
Increased Discrimination in Level Set Methods with Embedded Conditional Random Fields

Introduction
✦ We want to use training data to build 

an automatic segmentation tool

✦ Conditional random fields (CRFs):
• discriminative model
• models neighbor’s correlation
• feature-based edge regularization
• Markov assumption on labels

✦ Level set segmentation:
• generative model
• assumes neighbor independence
• image-based edge regularization
• allows non-Markov priors

✦ We embed CRFs within a level set framework:
• a conditional level set method
• a CRF that allows non-Markov priors

Level Set Segmentation

✦ Represent contour
implicitly as the
zero level set of an
embedding function

✦ Minimize the energy
by solving the
Euler-Lagrange
equations

✦ Chan-Vese energy:

✦ Parameter estimation: fix regions, fit independent 
generative pixel model, tune v and α manually.

Conditional Random Fields

✦ CRFs model the conditional probability of the labels 
Y given features f(X)

✦ Parameter estimation:
• is jointly convex in w and v
• is efficient using a conditional pseudo-likelihood
• is discriminative; there is no image model P(X)
• models correlations between neighboring pixels
• learns edge regularization related to labels

Associative CRFs
✦ To embed the CRF within a level set method:

• we convert to a {0,1} representation
• we use associative edge features

• we require v to be non-negative

✦ We can efficiently solve this optimization problem 
with a bound-constrained L-BFGS method

Continuous-Domain CRFs
✦ The associative CRF can be embedded into a con-

tinuous model that has the same energy:

✦ Energy functional:

✦ Euler-Lagrange equations:

Brain Tumor Segmentation
✦ Results on 3D MRI brain tumor segmentation data

Discussion
✦ Unlike most work on level set methods, we require 

no manual initialization or parameter tuning,  and 
do not need a generative model of the image.

✦ Other non-Markov terms can easily be added, such 
as the intensity inhomogeneity field.

Shape Priors
✦ We can add a non-Markov shape prior to the con-

tinuous CRF as an extra term in the energy:

✦ A(x) is an affine transformation with scale s of the 
shape prior level set ϕs, and β is the shape regulari-
zation strength.

Skeletal Muscle Segmentation
✦ Results on 2D CT 

muscle segmentation
data where the level 
set methods use a 
shape prior
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Figure 1. Example of corresponding data and regularization energies in the continuous CRFmodel (bottom) and the traditional active region

model with Gaussian region statistics and the the usual edge based regularization g = 1

1+α|∇X| (top). The task is to denoise a simple

binary image corrupted with independent Gaussian noise. Notice how the CRF regularization energy picks the correct label discontinuities

(bottom middle) as compared to the usual edge detection function (top middle).

CRF cont. CRF

node labels yi H(Φ(x))
edge labels 1 − |yi − yj| 1 − |∇H(Φ(x))|
node features fi(X) f(x)
edge features fij = F (fi(X), fj(X)) F (∇f(x))

Table 1. Corresponding terms between CRF and continuous CRF

4.2. Continuous Domain CRF

The proposed associative CRF can now be fully embed-
ded into a continuous model that has the same energy:

E(Φ) =
∫

Ω −H(Φ)(wT f) + (1 − H(Φ))(wT f)
+|∇H(Φ)|

∑

k vk
1

1+|∇fk|
dx (8)

Table 1 presents the corresponding entities between the
two models, with x corresponding to the location i in the
discrete representation.

The CRF association term models the class asso-
ciation potential and differentiates the two classes ob-
ject(inside)/background(outside). This term corresponds to
the level set data energy log p1, log p2 of a point being in-
side or outside the contour.

The interaction term corresponds to the regularization

energy in the continuous formulation. The discrete CRF in-
teraction is defined on pairs of neighboring locations and
on the corresponding values for the data. The correspond-
ing regularization in the continuous model is defined on
∇H(Φ) and it depends on pairwise features (defined us-
ing the gradient of the features∇f ). In two-dimensions, we
work with a 2 neighborhood system for the finite difference

approximation, using differences between a pixel’s north-
ern and eastern neighbors in the image. Figure 1 illustrates
the difference between the regular, edge based anisotropic
regularization used in level set segmentation methods, and
the proposed regularization based on the CRF interaction
potential that encourages discontinuities at label disconti-
nuities rather than image edges (as discussed in Section 3).

