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Abstract. Fitting parameterized 3D shape and general reflectance mod-
els to 2D image data is challenging due to the high dimensionality of
the problem. The proposed method combines the capabilities of classical
and photometric stereo, allowing for accurate reconstruction of both tex-
tured and non-textured surfaces. In particular, we present a variational
method implemented as a PDE-driven surface evolution interleaved with
reflectance estimation. The surface is represented on an adaptive mesh
allowing topological change. To provide the input data, we have designed
a capture setup that simultaneously acquires both viewpoint and light
variation while minimizing self-shadowing. Our capture method is feasi-
ble for real-world application as it requires a moderate amount of input
data and processing time. In experiments, models of people and everyday
objects were captured from a few dozen images taken with a consumer
digital camera. The capture process recovers a photo-consistent model
of spatially varying Lambertian and specular reflectance and a highly
accurate geometry.
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1 Introduction

The automatic computation of 3D geometric and appearance models from im-
ages is one of the most challenging and fundamental problems in computer vi-
sion. While a more traditional point-based method provides accurate results
for camera geometry, a surface representation is required for modeling and vi-
sualization applications. Most surface-based approaches reconstruct the model
based on stereo correlation data [1–3]. That works well for textured Lambertian
surfaces but fails in the presence of specular highlights or uniform texture. Addi-
tionally, stereo-based techniques reconstruct only the shape and not the surface
reflectance properties even though some approaches can handle specular objects
using robust scores [4, 5].

We are proposing a surface reconstruction method that uses texture and
shading information to successfully reconstruct both textured and non-textured
objects with general reflectance properties. The similarity cost functional uses a
parametric reflectance model that is estimated together with the shape. There
exist other approaches that combine stereo for textured regions with shape from
shading cues for texture-less regions [6, 7], but, in those works, the two scores are
separate terms in the cost function and the combination is achieved either using
weights [6] or by manually assigning regions [7]. Additionally, they only exploit
diffuse objects whereas our method can also handle specular objects. The uniform
albedo assumption is necessary only when there is no light variation on the
object. Instead, in our work, we assume that the object is moving relative to the
light source, which produces illumination variation on the object; therefore, we
allow for a true spatially varying albedo like in the photometric stereo techniques.
Zhang et al. [8] and Weber et al. [9] also use light variation for reconstructing
spatially varying albedo. But, in contrast to our approach, they do not consider
the challenge of dealing with specular surfaces.

More and more researchers have developed methods that recover specular
surfaces. Most of the approaches either filter or remove specularities and use
only diffuse observations in the reconstruction [5]. Another option is to design
similarity scores that account for specular highlights either using constraints
on the light and camera positioning [10] (Helmholtz reciprocity) or on surface
material [11] (uniform material under constant light). A more general approach
is to explicitly model surface reflectance either with a parametric model [12] or a
non-parametric model (BRDF map). Obtaining a BRDF map requires carefully
calibrated lights and many samples [13]. A parametric model does not necessarily
generalize constraints on the observations at a point but it requires less data and
can be more easily fitted compared to a non-parametric model. An interesting
but rather unpractical approach is presented by Treuille et al. [14] where a known
object having similar material with the unknown scene is used to lookup surface
orientations with similar observed colors. For our system we made the choice of
using a parametric model for reflectance as we are interested in reconstructing
both shape and reflectance parameters. We allow varying materials and provide
an efficient way of clustering points with similar properties.

Important aspects of shape reconstruction are the surface representation and
the optimization method. Different representations have been proposed in the lit-
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erature. They can be divided in two main classes - image-based (depth/disparity)
and object-based (voxel grid, mesh, level set). Image-based representations are
suitable for single view or binocular stereo techniques but they are less appeal-
ing for multi-view approaches as they become biased by the choice of reference
camera. Object-based representations are more suitable for multi-view recon-
struction. Mesh and level set techniques have the advantage over voxel repre-
sentations that they give readily computable normals (essential in recovering
shading). Additionally, the regularization terms can be easily integrated into a
mesh or level set. An implicit level set representation leads to an elegant algo-
rithm [2], but despite various efficient numerical solutions proposed for the level
set methods [15], they are still slow compared to mesh based approaches that can
take advantage of graphics hardware acceleration. We therefore decided to imple-
ment our method using an adaptive deformable mesh that allows for topological
changes. The mesh is evolved in time based on a variational algorithm. Fua and
Leclerc [6] and Duan et al. [16] have presented related variational mesh-based
approaches but not as general as they only reconstruct diffuse objects.

