
Image-based Rendering using Hardware Accelerated
Dynamic Textures

Keith Yerex, Dana Cobzas and Martin Jagersand
Computing Science, University of Alberta, Canada

www.cs.ualberta.ca/~{keith,dana,jag}

ABSTRACT
With recent improvements in consumer graphics hardware,
image-based rendering in real-time is possible by modulat-
ing (blending) a large basis of transparent textures. We
make efficient use of this by developing a two stage model,
where a high quality rendering is achieved by combining an
approximate geometric model with a time varying dynamic
texture blended from the basis. The dynamic texture com-
pensates for the inaccuracies in the approximate geometry
by encoding the resulting texture intensity errors in a way
similar to in mpeg movie compression, but here parameter-
izing the variability in pose instead of time, hence allowing
the interpolation of arbitrary views. Additionally, we show
how this model can be captured from uncalibrated images
using an ieee1394 digital web-cam and real-time tracking.
We show experiments of capturing and rendering everyday
objects such as flowers and houses.

1. INTRODUCTION
A long standing goal in image-based modeling and rendering
is to take a sequence of images from a scene (e.g. using a
web cam or household camcorder), and construct a sufficient
model for re-rendering any view of that scene. Implemented
on a consumer PC this could allow ordinary users to cap-
ture real objects and scenes and insert into e.g games, home
architecture and planning software, or send 3D “photos”.
This is unlike current methods, which in the case of image-
based rendering (e.g. lumigraph or plenoptic function based
[5, 8, 9]) require precisely calibrated cameras to sample and
parametrize the ray set. Methods based on capturing 3D
Euclidean models and texture images also require calibrated
cameras[12, 3], and in the case of using 3D range sensing it
is difficult to precisely register (align) the camera texture
images with the captured 3D model[2].

Here we present an two level approach in which first real-
time visual tracking is used to capture a non-Euclidean model.
The model represents an approximation of the true scene
structure, and is used to approximately stabilize texture

patches during tracking. Second, using image statistics, a
spatial basis is constructed which captures the residual in-
tensity variation in the stabilized texture. Both the geom-
etry and texture basis are parameterized in pose to enable
rendering of new poses. In the rendering stage, given a new
desired view, the geometric structure is reprojected into the
new image, and a new texture is generated by modulating
the texture basis with the pose of the new view. Finally
new texture is warped onto the geometry giving the image
of the new view. The advantage of the approach is that it
decomposes the difficult problem of exactly capturing ge-
ometry and aligning it with texture images into two simpler
simpler tasks where the strengths and weaknesses of each
of the two subtasks complement each other. In [1] we show
that in image-based rendering, methods based on a weak
perspective camera and linear factorization into affine ge-
ometry and pose are more robust and suitable for uncali-
brated video, than those based on a full perspective camera
and projective geometry. However, for a real camera the
linear factorization yields only an approximate model. In
[7] we show how image variations due to small motions can
be captured by a linear basis, and parameterized in pose. In
this paper we combine the two techniques, so that we can
capture, model and render scenes also under large motions.

In our implementation both the tracking and rendering runs
at frame rate on a 1.4GHz consumer PC. In order to achieve
this we show how to implement the texture modulation and
warp in hardware accelerated OpenGL using transparent
textures and texture blending.

2. THEORY
From a geometric view, IBR techniques relate the pixel-
wise correspondence between sample images It and a desired
views I. This can be formulated using a warp function w to
relate It(w) = I. If It ≈ I then w is close to the identity
function. However, to relate arbitrary viewpoints, w can
be quite complex, and current IBR methods generally re-
quire carefully calibrated cameras in order to have a precise
geometric knowledge of the ray set [5, 8].

