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Abstract

We propose a three-scale hierarchical representation of
scenes and objects and show how this representation is suit-
able for both computer vision capture of models from images
and efficient photo-realistic graphics rendering. The model
consists of: (1) a conventional triangulated geometry on the
macro-scale; (2) a displacement map, introducing pixel-wise
depth with respect to each planar model facet (triangle) on
the meso level; (3) a photo-realistic micro-structure repre-
sented by an appearance basis spanning viewpoint variation
in texture space. We implement a capture and rendering sys-
tem for this model. Conventional Shape-From-Silhouette or
Structure-From-Motion is used to capture the coarse macro
geometry, variational shape and reflectance estimation for
the meso-level, and texture basis optimization for the micro
level. For efficiency the meso and micro level routines are
both HW accelerated. Photo-realistic capture of complex
scenes is thus possible in a few minutes using budget cam-
eras and PC’s, and rendering is real-time. Experimental re-
sults and videos show models from regular images of humans
and objects.

1. Introduction

Capturing scene and object models from images is one
of the main areas in computer vision. Much of the
research has focused on either geometry, as in multi-
view stereo methods[26], or appearance, as in image-based
modeling[27]. Some applications focus on one or the other,
e.g., robotics needs geometry, 3D TV is primarily concerned
with accurate appearance, while in many applications both
geometry and photorealism is desired. In this paper the focus
is on capture and representation of models suitable for use in
conventional modeling software such as Maya and Blender.
A useful application is to be able to capture natural objects
for synthesis into new scenes in e.g. virtual heritage, interior
design, or animation in computer games.

In the past few years a variety of rich BRDF representa-
tions for appearance have been proposed[6, 36, 21], and elab-
orate systems to capture and cluster BRDF material proper-
ties exist[19, 15]. However, a problem with these works are
that they either study only flat material samples or assume an
accurate (usually a-priori) geometry. They do not take into
account the effects of geometric errors in the BRDF estima-

tion. However, almost all out-of-the lab appearance model-
ing from images will have to deal with significant errors.
Rather than high budget, high end lab or studio applications,
we seek to push modeling from images downmarket, so rea-
sonably photo-realistic results can be obtained with a home
PC and consumer camera (from web cams to regular digi-
tal cameras). This would be an enabling technique for e.g.
bringing everyday objects and scenes into virtual spaces.

While there has been lots of research on methods and
details of 3D modeling from images, there seems to be
preciously few system solutions available. KU Leuven’s
3Dwebservice[34] allows users to submit images, runs
Structure-From-Motion (SFM) and multiview stereo on a
cluster of CPU’s, then sends back geometry and cam-
eras. However, much manual post processing is needed
to achieve usable graphics models. Much less compu-
tationally demanding systems are based on Shape-From-
Silhouette (SFS), e.g. [31, 22, 37]. A similar system but
with more limited texturing was commercialized in 2005 by
www.3dsom.com. Here we use both SFM and SFS for a
coarsemacro geometry recovery, but we further refine the
geometry and add reflectance/appearance processing.

A central thesis in our method is that by employing
a multi-tier representation, precision requirements on each
level can be relaxed. Multi scale methods have been em-
ployed before in both vision and graphics. Perhaps the
most common use is to accelerate rendering. Becker and
Max [2] smoothly switch between three types of represen-
tations (BRDF, bump map, displacement map) as required
by the amount of visible surface detail. Sloan et al. [29]
presents an efficient two layer model. A main difference in
our approach is that we capture and retain representations of
all three levels in the model and use them simultaneously in
rendering to generate the final images. Similarly, two-level
models are common in image-based rendering (IBR). In the
“Unstructured Lumigraph”[4] the lightfield is parametrized
on a geometry proxy. This is much more efficient than on
e.g. a box as in the original Lumigraph.

We present a three-tier model (Fig.1) with a heteroge-
neous representation, such that each level adds detail (geo-
metric or appearance) to the previous levels. In particular,
we define representations on the following three scales:

• Themacroscale describes a whole scene or object using
a coarse, conventional (triangulated) geometry.

