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Abstract

Indirectly estimating light sources from scene images
and modeling the light distribution is an important, but dif-
ficult problem in computer vision. A practical solution is
of value both as input to other computer vision algorithms
and in graphics rendering. For instance, photometric stereo
and shape from shading requires known light. With esti-
mated light such techniques could be applied in everyday
environments, outside of controlled lab conditions. Light
estimated from images is also helpful in augmented reality
in order to consistently relight an artificially introduced ob-
ject. While algorithms that recover light as individual point
light sources work for simple illumination environments, it
has been shown that a basis representation achieves better
results for complex illumination. In this paper we propose
a light model that uses Daubechies wavelets and a method
for recovering light from cast shadows and specular high-
lights in images. We assume that the geometry is known for
part of the scene. In everyday images, one can often ob-
tain a CAD model of man-made objects (e.g. a car), but the
rest of the scene is unknown. Experimentally, we tested our
method for difficult cases of both uniform and textured ob-
jects and under complex geometry and light conditions. We
evaluate the stability of estimation and quality of scene re-
lighting using our smooth wavelet representation compared
to a non-smooth Haar basis and two other popular light
representations (a discrete set of infinite light sources and
a global spherical harmonics basis). We show good results
using the proposed Daubechies basis on both synthetic and
real datasets.

1. Introduction
Light representation and recovery is an important prob-

lem in computer vision. Vision techniques such as photo-
metric stereo or shape from shading rely on light informa-
tion. In many situations simplified assumptions about light
or object reflectance are made in order to solve the shape
problem. These assumptions limit the applicability of the
reconstruction techniques to carefully controlled laboratory

setups. Therefore light reconstruction (referred as inverse
light) has significant importance among vision problems.

In this paper we consider the problem of estimating light
from images where some 3D shape is known, (i.e. the shape
of one object) but not necessarily the whole scene. One ad-
vantage of capturing the lighting on an existing object as
opposed to introducing a light probe is that we not only re-
cover the scene’s lighting but also the reflectance parame-
ters of the object. This allows us to render the scene under
the same or different lighting conditions as well as intro-
duce synthetic objects into an augmented reality applica-
tion. Another advantage of using existing shapes in a scene
instead of a light probe is that the recovered light minimizes
the error in the current scene, allowing a potentially higher
quality rendering for moderate view changes. Furthermore,
reflectance probes are not always practical to use, and they
cannot be inserted afterwords into existing imaging. By
contrast, many images contain some man-made object for
which either a CAD model can be obtained, or an identi-
cal copy of the object scanned post-hoc to obtain the re-
quired shape information, hence a technique that recovers
light from known shape has more general applicability.

Inverse light techniques can be grouped in two major cat-
egories. Some techniques recover a discrete collection of
point light sources[16, 2, 9] or a discrete sample of the illu-
mination hemisphere [14, 9]. Others recover light as projec-
tion on a global basis defined on the surface of the illumina-
tion hemisphere (usually spherical harmonics basis [12, 1]).
The methods from the first category are designed for re-
covering sharp light effects while the ones from the second
category work best only for diffuse (Lambertian) scenes.

To model both diffuse and sharp light effects people
have proposed basis that provide local support in both spa-
tial domain (here image dimension) and frequency domain.
Wavelets are an example of such a basis. In particular,
for sharp effects (specular highlights, sharp shadows), Ng
et al. [8] showed that representing the illumination hemi-
sphere with coefficients of a Haar wavelet basis gives a
better approximation than spherical harmonics coefficients.
Recently Okabe et al. [10] used a Haar wavelet basis for
light representation. Hara et al. [5] used another exam-
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ple of basis with local support (Mises-Fisher distributions)
for representing illumination in specular scenes. Our work
proposes a new light representation based on Daubechies
wavelets and a general method for estimating the light ba-
sis from images. We investigate the advantages of using a
smooth basis compared to the non-smooth Haar basis and
show the superiority of the smooth basis for both synthetic
and real datasets.