In our method the approximate texture image stabilization
achieved using a coarse model reduces the difficulty of apply-
ing IBR techniques. The residual image (texture) variability
can then be coded as a linear combination of a set of spatial
filters. (Figure 1). More precisely, given a training sequence
of images It and tracked points [ut,vt], a simplified geomet-
ric structure of the scene P and a set of motion parameters

New desired pose

Model New view

I1 It

y y
1 t

(R a b)t t t(R a b)
1 1 1

= =

Texture coefficients
Warped texture

Texture
basis

Structure
P

+ +

Training

(R a b)

Motion parameters

Figure 1: A sequence of training images I1 · · · It is decomposed into geometric shape information and dynamic
texture for a set of quadrilateral patches. The scene structure P and motion (r, s, a, b) is determined from
the projection of the structure using a factorization algorithm. The dynamic texture is decomposed into its
projection y on an estimated basis B. For a given desired position, a novel image is generated by warping
new texture synthesized from the basis B on the projected structure.

xt = (Rt, at, bt) that uniquely characterize each frame is es-
timated from the tracked points using affine structure from
motion (section 2.2). The reprojection of the structure given
a set of motion parameters x = (R,a, b) is obtained by�

u
v � = RP +

�
a
b � (1)

The projection of the estimated structure [ut,vt] into the
sample images is divided into Q triangular regions Iqt that
are then warped to a standard shape Iwqt to generate a
bigger texture Iwt.

It =

Q�
q=1

Iqt (2)

Iwqt = Iqt(W(ut,vt)) (3)

Iwt =

Q�
q=1

Iwqt (4)

Using the algorithm described in section 2.1 we then com-
pute a set of basis images B that capture the image vari-
ability caused by geometric approximations and illumination
changes and the set of corresponding blending coefficients
yt.

Iwt = Byt + Ī (5)

To generate a new view we first estimate the projection of
the structure P in the desired view (specified by motion

parameters x in Equation 1). Then, texture modulation
coefficients y are computed and a texture corresponding to
the new view is blended (Equation 5). Finally the texture
is warped to the projected structure (inverse of Equations
5,3,2). The following sections describe this process in detail.

2.1 Dynamic textures
The purpose of the dynamic texture is to allow for a non-
geometry based modeling and synthesis of intensity varia-
tion during animation of a captured model. To illustrate
how motion can be generated using a spatial basis consider
two simple examples: 1/ A drifting grating I = sin(u + at)
can be synthesized by modulating only a sin and cos basis
I = sin(u+at) = sin(u) cos(at)+cos(u) sin(at) = sin(u)y1 +
cos(u)y2, where y1 and y2 are mixing coefficients. 2/ Small
image translations can be generated by I = I0 + ∂I

∂u
∆u +

∂I
∂v

∆v. Here the image derivatives ∂I
∂u

and ∂I
∂v

form a spatial
basis. Below we first extend this to 6 parameter warps rep-
resenting texture transforms, with depth, non-rigidity and
lighting compensation, and then we show how to stably es-
timate this basis from actual image variability.

Parameterizing image variability Formally, consider an
image stabilization problem. Under an image constancy as-
sumption the light intensity from an object point p is in-
dependent of the viewing angle[6]. Let I(t) be an image
(patch) at time t, and Iw a stabilized (canonical) represen-
tation for the same image. In general, then there exists some

coordinate remapping w s.t.

Iw(p) = I(w(p), t) (6)

Hence, Iw represents the image from some hypothetical view-
ing direction, and w is a function describing the rearrange-
ment of the ray set from the current image I(t) to Iw. In
principle w could be found if accurate models are available
for the scene, camera and their relative geometry.

In practice, at best an approximate function ŵ can be found,
which may be parameterized in time (e.g. in movie compres-
sion) or pose (e.g. in structure from motion and pose track-
ing). Below we develop mathematically the effects of this ap-
proximation. In particular we study the residual image vari-
ability introduced by the imperfect stabilization achieved by
ŵ, ∆I = I(ŵ, t) − Iw. Let ŵ = w + ∆f and rewrite as an
approximate image variability to the first order (dropping
t):

∆I = I(w + ∆w) − Iw = I(f) + ∂
∂w
I(f)∆w − Iw =

∂
∂w
I(w)∆w

(7)

The above equation expresses an optic flow type constraint
in an abstract formulation without committing to a particu-
lar form or parameterization of w. In practice, the function
w is usually discretized using e.g. triangular or quadrilateral
mesh elements. Next we give examples of how to concretely
express image variability from these discrete representations.