• The mesoscale level represents geometric surface de-
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Figure 1. Computation of ourmacro, meso, micro representation through stepwise refinement, Video 1 and 2[1]

tails, generally at a visible scale (e.g. one to several
pixels) through a displacement map.

• Themicroscale level captures fine scale both geometric
and reflectance properties (subpixel and up to few pix-
els). We use a texture basis similar to the BTF, but our
basis is captured off the object and therefore also repre-
sents correct parallax, silhouettes and interreflections.

2. Capturing and rendering the 3-tiered model

2.1. Macro level: Coarsely Triangulated Geometry

Classic photogrammetry recovers 3D from 2D point corre-
spondences using calibrated cameras. In the past decade
much work was devoted to 3D recovery from uncalibrated
images[16]. Despite this, no system can recover accurate
dense geometry robustly and reliably from general scenes.
One of the few publicly accessible systems is KU Leuven’s
3Dwebservice[34], for which one can upload image sets of
scenes and get back 3D reconstructions. It sequences SFM,
auto-calibration, and dense stereo. The procedure is com-
putationally demanding and running in parallel on a com-
puter network, reconstructions often take hours to complete.
Practically care must be taken in selecting both scenes and
viewpoints for the system to work well. Nonetheless it is a
representative of the state of the art in SFM based systems.

Shape-from-silhouettes (SFS)[28], on the other hand is a
very robust method to obtain a visual hull geometry. It only
requires the object silhouette and the calibration of the cam-
eras. Besides it is quite robust to silhouette or calibration er-
rors. In our system we implement an efficient algorithm for
silhouette carving using an orthogonal ray set and Marching
Intersections[32] algorithm. This decreases storage cost, and
improves geometric precision (by recording silhouette inter-
sections exactly on the rays) compared of the conventional
discrete voxel representation. Computation time is less than
one minute for all cases shown in this paper. Given themacro
geometry either computed from SFS or imported from SFM
we can proceed to the next level.

2.2. Meso level: Depth from Macro Geometry

Recently, state of the art computer vision surface reconstruc-
tion techniques have proved successful to refine the above
models. Most assume simple reflectance (image constancy)

and focus on obtaining an accurate geometry given a pre-
cisely calibrated setup (e.g. [24, 14], many more are sur-
veyed in[26]). Few works consider general reflectance mod-
els [30, 38, 39]. We use a surface evolution method to com-
pute the detailedmesogeometry and simultaneously estimate
a reflectance model.

Assuming that we have a set of images,Ii, the corre-
sponding camera matrices,Pi, and a low-res input geometry
obtained from either SFM or SFS, the meso-scale structure
can be obtained by finding the geometry that best matches
the input images. We use a similar variational formulation as
Faugeras & Keriven [11], where our goal is to find a surface,
S, that minimizes the following functional:

F (S) =

∫

S

f(X,N)dA (1)

whereX is a point on the surface,N is the unit surface
normal at that point, anddA indicates integration over the
surface of the object. The functionf measures the photo-
consistency between the surfaceS and the input images. One
common consistency measure is computed as the standard
deviation of the image colors that a surface point projects
onto. This measure assumes constant lighting and a per-
fectly matte surface. As we are interested in capturing the
geometry of non-Lambertian objects, we instead use a more
general form off that measure the consistency of the im-
age observations of the surface under the lighting and view
conditions at the time of capture. A consistency measure of
this form could be obtained through a non-Lambertian para-
metric model of reflectance or alternatively by enforcing a
rank constraint on the observations [30]. We chose the for-
mer approach and derive our consistency measure based on
the Phong model of reflectance.

