2 and then compare the result of our
model with the actual growth. This validation assumes that the visible growth
in the subsequent times occurs over the invisible but already-infilterated regions
at the initial time. We use the first or second DTI scan after treatment to gen-
erate growth starting from the manually segmented visible high signal on DWI0
(Fig. 2 (a) - edema, tumor swelling - timel). We extract diffusion tensors us-
ing ExploreDTT [13] that are then weighted (Fig. 2 (b)) based on the Fractional
Anisotropy values. Tumor growth is simulated by iteratively solving Eq. 3.

We walidated growth by comparing the results from the geodesic distance
(Fig. 2 (c)) with manually segmented high signal on T2/DWI0 from later fol-
low up scans (Fig. 2 (f) - time2). This comparison requires registration. We used
affine registration of T2-MRI/DWIO data from time2 with the DTT (DWIO0) data
at timel to determine the approximate growth volume used as a stopping cri-



Jaccard score (%) Hausdorff distance (mm)

1 2 3 4 | mean 1 2 3 4 mean
Geodesic dist. |65 75 72 65| 69.2 |9.32 7.68 890 16.72 | 10.65
Euclidean dist. | 59 65 64 60| 62.0 |10.02 8.60 9.38 17.49 | 11.37
Table 1. Jaccard (overlap) scores for comparing registered ground truth
with geodesic and Euclidean growth. Jaccard(A,B) = (A N B)/(A U B)
Hausdroff (A, B) = max {sup,¢ 4 infyep d(a, ), sup,c g infoca d(a,b)}

terion for the geodesic distance simulation. We also used the same registration
for visual comparisons (comparing (¢) with (e) - see Fig. 3). For fair comparison
between Euclidean and geodesic distance, we apply the same process also for the
Euclidean distance instead of simply growing the tumor to the 2cm margin.

The linear registration doesn’t take into account the mass effect as a con-
sequence of tumor growth from timel to time2. This is easily noticed in Fig. 2
(e) which shows the result of affine registration: the growth affected ventricle
shape in time2 is incorrectly registered with data at timel. Therefore for numer-
ical scores we applied non-linear registration of DWIO data and the predicted
geodesic growth from ¢imel to T2-MRI data and segmented edema at time2. For
correct non-linear registration we masked edema label (time2) and the generated
growth label (timel). Those regions contain abnormalities and they cannot be
taken into account for the registration score. Fig. 2 (d) shows the result of non-
linear registration that can now be compared with (f). Now the shape of the
ventricles correctly aligns on the space of time2. For both registrations we used
FSL tools [14] (FLIRT for linear and FNIRT for non-linear registration).

3 Results

Our dataset includes 24 DWI but we could only use the 8 data that showed tumor
growth after treatment. We applied the growth models with the data processing
explained in Section 2.3 to each patient data. Fig. 3 (2) shows the comparative
results of real growth with geodesic and Euclidean growth. The results show that
where the tensor values are less noisy, the geodesic distance model can track the
path of fibers and therefore matches tumor growth, as opposed to when using
the Euclidean model. Notice how in the example from the last row of Fig. 3
the Euclidean distance has not reached the shown tumor slice while the geodesic
distance correctly models the growth.

To numerically compare our model with the conventional Euclidean model,
we calculated the Jaccard scores and Haudorff distances shown in Table 2.3. Cor-
responding visual results are shown in Fig. 3 (1). As mentioned in Section 2.3
for reducing the mass effect we applied non-linear registration to warp data from
timel into the space of time2. Due to registration problems we could only calculate
scores for 4 patients. Numerical results show an improvement of about 5-10% for
simulated growth using the geodesic distance compared to the Euclidean distance.
This difference correspond to millions of saved brain cells.

4 Discussion

In this paper, we introduced the use of geodesic distance on the Riemannian
manifold of brain fibers to detect the glioma brain tumor invasion margin. The



model was tested on several real patients data and a DTT atlas. In contrast to most
of the previous works in this area, we used real tensors of the patients obtained by
the standard clinical procedure instead or registered atlas tensors. Comparative
results between real growth in follow up scans and simulated growth based on
geodesic and Euclidean distance prove that the use of the geodesic distance could
significantly improve radiation therapy treatment.

To further improve results on noisy clinical data we plan to apply better tensor
extraction and regularization. Furthermore, although the non-linear registration
used between timel and time2 to numerically validate results solves the problem of
mass effect to a good extent, it cannot solve it completely. Hence, the error in the
non-linear registration produces inaccuracies. For better non-linear registration
in the presence of mass effect we plan to incorporate a mechanical model into the
registration (similar to [15]).
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Fig 3. (1) Comparative results on time2 DWIO corresponding to Table 2.3 Patient 1-4 (left-right).
Blue line shows manual segmentation, black line shows simulated geodesic growth and red
line shows simulated Euclidean growth.

(a) Patient at timel (b) Patient at time2 (c¢) Geod. dist. (d) Euclid. Dist.

Fig. 3. (2) Comparative results for different patients of Geodesic (¢) and Eu-
clidean (d) simulated growth starting from segmented tumor at timel (a) and
linearly registered followed up scans at time2 (MRI-T2 or DWI) (b). Barriers are
shown in blue.