Structural image variability Under a weak perspective
(or orthographic) camera geometry, plane-to-plane trans-
forms are expressed using an affine transform of the form:�

uw

vw � = W(p, a) =

�
a3 a4

a5 a6 � p +

�
a1

a2 � (8)

This is also the standard image-to-image warp supported
in OpenGL. Now we can rewrite the image variability Eq. 7
resulting from variations in the six affine warp parameters
as:

∆Ia = � 6

i=1

∂
∂ai

Iw∆ai = � ∂I
∂u
, ∂I

∂v � �
∂u
∂a1

· · · ∂u
∂a6

∂v
∂a1

· · · ∂v
∂a6 � ∆[a1 . . . a6]

T

(9)

Let {I}discr = I be a discretized image flattened along the
column into a vector, and let ’∗u’ and ’∗v’ indicate point-
wise multiplication with column flattened camera coordi-
nate u and v index vectors. Rewrite the inner derivatives to
get an explicit expression of the six parameter variability in
terms of spatial image derivatives:

∆Ia = � ∂I

∂u
, ∂I

∂v � �
1 0 ∗u 0 ∗v 0
0 1 0 ∗u 0 ∗v � [y1, . . . , y6]

T =

[B1 . . .B6][y1, . . . , y6]
T = Baya

(10)
where [B1 . . .B6] can be interpreted as a variability basis
for the affine transform.

Depth compensation In the above we assumed a planar
patch. Real world patches will often not be planar, and
this planarity will introduce a parallax error. The intensity
variation due to the depth parallax can be written as a linear
basis:

∆Id = [Bd1,Bd2][yd1, yd2]
T (11)

Illumination variation It has been shown that for a con-
vex Lambertian object, the image variability due to different
illumination can be expressed as a three dimensional linear
basis[11, 6]. For a general object, the illumination compo-
nent can be approximated with a low dimensional basis .

∆Il = [B1 . . .B3][y1 . . . y3]
T = Blyl (12)

Statistical image variability In a real, imperfectly stabi-
lized image sequence we can expect all of the above types of
image variation, as well as unmodeled effects and noise ∆Ie.
Hence, total residual image variability can be written as:

∆I = ∆Is + ∆Id + ∆In + ∆Il + ∆Ie =
Bsya +Bdyd +Blyl + ∆Ie = By + ∆Ie

(13)

Approximations to Ba can be computed from image deriva-
tives, while Bdyd andBlyl require detailed geometric knowl-
edge of the scene, camera and lighting. Note in Eq. 13 its
linear form, where a set of basis textures, B = [B1 . . .Bm],
are mixed by a corresponding set of blending coefficients,
y = [y1 . . . ym]T . To avoid explicit modeling we instead ob-

serve actual image variability from an image sequence Î(t),

which has been stabilized using an approximate f̂ , so we now
have a sequence of small variations ∆Î. We compute a refer-
ence image as the pixel-wise mean image Ī = � M

t=0

1

M
Iw(t),

and form a zero mean distribution of the residual variability
as Îz(t) = Iw(t) − Ī. From these we can use standard PCA

(principal component analysis) to compute a basis B̂ which
captures (up to a linear coordinate transform) the actually
occurring image variation in the true B (Eq. 13)

Briefly we perform the PCA as follows. Form a measurement
matrix A = [Iz(1), . . . , Iz(M)]. The principle components
are the eigen vectors of the covariance matrix C = AAT .
A dimensionality reduction is achieved by keeping only the
first k of the eigenvectors. For practical reasons, usually k �
M � l, where l is the number of pixels in the texture patch,
and the covariance matrix C will be rank deficient. We can
then save computational effort by instead computing L =
ATA and eigen vector factorization L = V DV T , where V is
an ortho-normal and D a diagonal matrix. From the k first
eigenvectors V̂ = [v1 . . .vk] of L we form a k-dimensional

eigenspace B̂ of C by B̂ = AV̂ . Using the estimated B̂

we can now write a least squares optimal estimate of any
intensity variation in the patch as

∆I = B̂ŷ, (14)

the same format as Eq. 13, but without using any a-priori
information to model B. While ŷ captures the same varia-
tion as y, it is not parameterized in the same coordinates,
so in addition we estimate a second transform J between
our pose description and ŷ. In our application we repre-
sent one object using several texture patches, and estimate
J between texture mixing coefficients x.