While there are several works on inverse light recon-
struction methods, we do not know of any study compar-
ing the stability and quality of the different representations.
However, it is known that inverse light is in general an ill-
conditioned problem. For example, Marschner and Green-
berg [7] empirically observed that under diffuse reflectance
inverse light tends to be ill-conditioned. For a global basis,
Ramamoorthi and Hanrahan theoretically proved that only
the low frequency light components can be reconstructed
from diffuse scenes [12]. They later showed that for a spec-
ular scene, estimating the spherical harmonics light coef-
ficients is well-conditioned only up to an order related to
the surface roughness [13]. Okabe et al. [10] showed that
the inverse problem becomes well conditioned when using
shadows and a spherical harmonics light representation un-
der diffuse light conditions. However no study has been
made for a basis with local support, like the wavelet, for
both high and low frequency lights as well as different per-
turbations in the input data.

In this paper we study the stability, efficiency and qual-
ity of the reconstruction of a smooth Daubechies and non-
smooth Haar wavelet basis and compare them with two
other popular choices for the basis (discrete set of infinite
light sources and spherical harmonics basis). We provide
upper bounds on error propagation using classical Wilkin-
son condition number numerical analysis[4], and experi-
mentally we give real world practical results for simple and
complex scenes, diffuse and specular objects, different il-
lumination conditions, different levels of noise in real and
synthetic images.

Our inverse light method uses shadows and specular
highlights on textured objects. Sato et al. [14] previously
used shadows on diffuse objects for recovering light as a
discrete illumination hemisphere. We extend the method to
incorporate specular highlights. Other works [15, 6] incor-
porate multiple cues in the light estimation but without giv-
ing insights on which cue most helps the light reconstruc-
tion . Here we study the influence of shadows vs. specular
highlights on the quality and stability of the reconstruction.

The remainder of this paper is organized as follows. In
the next section we define the problem from a theoretical
viewpoint. Section 3 presents the wavelet based light model
and Section 4 its use in the formulation of the rendering
(reflectance) equation. In Section 5, we present the light
recovery method, first for one view, uniform albedo and
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Figure 1. The nine faces of a cubemap representing the illumina-
tion hemisphere

then its extension to the multiview, varying albedo case, fol-
lowed by the system description and implementation details
in Section 6 . Finally, Section 7 presents experimental re-
sults with both synthetic and real image as well as an ex-
tended comparison between the wavelet light models, the
spherical harmonics model and the discretized hemisphere
model.

2. Problem definition

The light recovery (or the inverse light) problem can be
stated as follows: Given a set of calibrated images �������
	�
�������

of an object with known geometry and reflectance� 	�����������	 �����������
, recover the light that illuminates

the scene.
The inverse light problem formulation relies on a cho-

sen light model as well as an image formation (rendering)
model. The light is represented as a linear combination of
basis functions (here we propose the use of a Daubechies
wavelet basis but the formulation is valid for any basis).
The image formation model involves choosing a camera
projection model that defines how the object geometry is
mapped on the image and an object reflectance model that
defines how the object appearance is formed given the light
conditions and camera position. We chose to use a projec-
tive camera model and compare two parametric reflectance
models, Lambertian and specular Phong.

It is known that given only one image it is not possible to
disambiguate light color from albedo. We first present the
inverse light solution for a single view of an object with uni-
form known albedo. Next we generalize the method for ob-
jects with general unknown textured albedo by using multi-
ple images taken by a camera moving around the scene.