Under the Phong model, we assume that thek brightest
image observations of a point are due to specular reflection;
the remaining intensity observations are the result of Lam-
bertian reflectance. The photo-consistency functionf evalu-
ated at a pointX with unit surface normalN is then

f(X,N) = min
α

(

∑

i

hi|Ii(PiX) −

∫

θ

∫

φ

αN · L(θ, φ)|2

)

(2)



Figure 2. A toy house rendered with a dynamic texture
under two light conditions.

(a) (c1) (d1) (e) (g1)

(b) (c2) (d2) (f) (g2)
Figure 3. Comparison of analytical and estimated basis for geometric vari-
ability. Plane variability: (a) original quadrilateral; (b) warped texture;
(c1),(d1) analytical basis (b1,b4 from Eq. 7); (c2),(d2) corresponding re-
coveredb̃-basis. Parallax variability: (e) reference texture image; (f) depth
map; (g1) analytical basis; (g2) recovered basis by PCA

with PiX denoting the projection of pointX in imagei and
α denoting the unknown albedo. The functionhi is a binary
valued function returning0 if X is occluded orIi(PiX) is
one of thek brightest observations and returning one other-
wise. It therefore filters specular pixels.L(θ, φ) indicates the
incident light from a particular direction. The light is mod-
eled as a single point light source. Note that the functionf
is assigned the residual after fitting the best possible albedo
to the image observations.

A surface that minimizes Eq.1 is found by moving the
initial input geometry by the Euler-Lagrange form derived
from Eq. 1. We used a simplified version of the evolution
equation (ignoring higher order terms) given by:

St = (2κf −∇f)N (3)

whereκ is the mean curvature of the surface.
Up until this point, we have been treating the surface as a

continuous object, yet in practice it is necessary to discretize
both the surface representation and the evolution equation.
A modern direct approach involves recovering the displace-
ments from the base geometry by adjusting the displacement
values according to the evolution equation[3]. This approach
is similar to variational disparity map estimation, but nowon
the model facets instead of image plane. More conventional
approaches move the vertices of the mesh and subdivides the
triangles of the mesh whenever necessary (as done by [9]).
We have implemented both direct displacement estimation
on triangles and a mesh refinement method. For the latter
once we have obtained a refined geometry it is a straightfor-
ward process to obtain the displacement for the macro geom-
etry (e.g. by ray triangle intersections).

The displacement mappedmesorepresentation can be
efficiently rendered using existing hardware accelerated
techniques[17]. Our current implementation computes a
number of sample points along each view ray through the
displacement mapped volume in a pixel shader. The two
sample points that are found to be on either side of the in-
tersection of the displaced geometry are used to determine a

planar approximation of the displaced surface. The ray in-
tersection with this planar surface gives the proper texture
sample for that ray, effectively ray-tracing parallax.

2.3. Micro level: BTF and view dependent textures

The purpose of the micro-scale representation is to capture
intensity variation on the pixel level. This includes the view
dependency of potentially complex light surface interactions
and subpixel surface structure. In practice, for models cap-
tured from images another important purpose is to compen-
sate for discrepancies between captured geometry and true
object surfaces. Hence, the first purpose is similar to that
of Bi-directional Texture Function (BTF) representations[6]
and the second similar to view-dependent textures (VDTM)
[7]. In a parellel line of research Freeman, Adelson and
Heeger noted that small motions could be modulated using
a spatial basis[12]. This was extended to image synthesis
of whole motion sequences using a PCA basis[18], and later
used to animate also stochastic motion [8]. The above works
were all representing variation on one image plane, but oth-
ers realized that it is more efficient to represent the variation
on the surface of a triangulated model [13, 5]. Both in spirit
and actual implementation all these representations are quite
similar in their use of a set of basis textures/images to mod-
ulate a new texture.

Below we will derive a spatial basis (a set of textures)
representing the micro layer information. Intuitively, this can
be thought of as a way of compressing a photo-consistancy
residual, but as we shall see, an analytic treatment gives us
insight into more specific and compact representations with
better modulation/interpolation properties of new views.