For every training image It we have from the orthogonality
of V̂ that the corresponding texture mixing coefficients are
the columns of [ŷ1, . . . , ŷM] = V̂ T . From the factorization
of geometric structure we also have the corresponding xt.

To estimate the texture mixing coefficients for intermediate
poses, we first apply n-dimensional Delaunay triangulation

over the sampled poses xt. Then given any new pose x we
determine which simplex the new pose is contained in, and
estimate the new texture mixing coefficients ŷ by linearly
interpolating the mixing coefficients of the corner points of
the containing simplex.

2.2 Geometric model
A structure-from-motion algorithm starts with a set of cor-
responding features (point, lines) in a sequence of images of
a scene and recovers the coordinates of these features and
the cameras poses relative to this representation under some
viewing constraints (see Figure 2). In the most general case
a 3D Euclidian structure is estimated assuming projective
model of the camera. These algorithms require precise cali-
bration of the camera, numerous corresponding features and
are in general highly nonlinear and sensitive to feature track-
ing errors. Assuming a more simplified model of the camera
(weak perspective[4, 10]), the problem is linearized and an
affine structure of the scene is estimated using factorization.
Using multiple images allows for stable solutions despite rel-
atively few tracked points and typical tracking errors.

Figure 2: A general structure from motion algo-
rithm extracts the structure and camera poses from
a set of tracked points.

Here we have developed an extension of the Tomasi-Kanade
factorization algorithm[13] for weak perspective camera pro-
jection model inspired by [14]. First, the algorithm recov-
ers affine structure from a sequence of uncalibrated images.
Then, a relation between the affine structure and camera
coordinates is established. This is used to transform the es-
timated scene structure to an orthogonal coordinate frame.
Finally, using similarity transforms expressed in metric ro-
tations and translations, the structure can be reprojected
into new, physically correct poses. Since we use only image
information our metric unit of measure is pixel coordinates.
We next describe a more detailed mathematical formulation
of the problem.

Affine structure from motion Under weak perspective
projection, a point Pi = (Xi,Yi,Zi)

T is related to the cor-
responding point pti = (uti, vti)

T in image frame I(t) by the
following affine transformation:

uti = sti
T
t Pi + at

vti = stj
T
t Pi + bt

(15)

where it and jt are the components along the camera rows
and columns of the rotation Rt , st is a scale factor and
(at, bt) are the first components t1t of the translation tt (Rt

and tt aligns the camera coordinate system with the world
reference system and represents the camera pose).

Rewriting Eq. 15 for multiple points (N) tracked in several
frames (M)

W = RP + t1 (16)

where W is a 2M×N matrix contains image measurements,
R represents both scaling and rotation, P is the shape and
t1 is the translation in the image plane [14].

If the image points are registered with respect to their cen-
troid in the image plane and the center of the world coordi-
nate frame is the centroid of the shape points, the projection
equation becomes:

Ŵ = RP where Ŵ = W − t1 (17)

Following [13], in the absence of noise we have rank(Ŵ) = 3.
Under most viewing conditions with a real camera the effec-
tive rank is 3. Considering the singular value decomposition
of Ŵ = O1ΣO2 we form

R̂ = O′

1

P̂ = Σ′O′

2

(18)

where O′

1,Σ
′, O′

2 are respectively defined by the first three
columns of O1, the first 3 × 3 matrix of Σ and the first
three rows of O2 (assuming the singular values are ordered
in decreasing order).