Due to the high dimensionality, reconstruction can be difficult, slow and
require lots of image data. To ameliorate these problems, we propose a multi-
resolution algorithm that alternates between shape and reflectance estimation.
We also propose a practical capture setup for acquiring images having enough
light variation to allow robust fitting of a parametric reflectance model as well
as an easy way to automatically obtain calibration for camera and light position.
Although in theory a general reflectance model can be estimated at every step,
we practically noticed that similar results are obtained more efficiently if the
shape reconstruction is performed on filtered diffuse pixels assuming Lambertian
reflectance. A Phong parametric model is then calculated using the final shape.
Experiments show that the proposed method is able to reconstruct accurate and
photo-realistic models that can be rendered in novel illumination conditions. To
summarize, the main contributions of the paper are:

– We designed a photo-consistency functional suitable for surfaces with non-
uniform general reflectance based on a parametric reflectance model;

– We present a variational method implemented as a PDE-driven mesh evolu-
tion interleaved with reflectance estimation. Our particular mesh implemen-
tation is robust to self-intersections while allowing topological changes;

– We designed a practical setup that provides the necessary light variation,
camera and light calibration and requires only commonly available hardware:
a light source, a camera, and a glossy white sphere.

2 Shape Refinement

We present the shape refinement problem beginning with a general continuous
formulation that is then discretized on the mesh triangles. Next, we describe
a numeric solution to the resultant optimization problem for an object with
Lambertian or specular reflectance.
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2.1 Problem Definition

The proposed capture setup consists of a single camera viewing an object placed
on a turntable illuminated by a desk lamp. We take two sets of images of a full
rotation, each with a different light position. Considering the proposed capture
setup, the shape recovery problem takes the following as input:

– a set of n images I = {Ii|i = 1 · · ·n};
– the associated projection matrices Pi;
– the illumination information Li = (li, li), assuming a single distant light

source with direction li and color li the light color;
– an initial shape S0;

and computes a refined shape, S, and the corresponding reflectance parameters
that best agree with the input images. A practical method for automatically
calibrating the camera and the light is presented in Section 4.

Given the projection matrix Pi = K[Ri, ti], the image coordinates pi =
(ui, vi, 1)T for a 3D point x are expressed as pi = Π(Pix). Π represents the
non-linear operator that transforms homogeneous coordinates into Cartesian
ones (division with the homogeneous component).

We assume that surface reflectance is a parametric function implied by the
surface (and surface normals) and imaging conditions. Therefore, the shape re-
construction problem is to recover a shape and its implied reflectance parameters
that best agree with the input images. The shape and reflectance are estimated
in an alternate fashion (see Section 4).

2.2 Shape Functional

We use a variational formulation for the shape recovery problem similar to the
one from Faugeras and Keriven [2].

E(S) =

∫
S

g(x,n)dS =

∫
v

∫
u

g(x,n)‖Su × Sv‖dudv (1)

where x = (x(u, v), y(u, v), z(u, v))T is a point on the surface and n = Su×Sv

‖Su×Sv‖

is the surface normal at point x.
The photo-consistency function g encodes the similarity between a point on

the surface, and the images in which it is observed. We investigate a similarity
function of the form:

g(x,n) =
∑

i

h(x,n, Pi, Li) (Ii(Π(Pix)) − R(x,n, Li))
2 (2)

where R is a rendering equation returning the color of point x under light condi-
tions Li. The function h is a weighting function that accounts for visibility and
discrete sampling effects.

Rendering function The function R encodes the reflectance model at a point x

on the surface. In fact, R is a function of the entire surface as it should account for
inter-reflections and shadowing of a point x. In our capture setup we minimized
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Fig. 1. An illustration of the sample points and the angles used in the shading equation.

self shadowing and inter-reflections and therefore ignored these subtleties. We
model R with a parametric BRDF which is fitted to Eq. 2 (assuming known
shape and imaging conditions).

For modeling the parametric BRDF we chose the Lambertian model to rep-
resent diffuse reflectance and the Blinn-Phong model [17] for the specular re-
flectance. The two models are briefly summarized below3. Refer to Fig. 1 for a
explanation of our notations.