The Euler-Lagrange evolution equation corresponding to
the continuous CRF energy from Equation 8 is:

∂Φ
∂t = −2δ(Φ)wT f

+δ(Φ)div
((

∑

k vk
1

1+|∇fk|

)

∇Φ
|∇Φ|

)

(9)

An outline of the continuous CRF segmentation algo-
rithm is:

Training:

Given: a set of images X1, X2, . . . , Xn

Extract features f(X1), f(X2), . . . , f(Xn)
Compute optimal node and edge params v,w

by maximizing the constrained

pseudo-likelihood of the CRF (Equation 7)

Segmentation:

Given: one image X
Extract features f(X)
Compute segmentation by evolving a curve

driven by Equation 9

4.3. Shape priors

As will see in Section 5.2 for the task of muscle seg-
mentation in CT abdominal images, in some cases we can
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Figure 3. Comparative results for brain tumor segmentation. Selected slices are shown while the segmentation was done in 3D. Jaccard

scored are displayed at the top left.

it can change drastically with minor changes in the model).
A more robust estimate would be to use the most likely la-
bel for each pixel (rather than the jointly most likely assign-
ment of labels), but currently we know of no exact meth-
ods for finding the marginally most likely labels for image-
sized data (we tried to approximate this using loopy belief
propagation, and found that in roughly half the patients it
achieved a similar score to the continuous CRF). In contrast
to the optimal discrete decoding that can potentially change
drastically with small changes to the model, there must be
continuity around a (local) minimum found by continuous
energy minimization, indicating that the minimum is insen-
sitive to minor perturbations.

5.2. Skeletal muscle segmentation

Our second medical imaging application was skeletal
muscle segmentation in 37 CT abdominal scans of 18 can-
cer patients. Two consecutive 2D axial CT images at the

level of L3 were selected for each patient and manually seg-
mented by medical experts. These images have a resolution
of 200 × 150.

We used two features: the original CT image and the nor-
malized distance from the outer body boundary. Training
was again done in two folds and the level set was initialized
with the body boundary. Both continuous models incorpo-
rate the shape prior discussed in Section 4.3, while the CRF
does not. The shape prior is shown in Figure 4 (Left).

A selection of results with corresponding Jaccard scores
are displayed in Figure 4, while scores across the patients
are summarized in Figure 5. The muscle tissue has a
very similar appearance to the enclosed internal organs and
therefore cannot be segmented entirely based on its appear-
ance signature, as shown by the poor performance of the
discrete CRF model. The shape prior used in the continuous
models helps disambiguate muscle from organ tissue, while
the discriminative model has a better appearance model and
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Figure 2. Test image Jaccard scores (A ∩ B/A ∪ B) for brain

tumor segmentation in MR images with three different methods

for 12 different patients. The patients are sorted by the maximum

score achieved across the methods.

substantially improve performance by adding a shape prior
to the model. Incorporating shape information in a discrete
CRF model is not trivial, as either the graph structure has
to be changed (to include factors on regions of nodes and
suffer the corresponding computational expense), or shape
information must be incorporated into the local potentials
(see [14], for example).

As we show here, one of the advantages of embedding
the CRF within a continuous model is that we can incorpo-
rate terms like continuous shape priors into the energy. In
particular, we used a shape energy of the following form
[20]

Es(Φ) =

∫

Ω
βH(Φ) (sΦ − Φs(A(x)))2 dx, (10)

where A(x) represents an affine transformation with scale
s of the shape prior level set Φs, and β is the strength of the
regularizer.

The shape prior is easily incorporated into the continu-
ous CRF by adding (10) as an additional term in the en-
ergy function (8) during the segmentation phase of the al-
gorithm. The scalar parameter β weighing the influence of
the shape prior against the CRF energy terms is selected
by cross-validation, and for our experiments we chose the
shape prior as being the mean of the labels in the training
set.