Metric constraints The matrices R̂ and P̂ are a linear
transformation of the metric scaled rotation matrix R and
the metric shape matrix P . More specifically there exist a
3 × 3 matrix Q such that:

R = R̂Q

P = Q−1P̂
(19)

Q can be determined by imposing constraints on the com-
ponents of the scaled rotation matrix R:

îTt QQ
T ît = ĵTt QQ

T ĵt (= s2t)

îTt QQ
T ĵt = 0 t ∈ {1..M}

(20)

where R̂ = [̂i1 · · · îM ĵ1 · · · ĵM]T The first constraint assures
that the corresponding rows sti

T
t , stj

T
t of the scaled rotation

R in Eq. 16 are unit vectors scaled by the factor st and the
second equation constrain them to orthogonal vectors. This
generalizes [13] from an orthographic to a weak perspective
case. The resulting transformation is up to a scale and a
rotation of the world coordinate system. To eliminate the
ambiguity we align the axis of the reference coordinate sys-
tem with the first frame and estimate only eight parameters
in Q (fixing a scale).

To extract pose information for each frame we first estimate
the scale factor st and rotation components it and jt by com-
puting the norm of the rows in R that will represent the scale
factors and then normalizing them. Considering that it and
jt can be interpreted as the orientation of the vertical and
horizontal camera image axes in the object space, we com-
pute the direction of the camera projection axis kt = it × jt.
We now have a complete representation for the metric rota-
tion that we parametrize with Euler angles rt = [ψt, θt, ϕt].

Each camera pose is represented by the motion parameter
vector

xt = [rt, st, at, bt] (21)

The geometric structure is represented by P and its repro-
jection given a new pose x = [r, s, a, b] is estimated by

[u,v] = sR(r)P +

�
a
b � (22)

where R(r) represents the rotation matrix given the Euler
angles r.

3. IMPLEMENTATION
3.1 Hardware Rendering
To render the dynamic texture we use the texture blend-
ing features available on most consumer 3D graphics cards.
These graphics accelerators can blend textures very effi-
ciently, however they are very restrictive in terms of the
types textures that can be used, making it somewhat com-
plicated to hardware accelerate this type of rendering.

Unsigned Basis The rendering hardware used is designed
for textures containing positive values only, while the spatial
basis, Equation 14 is a signed quantity. We rewrite this as a
combination of two textures with only positive components:

Iw(t) = B
+y(t) −B

−y(t) + Ī

Where B+ contains only the positive elements from B (and 0
in the place of negative elements) and B− contains the abso-
lute values of all negative elements from B. When blending,
some textures will be added, and others subtracted.

Quantization Graphics cards generally require textures to
be represented as bytes in the range 0-255, and after each
blending operation (addition or subtraction of a basis tex-
ture) values are clipped to this range. This can be problem-
atic since neither our basis textures nor the intermediate
values when combining basis textures are will have values
within the required range. The only guarantee is that the
final result will be within that range. We scale the basis
textures and coefficients to fit within this range as follows:

B̃
+ = 255B+

ζ
−1

B̃
− = 255B−

ζ
−1

ỹ = 255−1
ζy

Where ζ is a diagonal matrix of the maximum absolute val-
ues from the columns of B. (ζ = diag(max |B|))

Now B̂+ and B̂− are both in the range 0-255, and can be
used as textures in hardware. The problem regarding over-
flow in intermediate blending stages cannot be completely
solved, but by drawing the mean image first, and then alter-
nately adding and subtracting scaled eigenvectors, overflow
is avoided in most cases.

Rendering of each frame is performed as in the following
pseudo-code.

// draw the mean

BindTexture(Ī);
DrawTriangles();

// add basis textures
for(each i)
{

SetBlendCoefficient(|ỹi (t)|);

BindTexture(B̃+

i);
if(ỹi(t) > 0) SetBlendEquation(ADD);
else SetBlendEquation(SUBTRACT);
DrawTriangles();

BindTexture(B̃−

i);
if(ỹi(t) > 0) SetBlendEquation(SUBTRACT);
else SetBlendEquation(ADD);
DrawTriangles();

}

3.2 Algorithm
Training data We capture an image sequence, and tracked
feature locations. We use XVision [6] to set up a video
pipeline and use SSD trackers to track features on-line. The
feature positions and textures are sampled at rates from 2
to 5 Hz, while the trackers run in the background at about
30Hz (for up to 20 trackers).