TexturesTk are extracted from scene imagesIk through
a texture coordinate transformation (Sect.3) T (x) =
I(W(x; µ)) where W(x; µ) is a projective homography
transform (warp), andµ is a vector of the 8 homography
parameters. In view dependent texturing an approxima-
tion of the texture at a particular view direction̂T is gen-
erated by interpolating/blending the closest sample textures
T̂ =

∑

akTk. Flattening all our texture images into col-



Figure 4. Left: experimental capture-setup. Right: GUI forour capture system illustrating consistent texture space.

umn vectors and arranging them in a matrixT̃ we can thus
write T̂ = [T1 . . .Tn]a = T̃a. Now if the captured geom-
etry is reasonably good̃T will be highly compressible and
we can derive a lower dimensional basisB s.t. T̃ ∼= BY
e.g. through PCA. Hence a scene or object that is captured
from hundreds of views can be re-rendered using much fewer
basis vectors inB. The final texture modulation equation be-
comesT̂ ≈ BY a = By wherey is now in a transformed
texture modulation space.

Through a bit of analysis a better insight into how to com-
pute B and what it represents can be obtained. The key
is that any smooth intensity change described by a func-
tion I(f(x, µ)) can be linearized about the current stateµ.
Specifically relevant to the capture and rendering of natural
scenes from images are rendering errors caused by imper-
fections in the captured geometry or its alignment with the
images. The former causes parallax errors when the true and
modeled object surfaces differ, and the latter causes planar
errors (in texture space) due to the texture not being sourced
from the right coordinates in the input image set. It can
be shown (See Appendix) that the texture coordinate slip is
modeled by an 8D basisBh and parallax to a first order is
modeled by a 2D basisBp. Furthermore, it has been shown
that the view-dependency of light, can be represented to 98%
through a 9D basis of spherical harmonics[25], here denoted
Bl. An example rendering is in Fig.2.

By composing all these linear variabilities we arrive at a
formula for view dependent textures from the simultaneous
effects of geometric and light variability represented in a20-
dimensional spatial basisB.

T̂k = [T0, Bh, Bp, Bl][1, y2, . . . , y20]
T = Byk (4)

with respect to a reference textureT0 (chosen e.g. from one
view central in the sample set).

To practically compute the texture basis we obtain a
pose-labeled texture set from an input video sequenceT̃ =
[T1 . . . Tn]. Just as derivatives can be either analytical, or
estimated by discrete differences, here we show how to esti-
mate the texture basis. Note thatB is contained as a subspace
in T̃ , i.e. span(B) ⊂ span(T̃ ). To be able to modulate

textures from new viewpoints, we wish to extract a compact
approximation ofB. If there was no other variability in the
video sequence,̃T would span exactlyB. In practiceT̃ is full
rank and contains variability also due to noise etc. Our strat-
egy is to extract fromT̃ a linear subspacẽB = [b̃1 . . . b̃r]
somewhat larger thanB using PCA. Hence we pick a 20 to
32-dimensional subspace from the hundreds or more video
images inT̃ .

To validate that this 20-dimensional subspace actually
containBp andBh (as derived in Appendix) we computed
both the analytical and PCA based variability for some tex-
ture elements on the house in Fig.1. We found thatB̃ con-
tained 99.5% of the variability in the analytical basisB.
Additionally, through a basis transform, the columns ofB̃
aligned with a known B, and as illustrated in Fig.3, the ana-
lytical and estimated basis vectors look virtually identical.

The important conclusion to draw here is that when an
appropriate size texture subspace-basis is estimated froma
dense video sequence it will span the analytical basis. Unlike
VDTM, where regular images are blended, this basis con-
tains derivatives of images and Eq.4 can thus be interpreted
as a first order Taylor expansion, allowing continuous modu-
lation of texture changes to correctly interpolate intermediate
views instead of fading between images.