5. Experimental Results

We evaluated the proposed continuous CRF model on
two difficult medical imaging problems: (1) brain tumor
segmentation in MRI images (2) muscle segmentation in
CT abdominal images. Our results are compared with a

traditional level set active region [19] and a discrete CRF.
Dataset (1) shows the superiority of the proposed condi-
tional model over the generative active region model for
data with a complex appearance. Dataset (2) shows the ad-
vantage of the continuous model over discrete CRFs when
a shape prior is available. In our experiments, we compared
the following three models:

Continuous CRF: We first train the discrete CRF (Equa-
tion 7) on a set of features extracted from the training set
and then evolve the continuous CRF (Equation 8) with fixed
parameters on the test images.

Active regions: We learned Parzen histograms for in/out
regions from the training set using the same features as the
CRF. Segmentation is done using traditional level set evo-
lution [19] with fixed region statistics.

CRF: The CRF was trained in the same way as the contin-
uous CRF (Equation 7). In this model we find the optimal
segmentation using a graph cut algorithm [3].

5.1. Brain tumor segmentation

We consider the problem of brain tumor segmentation in
3D MRI images. The data consists of FLAIR and contrast-
enhanced T1 MRI images of dimension 128 × 128 × 20,
from 12 patients having either a grade 2 astrocytoma, an
anaplastic astrocytoma, or a glioblastoma multiforme. The
tumor area was manually segmented slice-by-slice in each
data set by an expert radiologist.

We used the following image features: the two MRI
modalities, corresponding symmetry images (difference be-
tween the image and the vertically flipped image) and the
normalized distance from the skull. Training was done on
two folds (6 training images and 6 testing images), and the
level set was initialized with the whole skull (for both the
continuous CRF and the active regions). On this data set,
we used a three-dimensional lattice graph structure and per-
formed all operations (CRF training, level evolution, graph
cut segmentation, and evaluation of performance) in three-
dimensions.

The Jaccard scores achieved by the three methods across
all patients are summarized in Figure 2. Three example
segmentation are shown in Figure 3 (selected slices from
the 3D segmentation). Corresponding Jaccard scores are
displayed in the top left corner of each figure. The main
difficulty in this dataset is the complex and varying appear-
ance of the tumor. Our results show that for some patients
the generative active region is less successful in capturing
this appearance than the discriminative models. Although
both CRF models have the same energy and the discrete
CRF finds the global minimum of this energy, the contin-
uous CRF tended to yield better solutions on this data set
(obtaining the highest score among the three methods in 8
of the 12 volumes). We suspect that this is because the opti-
mal decoding may be unstable (ie. due to its discrete nature
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Equation 4 is jointly log-concave in w and v. We
can thus find the global maximum of (4) in terms of
w and v using efficient iterative optimization algorithms.
Unfortunately, computing the gradient of log(Z) requires
inference (ie. computing marginal probabilities such as
P (yi|X,w,v) and P (yi, yj |X,w,v)), and this is in-
tractable. Although other approximations like loopy be-
lief propagation and Monte Carlo methods are also appli-
cable, in this work we used a conditional variant of Besag’s
pseudo-likelihood [1]:

P (yi|X, y−i,w,v) =
1
Zi

exp
(

yiw
T fi(X) +

∑

j|(i,j)∈E yijv
T fij(X)

)

,
(5)

where y−i is the labels of all nodes except i and is consid-
ered fixed in each of the conditionals. The local normaliz-
ing constant Zi only sums over assignments to yi, making
this expression efficient to compute. This approximation
remains log-concave in w and v, and it is asymptotically
consistent (it converges to the true parameters as the size of
the training set increases).

Formulating parameter estimation as a joint optimization
of w and v has several key advantages. First, the parame-
ter estimation now takes into account that the pixel’s labels
are not independent, leading to a model where the node and
edge parameters are appropriately scaled. Second, although
the interaction term in the CRF serves a similar purpose
to the regularization energy in the active region method,
the parameters of the regularization are now learned from
training data and therefore seek to define discontinuities di-
rectly connected to label discontinuities, rather than to im-
age edges. This is an important difference in applications
where the object boundary is not very well defined by im-
age edges.

4. Active Regions with an Embedded CRF

This Section discusses embedding the potential func-
tions from a trained CRF model into a level set segmen-
tation framework, allowing the level set method to exploit
CRF training methods. The first part of this Section dis-
cusses two minor modifications of the CRF model that are
needed in order to embed it in the level set framework. We
then present the new method, and finally discuss the incor-
poration of shape priors.