3. Wavelet-based light model

We represent the light using a wavelet basis defined over
an illumination hemisphere that is represented as a cube
map. We chose to use a cube map for its simplicity, and
because it is efficiently used in computer graphics for repre-
senting environment maps. Each pixel on the cube map rep-
resents the direction of a light at infinity. The hemisphere is
divided up into nine square faces, a large one on the top and
eight small ones on the sides (See Figure 1). We choose to
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Figure 2. The vectors used in lighting calculations.

ignore the lower part of the cube map assuming that the im-
age shading is mostly caused by light coming from above
the object. The light basis is defined over each of these
faces. While the model is valid for any type of basis, our
proposed model uses a wavelet model (Daubechies). The
intensity of a light is found by summing together all basis
which influence that specific cube map pixel:

 �!	 "#$&%('*) $,+-$ � (1)

where
 � is the intensity of light � , +�$ � is the value of the . ’th

basis function at location � , and ) $ is the corresponding
weight for the basis / $ . Rewriting in vector form we get:0 	2143 (2)

4. Reflectance model
We next show how the light model is incorporated in

the image formation equation. Throughout the paper we
assume that the cameras are calibrated and we denote the
image projection of a 3D point �5� by �768����9:	;��� . The ap-
pearance of a point on a surface depends on the material
properties of that surface. The Bidirectional Reflectance
Distribution Function (BRDF) defines how light interacts
with a surface. The simplest reflectance model valid for dif-
fuse scenes is the Lambertian model, which has a constant
BRDF .=< . The intensity of a pixel corresponding to the pro-
jection of the object point � � on an object is given by

�768���>9
	?. < ��@A6B���>9DC# �  � � � 6B����9-EGF�H���IJ��KML � (3)

where . < � is the albedo for the point �5� , and @N68���>9 denotes
visibility of the object point with respect to the view direc-
tion. The discrete lights on the cube map are indexed by � .
A binary value

� ��6B� � 9 represents the shadow and is equal
to one when the � ’th light is visible from the point � � , and
zero otherwise. The intensity, direction and solid angle of
the � ’th discrete light is given by

 � , F H and LO� respectively.
The normal of the surface at point �5� is given by IJ� (see
Figure 2). E � � � K denotes the dot product.

Figure 3. Top: example of light basis, Bottom: scene illuminated
with the light basis; From left to right: Haar diagonal basis at
the lowest level; corresponding Daubechies; first order spherical
harmonic.

To represent general reflectance we chose a dichromatic
model that has a Lambertian term for the diffuse part and a
specular term given by the Phong model. While not phys-
ically based, it works very well in practice and it is one of
the most popular reflectance models used for rendering in
the computer graphics community. The intensity of a pixel
corresponding to �5� is:

�768���>9
	2@A6B���>9 C# �  � � � 6B���>9�6G. < �PEGF�HQ��IJ��K�RS.PT,E8F�HU��VW��K�XY9ML �
(4)

where .=T is the specular value, VN� is the reflection of the
viewing direction with respect to the normal, and Z is the
shininess of the material. If the object is made from more
than one material, per-point specular parameters have to be
specified. A common variant of the Phong model is the
Blinn-Phong model. The Blinn-Phong model replaces theE8F H ��V � K term with E8[\����I � K , where [\�4	 ]*^B_a`b ] ^ _a` b is the
bisector between light and view directions. The geometry
behind the Lambertian and Blinn-Phong models can be seen
in Figure 2. Incorporating the wavelet based light model
from Equation 1 into Equation 4 and performing a little re-
arranging we get

��6B���c9
	?@A6B����9Yd "$&%e' ) $ d C� %('� � 68����9 + � $ 6G. < E8IJ����F � KfRg.=TcEG[ � ��IJ��K X 9ML � (5)

Equation 5 can be interpreted as a sum of “basis images”,
and can be efficiently implemented on graphics hardware.
Examples of these basis images can be seen in Figure 3. The
top row displays the basis while the second row an example
of a scene illuminated with the basis.
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5. Inverse light
5.1. Inverse light from a single image

When given just a single image of a scene we are unable
to distinguish between lighting and albedo, only the product
of the two can be found. The same is true for a specular
object. Due to this limitation, with one image we are only
able to reconstruct lighting for objects with uniform albedo.
Without loss of generality we can assume that the object is
white, with .ih< 	 �

. We also assume known reflectance,
setting .ihT 	 �

and Z to a fixed value. Equation 5 can be
written in a simple linear form:j 	lkmTn3 (6)

where the components of k T are:

o � $ 	p@N68� � 9 C# � %e' � ��68� � 9 + � $ 6�.P<=EGI � ��F��MKiRq. T EG[\����I � K�XY9MLO�
Non-negativity constraints are needed on the

 � variables to
prevent negative lighting

r � "#$&%e' ) $P+-$ �tsvu
or compactly 143wsxu (7)

5.2. Inverse light from multiple images

We now generalize the light and reflectance estimation
method for objects with varying albedo. We make the as-
sumption that the lighting doesn’t change and that the ob-
ject remains stationary with respect to the lighting (only the
camera moves). In this case, when viewing a fixed point on
an object from different camera angles, the difference in the
image intensity of that point is due to the specular compo-
nent in Equation 5.

�n�zy{�=|� 	 "#$-%e'*) $ 6G}�� $ y{}-|� $ 9 (8)

} � $ 	?@~68� � 9 C# � %e' � ��6B� � 9 +-$ �M. T EG[\����I � KUX�LO� (9)

} |� $ 	?@ | 68� � 9�C# � %e' � ��68� � 9 +-$ �M. T E8[ |� ��I � K X L(� (10)

When only one point is specular, one of the terms drop (the
color difference represents the specular part of the specular
pixel). When more than one image is available a similar

Figure 4. Example of albedo estimation. (left) reconstructed
albedo (right) one of the original images

constraint is formed for every pair. The equation has the
same form as in the single view case:�j 	?k���3 (11)

and again we have to impose non-negativity constraints1�3�svu .
After an initial light is calculated from corresponding

specular pixels in pairs of images, per-point albedo is recov-
ered from the diffuse pixels. We then refine the light using
the full equations 6,11 with the estimated albedo. Figure 4
shows on the left the reconstructed albedo for the object on
the right side.

5.3. Numerical light estimation and regularization

Inverse light is an inherently ill-conditioned problem, es-
pecially when using real images and noisy data. To allevi-
ate this problem we used a smoothness regularization on the
gradient of the light map:� Tz	2��T # � ���  � �-� (12)

where � T is a positive constant that controls the magnitude
of the smoothness penalty. By rewriting Equation 12 as a
quadratic form and combining it with light basis represen-
tation (Equation 2), we get the following :� T�	?�7T 08�e� TM� 0 	?��Tn3 � 1 �O� TM�B1�3�	?�7Tn3 �O� T�3 (13)

The light estimation with known reflectance is there-
fore a linear least squares problem with linear inequality
constraints for both the one image with uniform albedo
and the multi-image with varying albedo cases (Equations
6,11,13,7). It can be re-formulated as a quadratic program-
ming problem.�W������ 3 � 68k � kxRx��T � T&9Q3�y�� j � k:3A� (14)

subject to

1�3wsvu (15)

where k is the light transport matrix, 3 is the vector of
basis function coefficients and

j
is a vector of the observed

pixel values.
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As shown by Ramamoorthi and Hanrahan [11] in the
context of efficient rendering, a good approximation of
an environmental map can be achieved by zeroing small
wavelet coefficients. Here, in the case of the inverse light
problem, the areas of the cubemap that need more detail are
initially unknown. We start with a coarse basis that is then
locally refined based on projected image residual.

6. System and implementation details

Algorithm 1. Lighting Reconstruction
Require: Z calibrated input images � ' ����� � X�

points on the object � ' ����� �!�
specular params .YhT ��Z
initial basis representation

1: solve for lighting coefficients 3 $ (Equation 6 or 11 for
single and multi-view cases)

2: project image residual onto remaining unused basis
functions, add the top 75% to the basis representation

3: solve for lighting coefficients 3 $ again (Equa-
tion 6 or 11 for single and multi-view cases)