Geometric Model We estimate the geometric model based
on the tracked points sampled in the training step using the
technique described in section 2.2.

Dynamic Texture

1. Warp each frame I(t) to a standard shape Iw(t) based
on tracked positions. (Equations 2,3,4). The stan-
dard shape is chosen to be the average positions of the
tracked points scaled to fit in a square region.

2. Form a zero mean sample, and perform the PCA as
described in section 2.1. Keep the first k basis vectors
B, and the corresponding coefficients for each frame in
the training sequence y(t).

New View Animation

1. For each frame in the animation compute the repro-
jection [u, v] from the desired pose x as in Equation
1.

2. Estimate texture blending coefficients y by interpolat-
ing the coefficients of the nearest neighbors from the
coefficients, and poses from the training data.

3. Compute the new textures in the standard shape using
Equation 5 and rewarp the textures onto the calculated
geometry. (These two operations are performed simul-
taneously in hardware as described in section 3.1)

Figure 3: House sequence animated at different viewpoints

4. EXPERIMENTAL RESULTS
We have tested our method both qualitatively and quali-
tatively by capturing various scenes and objects and then
reanimating new scenes and motions using dynamic texture
rendering. Here we present the renderings of a toy house
and a flower.

Figure 4: Geometric errors on the house sequence.
Top: Rendered images using static (left) and dy-
namic (right) textures respectively. Bottom: Detail
showing the geometric errors.

Many man-made environments are almost piece-wise planar.
However, instead of making a detailed model of every sur-
face, it is more convenient to model only the large geometric
structure, e.g. the walls and roofs of houses, and avoid the
complexity of the details, e.g. windows, doors, entry ways,
trim, eaves etc. Figure 3 shows the rendering of a toy house
in different poses. The motion range in one captured se-
quence is limited in our implementation since each marked
tracking target has to remain visible. To obtain a large mo-
tion range two separate sequences were pieced together to
generate Fig. 3. A total of 270 example frames were used to
compute a texture basis of size 50.

The geometry used in the house sequence only coarsely cap-
tures the scene geometry. In conventional rendering these
errors will be visually most evident as a shear at the junc-

tion of mesh elements, see Fig. 4 left. Compare to the one
rendered using the dynamic texture (right), where the dy-
namic texture compensates for the depth inaccuracy of the
mesh and aligns the texture across the seam.

Unlike man-made scenes, most natural environments can-
not easily be decomposed into planar regions. To put our
method to test, we captured a flower using a very simple
geometry of only 8 triangles. This causes a significant resid-
ual variability in the texture images. A training sequence of
512 sample images from motions x with angular variation of
r = [40, 40, 10] degrees around the camera u- v- and z-axis
respectively. A texture basis of size 100 was estimated, and
was used to render the example sequences seen in Fig. 5.

0 5 9 13 15
0

5

10

15

Time

M
ea

n
er

r Static texture
Dynamic texture

Figure 6: Intensity pixel error in the rendered im-
ages (compared to original image)

To quantify the geometric errors for our dynamic texturing
algorithm compared to a classic texturing algorithm we took
images of a pattern and then regenerate some of the orig-
inal positions. We recorded differences in pixel intensities
between the rendered images and original ones (Figure 6).
Notice that the error was almost constant in the case of dy-
namic texture and very uneven in the case of static texture.
For the static texture case we used frame 0,5,9,13 for sourc-
ing the texture (consistent with using three texture basis
vectors in the dynamic case) so is expected that the error
drops to zero when reproducing these frames. The mean rel-
ative intensity error was 1.17% in the case of static texture
and 0.56% in the case of dynamic texture.