Lambertian model assumes constant BRDF and effectively models matte ob-
jects, such as clay, where the observed shading is a result of the foreshortening
contribution of the light source. Integrating the Lambertian BRDF model into
the reflectance equation we get the following expression for the observed color
at a particular point x with normal n:

Rlamb(x,n, Li) = (〈n, li〉li + ai)kd,x (3)

where kd,x represents the Lambertian color (albedo). For better modeling light
effects we incorporate an ambient term to capture the contribution of indirect
light in each image ai.

Specular reflectance is typically modeled as an additive component to the Lam-
bertian model. We chose to represent the specular BRDF using the Blinn-Phong
model [17]. Letting oi be the outgoing direction from the point x to the center of
the camera i (i.e., the view direction), and hi the bisector of the angle between
the view and the light directions hi = oi+li

‖oi+li‖
the shading model for a specular

pixel is (refer to Fig. 1 for an illustration):

Rspec(x,n, Li) = (〈n, li〉li + ai)kd,x + 〈n,hi,x〉
mliks (4)

3 The proposed method works with color images but for simplicity reasons we present
the theory for one color channel. In practice all colors should be viewed as 3D vectors
in RGB space.
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where ks is the specular color and m is the specular exponent. The specular
parameters are not indexed per point due to the fact that several observations
are needed for reliably estimating the BRDF. Instead (as discussed in Section 3)
we compute the specular parameters for groups of points having similar diffuse
component, thus likely to have the same material.

Weight function The similarity measure with respect to an image should be
computed only for the visible points. This can be easily represented by setting
the weight function, h, to the binary visibility function V (x, S, Pi).

Another issue to consider is image sampling. When the estimated surface is
far from the actual surface widely separated views sample from different regions
of the underlying surface, implying that the gradient may not provide meaningful
information. In this case, it is helpful to restrict the number of views used in g.
For choosing a subset of the observations, we select the ncameras closest cameras
to the median visible camera [5], where the middle camera is currently based
solely on the azimuthal angle. This modification fits into our framework by
changing the visibility function into V ′, which returns 0 for all cameras that are
not in the considered range.

Another sampling issue occurs even when the true surface is known. A patch
on the true surface occupies a different number of pixels when projected into
each of the images. In the views where the patch occupies few pixels, the sample
points on the patch will project to overlapping pixels. This causes a blurred
texture to appear on the patch. To account for this, each sample is weighted by
〈n,oi〉. We note that this second sampling issue is a consequence of our error
function being computed on the surface of the object. This problem can be
avoided if the error is formulated in image space.

Cumulating visibility and sampling into the function h we get:

h(x,n, Pi, L) = 〈n,oi〉V
′(x, S, Pi) (5)

2.3 Surface Evolution

Optimizing the photo-consistency function in Eq. 1 with respect to the surface
S results in a surface evolution problem. The gradient flow PDE is derived from
the Euler-Lagrange equation of Eq. 1. The PDE contains higher order terms [2]
resulting from the general form of g being a function of n. Instead of using
the full PDE, complete with the higher order terms, we use a simplified PDE
containing only the first order terms. This flow is accurate for a g that is only
a function of surface position x. Similar PDE’s were used by [18, 16] but with
different g functions.

∂S

∂t
= (2gκ − 〈∇g,n〉)n (6)

where κ is the mean curvature. The flow will move each point along the current
estimate for the normal. The first component of the motion in Eq. 6, 2gκ, is
essentially a smoothing term, reducing the mean curvature of the object, whereas
the second component ensures the evolution decreases the error function on the
surface.
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Fig. 2. An example of the mesh evolving to a refined shape (videos: face.avi & dog.avi)

The shape refinement then proceeds by iteratively updating the initial shape,
S0, using Eq. 6 until convergence. We stop the evolution when there is no sig-
nificant change in the error function for several steps. Fig 2 gives an example of
our surface evolution algorithm starting from the visual hull.