4.1. Associative CRF

To embed the node and edge potential functions learned
by the CRF model into a level set segmentation framework,
we require two modifications of the CRF model: (i) We
must make the CRF labels consistent with the continuous
labels given by the Heaviside function, and (ii) the interac-
tion terms Iij must be non-negative since they correspond

to a curve length. We refer to a CRF with the second prop-
erty as an associative CRF, in analogy with associative max-
margin Markov networks [21].

We first consider changing the CRF labels from
yi = ±1 to correspond with the Heaviside labels
that are in {0, 1}. By multiplying P (Y |X,w,v) by
exp(wT fi(X))/ exp(wT fi(X)) for each node i in N , we
can write the association function concisely as Ai =
2yiw

T fi(X) with y in {0, 1}. By similarly multiply-
ing P (Y |X,w,v) by exp(vT fij(X))/ exp(vT fij(X)) for
each edge {i, j} in E, the interaction function can be writ-
ten in the yi ∈ {0, 1} representation as Iij = 2(1 − |yi −
yj |)vT fij(X).

We now consider enforcing the needed condition that the
interaction function Iij is always non-negative. In the {0, 1}
representation, it is clear that Iij will be non-negative as
long as both fij(X) and v are non-negative. To ensure that
fij(X) ≥ 0, we choose non-negative edge features that rep-
resent a measure of association between the two pixels in-
volved in an edge. In particular, we used edge features of
the form (for each node feature k):

fijk(X) !
1

1 + |fik(X) − fjk(X)|
(6)

giving F (fi(X), fj(X)) = {fijk(X), k = 1 . . .K}. Since
v is non-negative, these edge features have the intuitive ef-
fect that they encourage the most smoothing at locations
where the features are most similar.

Ensuring that v is non-negative can be done by changing
the optimization procedure. In particular, rather than opti-
mizing the unconstrained pseudo-likelihood, we maximize
the pseudo-likelihood subject to v ≥ 0. The global opti-
mum under this constraint can still be computed efficiently
even with a very large number of variables by using bound-
constrained limited-memory quasi-Newtonmethods such as
L-BFGS-B [5]. An interesting consequence of the form of
the interaction function Iij and the convex polytope that re-
sults from these constraints is that the model performs ‘as-
sociative feature selection’. That is, it will set vk to exactly
0 (effectively ignoring the feature) for any edge feature k
that does not have an associative (smoothing) effect.

By putting everything together and dividing out the con-
stant factor two from every term, the final formulation for
the associative CRF with yi in {0, 1} is the following:

p(Y |X) =
1
Z

exp
(

∑

i yiw
T fi +

∑

ij(1 − |yi − yj |)
∑

k vkfijk

)

subject to v ≥ 0
(7)
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Figure 1. Example of corresponding data and regularization energies in the continuous CRFmodel (bottom) and the traditional active region

model with Gaussian region statistics and the the usual edge based regularization g = 1

1+α|∇X| (top). The task is to denoise a simple

binary image corrupted with independent Gaussian noise. Notice how the CRF regularization energy picks the correct label discontinuities

(bottom middle) as compared to the usual edge detection function (top middle).

CRF cont. CRF

node labels yi H(Φ(x))
edge labels 1 − |yi − yj| 1 − |∇H(Φ(x))|
node features fi(X) f(x)
edge features fij = F (fi(X), fj(X)) F (∇f(x))

Table 1. Corresponding terms between CRF and continuous CRF

4.2. Continuous Domain CRF

The proposed associative CRF can now be fully embed-
ded into a continuous model that has the same energy:

E(Φ) =
∫

Ω −H(Φ)(wT f) + (1 − H(Φ))(wT f)
+|∇H(Φ)|

∑

k vk
1

1+|∇fk|
dx (8)

Table 1 presents the corresponding entities between the
two models, with x corresponding to the location i in the
discrete representation.

The CRF association term models the class asso-
ciation potential and differentiates the two classes ob-
ject(inside)/background(outside). This term corresponds to
the level set data energy log p1, log p2 of a point being in-
side or outside the contour.

