Increased Discrimination in Level Set Methods with Embedded Conditional Random Fields

Dana Cobzas
University of Alberta

Mark Schmidt
University of British Columbia

Introduction
- We want to use training data to build an automatic segmentation tool.
- Conditional random fields (CRFs):
 - discriminative model
 - models neighbor’s correlation
 - feature-based edge regularization
 - Markov assumption on labels
- Level set segmentation:
 - generative model
 - assumes neighbor independence
 - data-based edge regularization
 - allows non-Markov priors
- We embed CRFs within a level set framework:
 - a conditional level set method
 - a CRF that allows non-Markov priors

Conditional Random Fields
- CRFs model the conditional probability of the labels Y given features $f(X)$

$$P(Y|X)\triangleq \frac{1}{Z} \exp\left(\sum_{i \in N} y_i w_i f_i(X) + \sum_{i \neq j \in E} y_i y_j f_{ij}(X)\right)$$

- Parameter estimation:
 - is jointly convex in w and v
 - is efficient using a conditional pseudo-likelihood
 - is discriminative; there is no image model $P(X)$
 - models correlations between neighboring pixels learns edge regularization related to labels

Level Set Segmentation
- Represent contour implicitly as the zero level set of an embedding function
- Minimize the energy by solving the Euler-Lagrange equations

Continuous-Domain CRFs
- The associative CRF can be embedded into a continuous model that has the same energy:

$$E(\Phi) = \int_{\Omega} -H(\Phi) \log p_1(f(x), w) - (1 - H(\Phi)) \log p_2(f(x), w) + v |\nabla H(\Phi)| g(X, \alpha)$$

- Energy functional:

$$E(\Phi) = \int_{\Omega} -H(\Phi)(w^T f) + (1 - H(\Phi))(w^T f)$$

- Euler-Lagrange equations:

$$\frac{\partial E}{\partial \Phi_i} = -2\delta(\Phi^T f) + \delta(\Phi) \left(\sum_j v_j \gamma_j \Phi_j \right)$$

Training:
- Given: a set of images X_1, X_2, \ldots, X_t
- Extract features $f(X_1), f(X_2), \ldots, f(X_t)$
- Compute optimal node and edge parameters $\{w, v\}$ by maximizing the constrained pseudo-likelihood of the CRF

Segmentation:
- Given: one image X
- Extract features $f(X)$
- Compute segmentation by evolving a curve driven by the Euler-Lagrange equations

Shape Priors
- We can add a non-Markov shape prior to the continuous CRF as an extra term in the energy:

$$E_s(\Phi) = \int_{\Omega} \beta H(\Phi) (s\Phi - \Phi(A(x)))^2 dx$$

$A(x)$ is an affine transformation with scale s of the prior level set Φ_s, and β is the shape regularization strength.

Discussion
- Unlike most work on level set methods, we require no manual initialization or parameter tuning, and do not need a generative model of the image.
- Other non-Markov terms can easily be added, such as the intensity inhomogeneity field.