4: if multi-view reconstruction then
5: estimate albedo
6: solve for lighting coefficient 3 $ one last time, using

the reconstructed albedo and Equation 6
7: end if

The inverse light algorithm (outlined above) starts with
an initial coarse basis representation. In the case of the
wavelet basis functions, only the scaling functions are used
plus the first level of wavelets on the top cubemap face.
We first solve for the lighting coefficients 3 $ using Equa-
tion 6 or Equation 11 for the single and multiple view cases
respectively. Next we calculate the residual between the
original images and rendered images that use the current
light estimate. For refining the wavelet basis, we project
the residual onto the unused basis’ of the light transport
matrix k and add new basis vectors corresponding to the
top ���P� of residuals. In the case of the Spherical Har-
monic and Discrete basis’, no refinement is needed. We
then reestimate the lighting coefficients using the new ba-
sis (notice that while the wavelets are orthonormal in the
lightmap space, orthonormality is not preserved in image
space). In the mutiview case we also estimate the albedo by
solving Equation 4. This albedo is then used to estimate the
lighting coefficients one last time.

7. Experiments
We experimentally compared the proposed smooth

Daubechies wavelet light representation with the Haar [10]
and spherical harmonics [10, 13] based light maps as well
as a simple uniform discrete map defined over the cube

map [14]. We performed two types of experiments. First
we evaluate the quality of the light reconstruction in real and
synthetic images. Next we evaluate the stability of the in-
verse light method for the different representations in noisy
conditions (for both scene and image noise).

7.1. Quality of the reconstruction light basis

To compare the quality of the reconstructed light map
we generated synthetic images lit with two environmental
maps courtesy of P. Debevec [3]. The results are displayed
in Figure 5 (left) for the St. Peter’s Basilica lightmap and
in Figure 5 (right) for Ufizzi lightmap. We chose these two
light map as examples of an environment with few sharp
lights (St. Peter) and an environment with a large area light
(Ufizzi). For all light representations we first tested the
single view inverse light method (Section 5.1) on a white
teapot model (the specular object is shown in Figure 6, first
row). Next we tested the multiview inverse light method
using a colored teapot (Figure 6, second row).

The images in Figure 5 show that the spherical harmon-
ics representation tends to blur the whole light map but all
other 3 basis show similar results. For St. Peter’s light map
that has sharp lights Haar works better than the Daubechies
while for the Ufizzi lightmap that has one big area light the
smooth basis gives a more accurate reconstruction. This
is expected since the smooth basis offers better area sup-
port than the non-smooth one. In both cases the discrete
hemisphere also shows good performance. Among differ-
ent objects tested, the white specular one (row 2) gives bet-
ter results. The multiview case (row 3) is more numerically
difficult as the estimated non-uniform albedo creates some
artifacts in the light map.

Next we tested the quality of the reconstructed images.
It is known that in the case of lambertian scenes only the
low frequency light components are recovered but they are
sufficient for reproducing the input images [12]. The result
was extended to specular scenes [13] showing that only the
spherical harmonics light coefficients up to an order (related
to the surface roughness) are well-conditioned. Here in ad-
dition to spherical harmonics we also tested the wavelet and
discrete hemisphere lights. We chose a view that was not
included in the training set used for the light estimation and
rendered the image with the recovered light (and albedo for
the mutiview case). We performed experiments for the two
inverse light methods (single and multi-view case) for both
synthetic and real views. For the synthetic case we used the
same teapot object with the two environmental maps like in
the previous experiment. For the real scene, we used images
of two identical glossy ceramic ducks. One was painted
white for the one view case and the other left colored for
the multiview case. We obtained the geometric model of
the duck using a laser scanner and we registered it with
the image using corresponding points (manually selected).
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Haar Daubechies Discrete Spherical Haar Daubechies Discrete Spherical
hemisphere harmonics hemisphere harmonics

St. Peter’s Basilica lightmap Ufizzi galleria lightmap
Figure 5. Lightmaps reconstructed by the proposed inverse light method using 4 example basis: Haar wavelet, Daubechies wavelet, simple
discrete cubemap and spherical harmonics. The first row presents the original lightmap and a scaled version that shows the important lights.
The second presents the results on the one view specular object with uniform texture and the last row presents the result of the multi-view
textured scene. All experiments are performed with the teapot object from Figure 6.