2.4 Discretization on the Triangular Mesh

The numerical solution for the surface evolution depends on the chosen repre-
sentation. As we explore the use of a mesh based representation, it is useful
to convert Eq. 1 into its discrete counterpart. The surface integral can first be
broken down into a sum of integrals over piecewise continuous regions, namely
triangles. Let ∆ = (v1,v2,v3) be a triangle having vertices v1,v2 and v3. An
interior point on the triangle can be expressed using the barycentric coordinates
λ1, λ2, λ3 satisfying λ1 + λ2 + λ3 = 1 and λk ≥ 0 for k ∈ {1, 2, 3}:

x = λ1v1 + λ1v2 + λ1v3

The triangle normal n is then computed by smoothly interpolating the normals
n1,n2,n3 of the vertices:

n = λ1n1 + λ2n2 + λ3n3

The integrals are then composed into a sum of regularly spaced sample points
over the triangles, giving:

E(S) ≈
∑

{v1,v2,v3}∈∆

∑
{λ1,λ2,λ3}

g(λ1v1 + λ2v2 + λ3v3, λ1n1 + λ2n2 + λ3n3) (7)

The method of computing the error on sampling points within the triangles
relates our work to other mesh based approaches [6, 19, 11, 12]. An alternative
approach, used in the work of Duan et al. [16], is to sample the error on the
tangent plane of the mesh vertices.

To recover the shape of textureless surfaces, only a small number of sam-
ple points may be necessary. In such a case, the simplest sampling scheme is
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to use only the vertices of the mesh as sample points. On the other hand, a
sampling resolution matching the image resolution may be necessary for highly
textured objects. As we would like our method to work on textured and texture-
less surfaces, we choose the dense sampling. The only downside of the increased
sampling is a proportional increase in computation time and used memory.

One way to implement the gradient flow given by Eq. 6 is to derive the
analytic gradient of g. But, there are several problems with the analytic gradient.
First, the visibility changes are not taken into account. While moving vertices
it is possible that some parts of the surrounding triangles become occluded or
visible (un-occluded), which is not taken into account by the analytic gradient.
A second remark is that the formulas do not account for reflectance changes
as the reflectance properties could only computed after taking the step. Similar
to the visibility case, moving a vertex results in changes in the shading. As an
alternative we implemented a numerical computation for the gradient of the
similarity function.

Numerical Gradient The gradient of the similarity function along the direc-
tion of the normal, ∇g · n, is computed numerically using central differences.
Letting gv+ (resp. gv−) be the error computed on the mesh when a vertex v is
replaced with v+ = v + n∆n (resp. v− = v − n∆n), then:

∇g · n ≈
gv+ − gv−

2∆n

where ∆n = c∆σmesh and c∆ ∈ (0, 1], to ensure that the derivative step size is
bounded by the minimum edge length (a tuning parameter σmesh explained in
Section 4.1).

In order to compute the gradient efficiently, without displacing each vertex
individually and computing the error over the entire mesh, we compute the
gradient for a set of vertices simultaneously [20]. The idea is to partition the
mesh into disjoint sets of vertices, Ui, such that moving a vertex from a set does
not influence the error for the rest of the vertices in that set:

∀u,v ∈ Ui,N (v) ∩ N (u) = ∅

For finding the set Ui we studied the influence a single vertex has on the mesh. We
will assume that displacing a vertex a small amount does not affect the visibility
of the mesh, so only local effects need be considered. When displacing a vertex
v along its normal, the directly connected triangles are altered, and therefore
their projection into the images is also altered. Also, since the normal at a vertex
is computed using a weighted average of the triangle normals, the normals at
the neighboring vertices are also affected. Therefore, all triangles within distance
two are affected because the error is also dependent on the normal. Under this
reasoning, the gradient computation for a vertex v must do the reflectance fitting
and error computation for all triangles within distance 2 of the vertex.
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3 Reflectance Fitting

As previously mentioned, we assume that the reflectance function is implied
by the shape and imaging conditions. We experimented with two parametric
reflectance models briefly introduced in Section 2.2 : Lambertian, for diffuse and
Blinn-Phong for specular surfaces. We describe here how we practically recover
the reflectance parameters from a set of images given a shape S, illumination
conditions Li and calibration parameters Pi.

3.1 Lambertian Reflectance

Lambertian reflectance has only one parameter per point x (the albedo kd,x). To
compute the albedo for each point x on the mesh, with normal n we minimize
the similarity error in each image:

glamb(x,n) =
∑

i

〈n,oi〉V
′(x, Pi) (Ii(Π(Pix)) − (〈n, li〉li + ai)kd,x)

2
(8)

The albedo that minimizes the weighted least squares problem in Eq. 8 is ob-
tained as:

kd,x =

∑
i〈n,oi〉V ′(x, Pi)(〈n, li〉li + ai)Ii(Π(Pix))∑

i〈n,oi〉V ′(x, Pi)(〈n, li〉li + ai)2
(9)

3.2 Specular Reflectance

The parameters of the specular reflectance can be estimated given a set of input
images, an object surface, and illumination information, by minimizing the sim-
ilarity measure (Eq. 2). For a low parameter BRDF model, as the Phong model,
given enough observations, the parameters can be estimated efficiently using an
indirect iterated linear approach [21] or by a more direct non-linear method [22].

