# Increased Discrimination in Level Set Methods with Embedded Conditional Random Fields

#### Introduction

 We want to use training data to build an automatic segmentation tool

#### Conditional random fields (CRFs):

- discriminative model
- models neighbor's correlation
- feature-based edge regularization
- Markov assumption on labels

#### Level set segmentation:

- generative model
- assumes neighbor independence
- image-based edge regularization
- allows non-Markov priors

#### ♦ We embed CRFs within a level set framework:

- a conditional level set method
- a CRF that allows non-Markov priors

## Level Set Segmentation

- Represent contour implicitly as the zero level set of an embedding function
- Minimize the energy by solving the Euler-Lagrange equations



Chan-Vese energy:

$$E(\Phi) = \int_{\Omega} -H(\Phi) \log p_1(\mathbf{f}(x), \mathbf{w})$$
$$- (1 - H(\Phi)) \log p_2(\mathbf{f}(x), \mathbf{w})$$
$$+ v |\nabla H(\Phi)| g(X, \alpha) dx$$

Parameter estimation: fix regions, fit independent generative pixel model, tune v and  $\alpha$  manually.



**Dana Cobzas** University of Alberta

# Conditional Random Fields



• CRFs model the conditional probability of the labels Y given features f(X)

 $P(Y|X) = \frac{1}{Z} \exp\left(\sum_{i \in N} y_i \mathbf{w}^T \mathbf{f}_i(X) + \sum_{i,j \in E} y_{ij} \mathbf{v}^T \mathbf{f}_{ij}(X)\right)$ 

#### Parameter estimation:

- is jointly convex in w and v
- is **efficient** using a conditional pseudo-likelihood
- is **discriminative**; there is no image model P(X)
- models correlations between neighboring pixels
- learns edge regularization related to labels

### Associative CRFs

To embed the CRF within a level set method:

- we convert to a  $\{0,1\}$  representation
- we use associative edge features

$$f_{ijk}(X) \triangleq \frac{1}{1 + |f_{ik}(X) - f_{jk}(X)|}$$

• we require v to be non-negative

 $\min_{\mathbf{w},\mathbf{v}} \frac{1}{Z} \exp\left(\sum_{i} y_{i} \mathbf{w}^{T} \mathbf{f}_{i}(X) + \sum_{ij} (1 - |y_{i} - y_{j}|) \sum_{k} v_{k} f_{ijk}(X)\right)$ subject to  $\mathbf{v} \ge 0$ 

We can efficiently solve this optimization problem with a bound-constrained L-BFGS method Mark Schmidt

University of British Columbia



### Continuous-Domain CRFs

The associative CRF can be embedded into a continuous model that has the same energy:

|               | CRF                                            | cont. CRF                 |
|---------------|------------------------------------------------|---------------------------|
| node labels   | $y_i$                                          | $H(\Phi(x))$              |
| edge labels   | $1 -  y_i - y_j $                              | $1 -  \nabla H(\Phi(x)) $ |
| node features | $\mathbf{f}_i(X)$                              | $\mathbf{f}(x)$           |
| edge features | $f_{ij} = F(\mathbf{f}_i(X), \mathbf{f}_j(X))$ | $F(\nabla \mathbf{f}(x))$ |
|               | • •                                            |                           |

Energy functional:

$$E(\Phi) = \int_{\Omega} -H(\Phi)(\mathbf{w}^T \mathbf{f}) + (1 - H(\Phi))(\mathbf{w}^T \mathbf{f}) + |\nabla H(\Phi)| \sum_k v_k \frac{1}{1 + |\nabla f_k|} dx$$

Euler-Lagrange equations:

$$\frac{\partial \Phi}{\partial t} = -2\delta(\Phi)\mathbf{w}^T \mathbf{f} + \delta(\Phi) \operatorname{div} \left( \left( \sum_k v_k \frac{1}{1+|\nabla f_k|} \right) \frac{\nabla \Phi}{|\nabla \Phi|} \right)$$

#### **Training**:

Given: a set of images X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>
Extract features f(X<sub>1</sub>), f(X<sub>2</sub>), ..., f(X<sub>n</sub>)
Compute optimal node and edge parameters {w,v}
by maximizing the constrained
pseudo-likelihood of the CRF
Segmentation:
Given: one image X
Extract features f(X)
Compute segmentation by evolving a curve
driven by the Euler-Lagrange equations

### Shape Priors

We can add a non-Markov shape prior to the continuous CRF as an extra term in the energy:

$$E_s(\Phi) = \int_{\Omega} \beta H(\Phi) \left( s\Phi - \Phi_s(\mathcal{A}(x)) \right)^2 dx$$

A(x) is an affine transformation with scale s of the shape prior level set  $φ_s$ , and β is the shape regularization strength.

### Brain Tumor Segmentation

#### Results on 3D MRI brain tumor segmentation data



### Skeletal Muscle Segmentation

Results on 2D CT muscle segmentation data where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set methods use a shape prior
 Where the level set method set methods use a

### Discussion

- Unlike most work on level set methods, we require no manual initialization or parameter tuning, and do not need a generative model of the image.
- Other non-Markov terms can easily be added, such as the intensity inhomogeneity field.