The interaction term corresponds to the regularization

energy in the continuous formulation. The discrete CRF in-
teraction is defined on pairs of neighboring locations and
on the corresponding values for the data. The correspond-
ing regularization in the continuous model is defined on
∇H(Φ) and it depends on pairwise features (defined us-
ing the gradient of the features∇f ). In two-dimensions, we
work with a 2 neighborhood system for the finite difference

approximation, using differences between a pixel’s north-
ern and eastern neighbors in the image. Figure 1 illustrates
the difference between the regular, edge based anisotropic
regularization used in level set segmentation methods, and
the proposed regularization based on the CRF interaction
potential that encourages discontinuities at label disconti-
nuities rather than image edges (as discussed in Section 3).

The Euler-Lagrange evolution equation corresponding to
the continuous CRF energy from Equation 8 is:

∂Φ
∂t = −2δ(Φ)wT f

+δ(Φ)div
((

∑

k vk
1

1+|∇fk|

)

∇Φ
|∇Φ|

)

(9)

An outline of the continuous CRF segmentation algo-
rithm is:

Training:

Given: a set of images X1, X2, . . . , Xn

Extract features f(X1), f(X2), . . . , f(Xn)
Compute optimal node and edge params v,w

by maximizing the constrained

pseudo-likelihood of the CRF (Equation 7)

Segmentation:

Given: one image X
Extract features f(X)
Compute segmentation by evolving a curve

driven by Equation 9

4.3. Shape priors

As will see in Section 5.2 for the task of muscle seg-
mentation in CT abdominal images, in some cases we can
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1+α|∇X| (top). The task is to denoise a simple

binary image corrupted with independent Gaussian noise. Notice how the CRF regularization energy picks the correct label discontinuities

(bottom middle) as compared to the usual edge detection function (top middle).
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The CRF association term models the class asso-
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teraction is defined on pairs of neighboring locations and
on the corresponding values for the data. The correspond-
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∇H(Φ) and it depends on pairwise features (defined us-
ing the gradient of the features∇f ). In two-dimensions, we
work with a 2 neighborhood system for the finite difference
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ern and eastern neighbors in the image. Figure 1 illustrates
the difference between the regular, edge based anisotropic
regularization used in level set segmentation methods, and
the proposed regularization based on the CRF interaction
potential that encourages discontinuities at label disconti-
nuities rather than image edges (as discussed in Section 3).

The Euler-Lagrange evolution equation corresponding to
the continuous CRF energy from Equation 8 is:

∂Φ
∂t = −2δ(Φ)wT f

+δ(Φ)div
((

∑

k vk
1

1+|∇fk|

)

∇Φ
|∇Φ|

)

(9)

An outline of the continuous CRF segmentation algo-
rithm is:

Training:

Given: a set of images X1, X2, . . . , Xn

Extract features f(X1), f(X2), . . . , f(Xn)
Compute optimal node and edge params v,w

by maximizing the constrained

pseudo-likelihood of the CRF (Equation 7)

Segmentation:

Given: one image X
Extract features f(X)
Compute segmentation by evolving a curve

driven by Equation 9

4.3. Shape priors

As will see in Section 5.2 for the task of muscle seg-
mentation in CT abdominal images, in some cases we can
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the continuous CRF energy from Equation 8 is:
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Compute optimal node and edge params v,w
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pseudo-likelihood of the CRF (Equation 7)
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Extract features f(X)
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Figure 4. Comparative results for skeletal muscle segmentation. Left: Shape prior used by the continuous models. Jaccard scores are

displayed on the top left.
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Figure 5. Test image Jaccard scores (A ∩ B/A ∪ B) for muscle

segmentation in CT images with three different methods for 37

different scans across 18 patients. The scans are sorted by the

maximum score achieved across the methods.

outperforms the generative one. For this data set, the con-
tinuous CRF obtained the highest score in 31 of the 37 vol-
umes.

6. Discussion

There has been a previous attempt to couple a CRF with
an active contour model [22], extending previous work on
integrating probabilistic deformable models with Markov
random fields [11]. The main difference between our work
and this previous work is subtle but very important; in [22],
the model requires an ‘image prior’ that represents the dis-
tribution over images, and due to the complexity of images
this is extremely complicated to specify. In [22], they use
an image prior that factorizes into independent Gaussians

at each pixel (ie. an ‘average’ image is scaled white noise,
and realistic images are extremely unlikely). The model in
[11] similarly requires a distribution over images given the
labels. The key feature of CRFs is that they condition on
the image (treating it as a fixed observation), and do not
need an image prior. Although [22] uses a CRF as part of a
larger model, the model doesn’t take advantage of this key
feature because the full model still needs an image prior.
This distinction is important when we want to enhance dis-
crimination by using relevant ‘features’ instead of just pixel
values. In [22] you would need a ’feature prior’, specify-
ing the distribution over the features, which might be even
harder than specifying a realistic distribution over images.
In our model, we can use arbitrary features without needing
to account for their probability, and we obtain a standard
CRF model (at the appropriate discretization level) in the
special case where no additional continuous regularizer is
incorporated.