In practice, with only a limited number of input images, it is not always
possible to fit a full reflectance model at each surface point. Instead of fitting
the full model at each surface point, we chose to use an interpolation method
that first attempts to fit the Phong model to the observations at each point.
A reliable fitting is only possible when a point has several observations with a
small angle between the surface normal and bisector of viewing and illumination
direction. If there are not enough observations, the specular parameters will not
be estimated correctly, leaving only a correctly fit Lambertian model. These
points are assigned the specular parameters of a point where the specular fitting
was successful. This assignment is based on the diffuse color of the point.

3.3 Filtering Specular Highlights

In practice, it is inefficient to fit a full reflectance model to each surface point
during the optimization. Instead of fitting the full reflectance model, we choose
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Fig. 3. Overview of the system used to scan objects

to filter out the specular highlights during the optimization and perform the
shape refinement only for diffuse observations.

It is known that specular highlights occur at points having a large 〈n,hi〉.
As a consequence, one approach is to give smaller weights (in the h function)
to those observations [23]. But, for a surface estimation method it is not the
best approach as it relies on the current estimate of n. Another approach, and
the one used in this work, is to use the fact that specular highlights typically
cause a bright image observation. Therefore, a fraction of the samples having
the brightest intensity (typically 1/3) are excluded from the computation of the
albedo and the g measure for a point. This type of filtering is essentially another
binary function, like the visibility function V .

4 System and Implementation Details

Recall that our formulation of the shape refinement problem requires calibrated
input images, a calibrated light source, and an initial shape. We use a turntable
based capture setup as an easy way to capture many views of an object, while
automatically providing light variation, and allowing for an initial shape to be
computed from the object’s silhouette.

Our particular capture setup consists of a single camera viewing an object
rotating on a turntable (see Fig. 3 for an overview). Each set of images observes
a full rotation of the object but has a different light position. In practice, the
elevation of the light is varied between the two sets of images, and the light is
positioned in a manner to avoid cast shadows (i.e., the source is placed close
to the camera, implying that the camera also changes between the two sets of
images).

The camera position is obtained through the automatic detection of a cali-
bration pattern that is similar to the one used by Baumberg et al. [24]. A regular
desk lamp is used as the light source and provides the majority of the illumi-
nation. The object rotates in front of a solid colored background, and a PCA
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based color segmentation is used to extract a set of silhouette images, which are
used with shape from silhouette (SFS) to provide an initial shape.

The light source position and color are calibrated using a single glossy white
sphere, which rotates along with the object on the turntable. Our approach is
similar to other approaches that use a set of metallic spheres to calibrate a light
source (e.g., [25]). The image of the specular highlight on the sphere in several
views is used to triangulate the position of the source. As we used a white sphere,
the non-specular pixels of the sphere are then used to calibrate the light source
color.

In order to make the recovered model useful in computer graphics applica-
tions, the reflectance model is represented in texture maps. As a prerequisite,
we first need to obtain texture coordinates for the refined model. We have im-
plemented a method similar to that of Lévy et al. [26] to find these texture
coordinates.

4.1 Overview of the shape refinement algorithm

The two components of the refinement in Eq. 6 are the gradient of the cost func-
tion and the regularizing component. The gradient is approximated per vertex
using central differences, which was discussed in Section 2.4. The driving force
behind the regularizing term is the mean curvature on the object, κ, which can
be effectively approximated using a paraboloid method [27]. For a particular
vertex, the mean curvature is computed by first finding the transformation tak-
ing the vertex to the origin and aligning its normal with the positive z axis.
This transformation is applied to the neighboring vertices, and a paraboloid,
z = ax2 + bxy + cy2, is then fit to the transformed points. The mean curvature
at the vertex is κ = a + c.

Our mesh data structure is also capable of handling topological changes.
In particular, we use the method proposed by Lachaud and Montanvert [28]
to easily account for changes in the mesh topology. The mesh has a consistent
global resolution, where edge lengths are confined to be within a certain range,
i.e., if e is an edge in the mesh then σmesh ≤ ‖e‖ ≤ 2.5σmesh. A simple remesh
operation ensures that the edges are indeed within this range and also performs
the necessary operations related to topology changes. The global resolution of
the mesh can be adjusted by altering this edge length parameter, σmesh.