3. System and Experiments

We developed a software integrating the steps from images
to to our multi-tier model into a procedure taking only a few
minutes in most cases, see Video 1[1] . To quickly capture
views from all sides of an object we use a rotating platform
(Radio Schack TV stand). Our SW can take live video from
an IEEE1394 camera, (we use a Unibrain web cam and Pt-
Grey Scorpion 20SO) or import digital image files from a
still camera. Camera calibration is obtained with a pattern,
light using a specular ping-pong ball and object silhouettes
through bluescreening, Fig.4. The geometry is then com-
puted as in Sect.2.1. Alternatively, a geometry can be im-
ported from KU Leuven’s 3D Webservice[34].

While in computer vision it is common to texture directly
from images, in applications a unified texture space is de-



Figure 5. From left to right: an input image, SFS model, refined geometry, a rendering with the estimated Phong model, rendering with Phong
model + residual dynamic texture. Notice the increase in texture quality in the renderings with the dynamic texture. Seevideo 4.

sired and often necessary. To automatically compute texture
coordinates, the object geometry is first split along high cur-
vature regions, then each region is flattened using a confor-
mal mapping[20], and packed into an OpenGL texture square
(the GUI screenshot in Fig.4 illustrates an example of this
mapping). In the dynamic texture basis computation, all in-
put images are transformed into and processed in this space.

Finally, the complete model of geometry and texture basis
can be exported, either for inclusion in Maya or Blender, for
which we have written a dynamic texture rendering plugin,
or direct real-time rendering. The DynTex basis (the largest
component of our three-tier model) compresses well using
jpeg, and model storage size (typ. 50kB-5MB total) is pro-
portional to size and number of images/basisvectors. For real
time rendering, we perform the texture modulation in graph-
ics HW using either register combiners or when available,
fragment shaders. This allows real-time rendering of scenes
with about a dozen objects even on consumer PC’s.

We are not limited to small objects. As mentioned we can
import geometries from 3Dwebservice[34]. In Video 3[1]
and Fig.6, we show a preachers chair captured in situ from
the Seefeld church. Video 4[1] and Fig.5 shows a human
face captured by having the person sit on a rotating office
chair with the calibration pattern taped to a hat, and as seen
in Video 1[1] , we can also capture whole persons using a
bigger rotating platform.

Experimental render quality comparison
In our comparative experiments we set out to validate the
three-tier model on a set of scenes starting with simple ge-
ometries and little appearance difficulty and finishing with
ones where both geometry and appearance challenge today’s
methods (including ours). Unlike comparisons of geometry
alone, numeric errors are not indicative of perceptual qual-
ity. Furthermore, a static image does not show how light and
specularities move. Therefore we rely mainly on the video
renderings to argue photo-realistic results. In each case,a set
of input images were acquired using the turntable setup. Half
were used to compute the model, and the other half (from
different viewpoints) were used as reference in the compari-
son videos, and intensity error computation. We downloaded
the temple images, and captured the others using the PtGrey
camera at 800x600 resolution. Due to the calibration pattern
taking up image space, the effective object texture resolution

Figure 6. Seefeld Kanzel: image, geom, DynTex rendering

is however closer to web-cam VGA (640x480) resolution. A
DynTex basis of 20 basis vectors is compared to VDTM tex-
turing by blending textures sourced from 20 input images,
and unstructured lumigraph rendering. In the lumigraph, for
each texturespace pixel a list of ray color and u,v index is
stored. The lumigraph is then computed on the geometry by
picking the 20 rays per texture pixel that minimize the repro-
jection error over all input images. (Note: Unlike the VDTM
and DynTex basis, jpeg compression does not work for the
ray indices).