Vertical jitter Horizontal jitter

Static texture 1.15 0.98
Dynamic texture 0.52 0.71

Table 1: Average pixel jitter

For an animation there are global errors through the whole
movie that are not visible in one frame but only in the mo-

Figure 5: Flower sequence animated at different viewpoints.

tion impression from the succession of the frames. One im-
portant dynamic measurement is motion smoothness. When
using static texture we source the texture from a subset of
the original images (k + 1 if k is the number of texture ba-
sis) so there is significant jumping when changing the tex-
ture source image. We tracked a point through a generated
sequence for the pattern in the two cases and measure the
smoothness of motion. Table 1 shows the average pixel jit-
ter.

5. DISCUSSION
We showed how to capture object models from video and
render new views using a new type of image-based modeling
where a coarse geometric model is captured from images,
and a time-varying dynamic texture is overlaid to compen-
sate for errors in the coarse geometry approximation. Our
technique obliviates the need for expensive range sensors
and calibrated setups, and instead lets users capture and
model objects and scenes using inexpensive consumer web
or video cameras with a standard PC.

To enable real-time rendering we take advantage of recent
advances in consumer grade graphics cards which allow blend-
ing of several transparent textures. Two current HW limi-
tations we face are 1) the unsigned byte arithmetic approxi-
mation in the texture blending occasionally causes overflows
in intermediate values. 2) The graphics card memory sizes
have not yet grown significantly enough to enable extensive
use of several transparent texture layers, so currently we are
limited to relatively small models in low resolution mode.

To more efficiently make use of current texture memory sizes
we plan to investigate adaptive texture resolutions, so that
the large spatial basis needed for high resolution rendering
is used for frontal surfaces, and the number of basis vec-
tors is reduced for triangles at oblique angles to the camera.
A more trivial improvement is to switch from RGB color
space to a more compact color representation such as YUV.
Currently the tracking is purely bottom up. To improve
stability we plan to integrate it with the model building to
provide top-down feedback to maintain global model con-
sistency and with the variability estimation to adapt the
tracking templates over time.

6. REFERENCES
[1] D. Cobzas and M. Jagersand. A comparison of

non-euclidean image-based rendering. In Proceedings
of Graphics Interface, 2001.

[2] D. Cobzas, H. Zhang, and M. Jagersand. A

comparative analysis of geometric and image-based
3d-2d registration algorithms. In ICRA, 2002.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling
and rendering architecture from phtographs. In
Computer Graphics (SIGGRAPH’96), 1996.

[4] O. D. Faugeras. Three Dimensional Computer Vision:
A Geometric Viewpoint. MIT Press, Boston, 1993.

[5] S. J. Gortler, R. Grzeszczuk, and R. Szeliski. The
lumigraph. In Computer Graphics (SIGGRAPH’96),
pages 43–54, 1996.

[6] G. D. Hager and P. N. Belhumeur. Efficient region
tracking with parametric models of geometry and
illumination. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(10):1025–1039, 1998.

[7] M. Jagersand. Image based view synthesis of
articulated agents. In Computer Vision and Pattern
Recognition, 1997.

[8] M. Levoy and P. Hanrahan. Light field rendering. In
Computer Graphics (SIGGRAPH’96), pages 31–42,
1996.

[9] L. McMillan and G. Bishop. Plenoptic modeling: Am
image-based rendering system. In Computer Graphics
(SIGGRAPH’95), pages 39–46, 1995.

[10] M. Pollyfeys. Tutorial on 3D Modeling from Images.
Lecture Nores, Dublin, Ireland (in conjunction with
ECCV 2000), 2000.

[11] A. Shashua. Geometry and Photometry in 3D Visual
Recognition. PhD thesis, MIT, 1993.

[12] I. Stamos and P. K. Allen. Integration of range and
image sensing for photorealistic 3d modeling. In
ICRA, 2000.

[13] C. Tomasi and T. Kanade. Shape and motion from
image streams under orthography: A factorization
method. International Journal of Computer Vision,
9:137–154, 1992.

[14] D. Weinshall and C. Tomasi. Linear and incremental
aquisition of invariant shape models from image
sequences. In Proc. of 4th Int. Conf. on Compute
Vision, pages 675–682, 1993.