The images were calibrated with respect to the camera us-
ing the dotted calibration pattern shown in Figure 6 (3rd row
left). We notice that the inverse light is not sensitive to small
changes in surface reflectance parameters and therefore we
used a heuristic approximation of the reflectance parameters
for the real images. A selection of the reconstructed images
are shown in Figure 6 while the numerical errors are shown
in Table 1. All image errors are normalized on   ux¡t�P���c¢ .
Figure 6, first row displays the error images corresponding
to the second row in the same figure as well as the second
row in Table 1.

From this experiment we noticed that the Daubechies
basis gives the best over all performance. The spheri-
cal harmonics give very poor perceptual quality (looking
at the images in Figure 6) but the measured error is sur-
prisingly better than the Haar or discrete hemisphere case
(see Table 1 and first row in Figure 6). This is due to
the fact that the spherical harmonics perform better for the
diffuse/non-shadowed parts of the object but it tends to blur
any specular highlights or shadows that have big influence
on the perceptual appearance. The Haar and discrete hemi-
sphere lightmaps give similar results with good perceptual
quality on the reconstructed images but poor image error.
The Daubechies basis gives the compromise between visual
quality and numerical accuracy.

Despite having bigger numerical errors 1 the real scene

1The larger numerical errors for the real images are likely due to diffi-
culty in calibration. It is important for the light estimation to get the rays
exactly right from light via reflection to camera. This is a much more dif-
ficult problem than camera calibration alone.

Lightmap Object Image Error
Haar DB4 SH DH

St.Peter’s
Teapot Diffuse 8.2 2.6 6.4 8.3
Teapot Specular 6.9 2.3 5.6 7.0
Teapot Multi 3.7 2.0 3.2 3.7

Ufizzi
Teapot Diffuse 9.0 1.6 8.8 9.0
Teapot Specular 9.2 1.8 9.1 9.0
Teapot Multi 5.6 2.1 3.3 5.7

White Duck Indoor 21.3 21.3 21.4 21.3
Yellow Duck Indoor 25.6 25.6 25.6 25.6

Table 1. Results for quality of light recosntruction for different
basis. All image errors are normalized to £ ¤D¥e¦�§�§-¨ . The corre-
sponding recosntructed images are shown in Figure 6

reconstruction was visually quite close to the original with
the Daubechies basis giving the best results. This shows that
when using real (and thus non-perfect) images the smooth
wavelet representation is more robust and spreads the error
more evenly on the objects giving a better appearance in the
reconstructed view. If one looks carefully at the light map
and reconstructed scene from the shiny white duck test (3th
row Figure 6), they can notice the three fluorescent lights
above the duck and some anomalous blue lights on the hori-
zon. These lights are there to make up for the reflection of
the blue calibration pattern, which gives the bottom of the
duck a blue appearance. In the muti-view case (yellow duck
- last row Figure 6) the results are quite similar.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



image error

synthetic single view

synthetic multi view

real one view

real multi view

Original Original Cropped Haar Daubechies Discrete hemisphere Spherical harmonics
Figure 6. Results with the 4 representations (Haar, Daubechies, discrete hemisphere and spherical harmonics) for synthetic and real
images. We tested on a novel view, not included in the light reconstruction. The 2nd and 3rd rows show the single view reconstruction for
a white and colored specular teapot and the last two rows are real experiments for a white and colored shinny duck. The corresponding
lightmaps for the synthetic case are shown in Figure 5 (left) 3rd, 4th rows. The numerical errors are presented in Table 1. An illustration
of the image errors for the single view case is shown in the first row. White represents low errors and black big errors.