For a comparison to existing literature, we start with the
temple scene from[26] (Fig. 7, I.) A close approximation
to the true geometry is computed using SFS already at the
macrostage by our system, with 90% reconstructed within
1.7mm of ground truth, a further refinement improves this to
1.1mm . Lacking a way to explicitly recover light in these
images we cannot apply our variational reflectance and ge-
ometry method in Sect.2.2, but first do a volume refinement,
Hernandez et.al.[10], and then use the variational method to
fit a surface to this. Our geometry is not quite as good as Her-
nandez et.al. (0.5mm), but comparing texture renderings for
the initial SFS model with those of the refined model, there
is next to no perceptual difference. Likewise for this simple
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Figure 7. I) The simple BRDF of the temple is easily modeled byany texturing. II) The concave geometry and non-Lambertianreflectance
of the house showcase the effectiveness of the DynTex. III) The DynTex reproduces complex view-dependent specularities that are lost in a
single texture. IV) Results for an object with complex micro-geometry rendered on a proxy geometry.

BRDF we find little perceptual or numerical error difference
between using just a conventional static single texture or any
of the view dependent textures (see Video 5[1] ). Here light is
not separated and textures encode light and reflectance com-
bined.

Our second data set is of a house, with wood, bark and
moss materials, and a more complex both macro and mi-
cro structure. In this case we have a significantly different
geometry between the SFS and refined case with the 90%-
tile between them at 15mm, (Size of house is 140mm.), and
hence themesorefinement step is crucial. Also can be seen
in Video 6[1] and Fig.7 II now the static texture on either
geometry compares badly to themicro DynTex.

Third we try an elephant carved in jade. This has a com-
plex reflectance with both specularities and subsurface scat-
tering. Here a single texture gives a dull flat appearance.
VDTM is perceptually better, but a close analysis shows that
some specularities are missing (e.g. on ears in Fig.7 III), and
others have incorrect gradients. The DynTex and unstruc-
tured lumigraph show slightly better results both visuallyand
numerically for difficult (particularly specular) views, with a
max intensity error of 6% compared to 10% for the standard
view dependent texture and 19% for a static texture, Fig.7
III (Video 7[1] ).

Finally, we show an example of a straw wreath, where
obtaining a good geometry is very difficult (Fig.7 IV, Video
8[1] ). Here, a purely image-based method can represent a
dense sample of the rayset, but at a huge storage (gigabytes)

cost. We extract a rough visual hull, and notice that view and
dynamic textures render a view that is somewhat corrupted.
For the view texture two input images are blended on top,
creating a wreath with more straws. Both the DynTex and
Unstructured Lumigraph code view dependency in texture
space (though in different ways). These instead blur detail.

Summarizing the experiments we find that for simple re-
flectance and geometry, any texturing method works well,
while for more complex cases, view-dependent appearance
modeling helps, and for the two most complex cases the
DynTex has a better performance than VDTM. Both of these
can be rendered using texture blending. The unstructured
lumigraph has similar performance to the DynTex, but at a
much higher storage cost, and would require a complicated
plugin to render in with Maya or Blender. The maximum im-
age errors and error variance are summarized in Table1. The
variance indicates smoothness of texture modulation over
viewpoint changes. Perceptually a high value manifests itself
as a jumpy appearance change. An example of viewpoint er-
ror variation can be seen in Fig.8. The jumpy appearance of
the VDTM is due to it working better when close to an image
in the reference set. Finally we show an example of compos-
ing several of the objects and two persons using Blender into
a AR scene, using a cylindrical panorama of a city as back-
drop, Fig.9, Video 1[1] .
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Figure 8. Viewpoint variation of rendering error for the wreath
Figure 9. Several objects and persons composed in Blender

macro meso micro
representation triangulated mesh displ. map [17] BTF [6], PTM [21], tensor. tex. [13, 33]

relief tex [23] VDTM [ 7],light fields [4, 36]
capture str.-from-motion (SFM) [16] multi-view stereo [26] BTF [6]

shape-from-silh. (SFS)[28] shape-from-shading , VDTM [ 7]
photometric stereo[35] dynamic textures [18, 5, 13, 8]
variational methods [11] light fields [4, 36]

Table 2. Example of different possible graphics representations for the three layers and matching computer vision capture techniques.

err (var) temple house eleph. wreath
Static 10.8(1.5) 11.8(1.2) 19.0(1.4) 28.4(2.8)

VDTM 8.3(1.9) 9.8(1.3) 10.1(1.9) 21.4(3.5)
Lumigr 10.8(2.5) 9.8(1.2) 5.9(0.7) 14.3(1.3)
DynTex 7.3(1.0) 9.4(1.0) 6.6(0.7) 13.4(1.2)

Table 1. Numerical texture errors and variance. %-scale.