The refinement starts with a low resolution mesh (i.e., large σmesh) and the
corresponding low resolution images in a Gaussian pyramid. When the progress
at a particular mesh resolution slows, the mesh resolution (and possibly the corre-
sponding resolution in the Gaussian pyramid) is increased. This multi-resolution
approach improves convergence, as there are fewer vertices (i.e., degrees of free-
dom), and enables the mesh to recover larger concavities.

5 Experiments

We have performed several experiments on synthetic and real image sequences to
demonstrate the effectiveness of the method described in this paper. For the real
sequences, the images were captured with either a consumer Canon Powershot
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A85 digital camera or a Point Grey Research Scorpion firewire camera. In all
the experiments, roughly 6 mesh resolutions were used during the refinement,
and the total time for refinement was typically between 20 minutes and 1 hour.
For the captures in this work, containing roughly 60 input images, we found
ncameras = 12 provided sufficient results for many of the sequences. In the final
stages of the refinement this parameter was increased to 24.

The first experiment demonstrates the refinement of an object that a stan-
dard correlation based method would have problems with: a 3D printout of the
Stanford bunny model, which has uniform Lambertian reflectance. Although an
initial shape obtained from SFS is a good approximation to the bunny, several
indentations near the legs of the bunny are not recovered (Fig. 4). These inden-
tations are successfully recovered by our method, as illustrated by comparing
the distance from the ground truth surface to the initial shape and the refined
model (Fig. 5).

Fig. 4. From left to right a ground truth rendering, the recovered shape from SFS, and
the refined model.

0.0

Colormap

0.15

Fig. 5. An illustration of the distance from the ground truth object to the SFS model
(left) and the refined model (right)

A second experiment, designed to test the effectiveness of the specular fil-
tering, was performed on a synthetic object. The object has several concavities
that were not reconstructed by the initial SFS shape (Fig. 6). The reconstruction
obtained without specular filtering has artifacts. The most noticeable artifact is
a sharp crease where the specularity was observed (second from the right of Fig.
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Fig. 6. From left to right, an input image of a synthetic specular object, the reconstruc-
tion from SFS, the reconstruction without specular filtering, and the reconstruction
with specular filtering.

6). On the other hand, the refinement that used specular filtering successfully
recovered the indentations.

We have also tested the method on several real objects with both textured
and glossy surfaces (Fig. 7). Our method was capable of recovering an accurate
geometry on all the objects. Notice the large concavity that was recovered in the
house sequence. The fitted specular parameters give realistic highlights on the
reconstructed results (see the sad dog and human head results). Unfortunately,
the reconstructed specular component was not always as sharp as the true spec-
ular component, which is noticeable on the sad dog object (a similar observation
was made by Yu et al. [12]).

Our high quality results are easily integrated into realistic computer graphics
applications. To illustrate this, we have captured several real models of a chess
game and combined them into a computer chess game (Fig. 8).

6 Discussion

We have presented a variational method that alternatively reconstructs shape
and general reflectance from calibrated images under known light. The surface
evolution is implemented on a deformable mesh at multiple resolutions. We have
demonstrated the usefulness of the proposed method on controlled sequences,
where an object was rotated relative to a light source. As demonstrated by the
practical experiments, the results are quite accurate, proving that the method
is able to reconstruct objects with large concavities and difficult specular reflec-
tions.

The capture setup used in this work provides an efficient way to capture a
3D model of an object, but currently we need to be able to rotate this object
in front of the camera. As future work, we would like to extend our method to
work on objects where this form of light variation cannot be obtained. For small
outdoor statues, it may be sufficient to use the flash on the camera, or capture
images on a sunny day at different times to obtain the light variation on the
object. Of course a less restrictive method would be required for larger objects
(e.g. buildings).

Other future directions include finding a more efficient way to utilize the
information in specular highlights instead of filtering them out and to compare
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Input image SFS result Refined Textured Novel View

Fig. 7. Several reconstructed objects: a model house, a sad dog (see video: sad-
dog results.avi), and a real human head (see videos: face results.avi and face comp.avi)

the advantages of a level set implementation. We would also like to have some
guarantee that the recovered surface is at (or at least near) a global minimum
of the functional.
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