7.2. Stability of the inverse light method for differ-
ent light basis

In a second set of experiments we analyzed the stabil-
ity of the inverse light reconstruction in the presence of
noise. We again compared all 4 basis representations (Haar-
H, Daubechies-DB4, discrete hemisphere-DH and spherical
harmonics-SH). All tests are performed on the single view
method with the white teapot and the St. Peter’s Basil-
ica environmental map. We introduced three types of er-
rors: noise in the object geometry (by perturbing the nor-
mals), noise in camera calibration and image noise. Finally
we compared the contribution of shadow cues vs. specu-
lar highlight cues in the reconstruction method. Numerical
results are presented in Table 2.

Given a fixed setup, the image intensities are coupled to
the light sources by the light transport matrix. An error in
calibration or geometry manifests itself as a perturbation of
the matrix ©k T 	ªk T R � . Likewise an image error/noise
can be modeled as ©�\	«�4Rl¬­� . Now classical Wilkinson
perturbation analysis [4] gives a bound on the calculated
light as � ¬®3 �� 3 �°¯l± 6Gk�T-9z² � � �� k T � R � ¬®� �� � �{³
The above formula assumes that the angle between the
residual and the solution is small. The condition number± thus gives an upper bound on how difficult it is to re-
cover light. Typical scenes can give lower errors as shown
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Test Condition numb. ± ( ´ � uPµ )
Haar DB4 SH DH

Geometry Error 1.2 1.1 2.5 1.2
Calibration error 1.2 0.82 2.5 1.3
Image Noise 1.2 0.83 2.5 1.3
No Shadow cues 3.4 1.1 9.6 6.8
No Specular cues 6.5 7.4 3.1 10.9
No Spec. & No Shadows 11893 5541 13.5 18920

Table 2. Condition number for stability experiments.

in Table 2. The condition number also indicates relative
“hardness” of the reconstruction (higher ± = harder).

Among the different bases, the spherical harmonics are
the most stable. This can be explained by the fact that
they uses global functions that smooth any high frequency
perturbations. Additionally we noticed that in practice the
Daubechies and Haar are influenced more by the errors in
the camera position than the errors in object geometry or
image noise. This is due to the fact that camera calibration
errors result in large consistent image misalignments com-
pared to the noise due to perturbed normals that is more
evenly distributed on the object (we noticed this difficulty
in the real image experiments from Figure 6). Looking at
the influence of shadows vs. specular reflections we notice
that the specular reflectance make the inverse light more
stable than just the shadows (except for the spherical har-
monic basis). As expected and in accordance to previous
results [12, 7] when no shadows and no specular reflections
are present the light estimation from only shading becomes
ill-conditioned. Only the spherical harmonics are able to
reconstruct from diffuse light effects.

It should be noted that the number of basis functions
used in our experiments differed between each basis. The
discrete basis used the most (the same as the number of
lights), Haar and Daubechies used 75% of the available ba-
sis functions, while Spherical Harmonics only used the top
9. One would expect that the discrete basis to outperform
the others, since there are more degrees of freedom avail-
able. While this basis does appear to outperform the others
in Figure 5, it gives higher reconstructed image errors in Ta-
ble 1. Another disadvantage of the discrete basis is that it
doesn’t scale too well. When using a 16x16 cubemap for
example, there are 768 variables to solve for. Even if run-
ning time wasn’t a problem in this case, the conditioning is
so bad that the constrained least square solver fails.

8. Discussion

We have presented a new light representation based on a
Daubechies wavelet basis and an inverse light method that
uses the proposed representation to recover light from cal-
ibrated images of a known object using shadows and spec-

ular highlights. We compared the new representation with
three other light bases: spherical harmonics, Haar wavelet
and a discrete hemisphere. We shown that the Daubechies
basis give the most accurate reconstruction for several types
of real and synthetic scenes. We also compared the sta-
bility on the four representations in the presence of errors
(geometric, camera and image noise). While the spheri-
cal harmonics gave the most stable light reconstruction, the
Daubechies proved to be comparably stable.
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