4. Discussion and Conclusions

We have proposed and demonstrated the use of a 3-tier
model, where on themacro scale level a coarse approxi-
mate 3D geometry is captured from 2D images using SFS
or SFM. This geometry serves as an initial approximation
for and simplifies the image-based refinement using a Phong
photo-consistency functional of a detailed surface geometry.
On themesolevel the detailed surface is represented as a
displacement map. Finally, on themicroscale level, complex
light and small geometric residual is represented as a station-
ary basis (set of textures), which at render time is modulated
to play a movie representing the view dependent variation.

Another way to view the 3 scale tiers is that with respect
to input video/image sequences, the macro level partially sta-
bilizes the video when projected into texture space. This puts
it within the convergence range of the surface refinement al-
gorithm, which in turn improves the stabilization sufficiently
that a quite small set of stationary basis images/textures can
fully capture any perceptible difference between input refer-
ence video and rendered images. Furthermore, as we have
shown that the basis textures are the first order term of a

Taylor expansion (not just any compressed sample textures),
correct intermediate poses can be interpolated.

While 2-tier representations have been used in the past,
we find that the addition of a 3rd level has significant advan-
tages. It breaks the difficult problem of 3D capture from 2D
images into more manageable pieces. It results in more com-
pact representations, and these representations map well to
the capabilities of graphics HW rendering. While we showed
a specific example of algorithms for capture and rendering at
each level we also pointed out (Table2) that many other tech-
niques in the literature could independently be substituted
on each level. Hence we believe that the 3-tier model will
be more persistent and important than any of its component
methods.
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A. Analytical derivation of the texture basis

Given a warp functionx′ = W(x, µ) we study the
residual image variability introduced by the imperfect sta-
bilization achieved by a perturbed warpW(x; µ̂), ∆T =
T (W(x; µ̂), j)−T (W(x; µ)). Similar image variability has
been used for visual tracking. Denotinĝµ = µ + ∆µ we
rewrite∆T as a first order approximation (droppingj):

∆T = T (W(x; µ + ∆µ)) − TW

= T (W(x; µ)) + ∇T ∂W
∂µ

∆µ − TW

≈ ∇T ∂W
∂µ

∆µ

=
[

∂T
∂u

, ∂T
∂v

]

[

∂u
∂µ1

· · · ∂u
∂µk

∂v
∂µ1

· · · ∂v
∂µk

]

∆[µ1 . . . µk]T

(5)

Textures facetsT are warped onto the rendered views us-
ing a a projective homography.
[

u′

v′

]

= Wh(xh,h) =
1

1 + h7u + h8v

[

h1u h3v h5

h2u h4v h6

]

(6)
Specializing Eq.5 with the derivatives ofWh we get:

∆Th(u, v)

= 1

c1

[

∂T

∂u
, ∂T

∂v

]

[

u 0 v 0 1 0 −uc2

c1

− vc2

c1

0 u 0 v 0 1 −uc3

c1

− vc3

c1

]







∆h1

...
∆h8







(7)
wherec1 = 1 + h7u + h8v, c2 = h1u + h3v + h5, and
c3 = h2u + h4v + h6. Finally, arranging all pixels(u, v)
above into column vectors, and identifyingthe homography
parameters[∆h1 . . . ∆h8] = [y1 . . . y8] as our texture modu-
lation coefficientsy we obtain

[b1 . . .b8][y1, . . . , y8]
T = Bhyh (8)

Similarly, by analytically expressing the pixel parallax
warp an equivalent 2D basisBp can be derived linearly re-
lating intensity change as a function of view angle.