We would like to note another important differences be-
tween our method and the previous work. We address
the issue of joint parameter estimation from training data,
formulating it as a convex optimization. The quantitative
evaluation in [22] used manual initialization of the contour
for each image to be segmented (similar to most previous
work on level set methods), while our experiments tested on
the arguably much more difficult task of segmenting com-
pletely new images with automatic initialization of the con-
tour.

The edge potentials defined by the associative model
in Section 4 obey the submodularity constraint I(0, 0) +
I(1, 1) ≥ I(1, 0) + I(0, 1) (since vT fij(X) ≥ 0), and
therefore the optimal decoding of this model can be for-
mulated as a graph cut problem [13]. Our continuous in-
terpretation of the CRF is therefore connected to the work
of Boykov and Kolmogorov on geo-cuts [2, 12], graph cuts
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Figure 4. Comparative results for skeletal muscle segmentation. Left: Shape prior used by the continuous models. Jaccard scores are

displayed on the top left.
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Figure 5. Test image Jaccard scores (A ∩ B/A ∪ B) for muscle

segmentation in CT images with three different methods for 37

different scans across 18 patients. The scans are sorted by the

maximum score achieved across the methods.

outperforms the generative one. For this data set, the con-
tinuous CRF obtained the highest score in 31 of the 37 vol-
umes.

6. Discussion

There has been a previous attempt to couple a CRF with
an active contour model [22], extending previous work on
integrating probabilistic deformable models with Markov
random fields [11]. The main difference between our work
and this previous work is subtle but very important; in [22],
the model requires an ‘image prior’ that represents the dis-
tribution over images, and due to the complexity of images
this is extremely complicated to specify. In [22], they use
an image prior that factorizes into independent Gaussians

at each pixel (ie. an ‘average’ image is scaled white noise,
and realistic images are extremely unlikely). The model in
[11] similarly requires a distribution over images given the
labels. The key feature of CRFs is that they condition on
the image (treating it as a fixed observation), and do not
need an image prior. Although [22] uses a CRF as part of a
larger model, the model doesn’t take advantage of this key
feature because the full model still needs an image prior.
This distinction is important when we want to enhance dis-
crimination by using relevant ‘features’ instead of just pixel
values. In [22] you would need a ’feature prior’, specify-
ing the distribution over the features, which might be even
harder than specifying a realistic distribution over images.
In our model, we can use arbitrary features without needing
to account for their probability, and we obtain a standard
CRF model (at the appropriate discretization level) in the
special case where no additional continuous regularizer is
incorporated.

We would like to note another important differences be-
tween our method and the previous work. We address
the issue of joint parameter estimation from training data,
formulating it as a convex optimization. The quantitative
evaluation in [22] used manual initialization of the contour
for each image to be segmented (similar to most previous
work on level set methods), while our experiments tested on
the arguably much more difficult task of segmenting com-
pletely new images with automatic initialization of the con-
tour.

The edge potentials defined by the associative model
in Section 4 obey the submodularity constraint I(0, 0) +
I(1, 1) ≥ I(1, 0) + I(0, 1) (since vT fij(X) ≥ 0), and
therefore the optimal decoding of this model can be for-
mulated as a graph cut problem [13]. Our continuous in-
terpretation of the CRF is therefore connected to the work
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Training:
 Given: a set of images X1, X2, ... , Xn
 Extract features f(X1), f(X2), ... , f(Xn)
 Compute optimal node and edge parameters {w,v}
  by maximizing the constrained
  pseudo-likelihood of the CRF
Segmentation:
 Given: one image X
 Extract features f(X)
 Compute segmentation by evolving a curve
  driven by the Euler-Lagrange equations


