
A Comparative Analysis of Geometric and Image-Based Volumetric and
Intensity Data Registration Algorithms
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Abstract

We present and contrast four methods for registering 3D
range data to 2D images. Two are calibration techniques that
recover the rigid transformation between the sensor poses,
based on point or line correspondences. The two others re-
cover a direct, image based mapping between the data sets.
The accuracy of each method is experimentally evaluated on
test patterns and objects. We found the point based calibra-
tion method to best recover a global registration between the
two sensors, while an image-based method performed best
when registering local regions.

1. Introduction
The registration of volumetric and intensity data is an impor-
tant problem especially in the fields of model building and
realistic rendering (registering range and image data) and in
medical applications. Note that the problem is eliminated
when the data is acquired using the same sensor as in the case
of range from stereo, structured light or range and radiance
images acquired by a laser rangefinder, but it becomes com-
plex when data come from two or more sensors. In our case
we want to register range data provided by a laser rangefinder
with an image acquired by a camera near the laser rangefinder
(see Figure 1).

The registration is related to the camera calibration [13]
and object pose with the difference that in this case the geom-
etry of the calibration object is unknown so correspondence is
a nontrivial problem. The mathematical foundation for pose
estimation from points, lines and curves has been extensively
studied [2, 5]. The solution is in general nonlinear and re-
quires a good initial estimate of the parameters.

In the case of medical imaging, different types of data that
contain spatial information both anatomical and functional
(MRI, CT, X-ray and camera images of the patient) need to
be correlated to plan or control the therapy. For registering
an MRI data with the current view of the patient, Grimson
[4] uses an intermediate laser that provides a 3D description
of the patient’s surface. This surface is matched with the vol-
umetric data and, by computing the laser-camera displace-
ment, the medical image is fused with the video image. An

interesting approach is presented in [3] where 3D-3D and 2D-
3D registration are performed using bitangent lines or planes
and an Iterative Closet Point algorithm. This method is ap-
plied for registering MRI, image and stereo data.

For modeling and rendering, 3D or range data acquired by
a laser rangefinder has to be registered with the correspond-
ing images. In [6] multiple scans are integrated with intensity
data to create a high resolution image-based scene model. In
their case the registration problem is simplified by placing the
laser and the camera on the same location so that the trans-
formation is reduced to a pure rotation. If the sensors are not
aligned a full 3D transformation have to be recovered in order
to register the range with intensity data set. A robust solution
that uses corresponding line segments is proposed in [9]. An-
other approach presented by Ikeuchi et al. [8] aligns intensity
edges with 3D reflectance edge points and estimated the pose
using a robust M-estimator algorithm.

Regardless of the application, all the above methods at-
tempt to recover the rigid transformation between the sensors
in order to register the data sets. As mentioned previously,
this is in general a nonlinear problem and it requires an ini-
tial estimate to converge. In contrast, image-based techniques
compute a direct mapping between the points in the data sets
that recover the transformation under some constraints. The
accuracy of this methods depends on the original assumptions
about the physical system (ex. affine camera or planar scene)
but in general they are good for locally recovering a mapping
between data sets as opposed to determine a globally valid
translation and rotation between the sensors.

In this paper we describe our study that investigates the
performance and applicability of geometric-based techniques
and image-based techniques in the problem of laser-camera
registration. For evaluating the results we used the deter-
mined transformation to register data taken from an object
placed in a different position than the original calibration ob-
ject. The remaining of the paper is organized as follows. Sec-
tion 2 presents the type of sensors we use and the data acqui-
sition process. Section 3 describes the theoretical aspects of
the different calibration algorithms. Experimental results are
presented in Section 4, and we conclude with a discussion in
Section 5.



2. Data Acquisition and Preprocessing
The data acquisition system consists of a laser rangefinder
mounted on a pan-tilt unit and a camera that is placed in the
vicinity of the laser (see Figure 1).
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Figure 1: Laser - mirror - camera system. CCS = camera
coordinate system; LCS = laser coordinate system

The laser rangefinder is the commercial AccuRange
4000-LIR from Acuity Research, Inc. We attached it to a
pan-tilt unit (model PTU-46-70) from Directed Perception,
Inc. The data returned for each rangefinder sample consist
of range r, amplitude a and encoder position - which can be
converted to an angle θ. In addition to these we store the pan
angle φ at which the scan was taken, so the raw data for each
reading is (r, a, φ, θ).

The raw data acquired by the laser scanning system is first
transformed into 3D points registered into a common coordi-
nate system. The center of the mirror (rotation θ) is translated
with respect to the center of the pan-tilt unit (rotation φ). We
manually measure this displacement and account for it when
computing the 3D coordinates of the points. We project these
points into a spherical grid and filter the data [6] to produce a
spherical amplitude and range image.

If the laser beam clips the edge of one surface and then
hits another surface further away, the resulting range is usu-
ally between the two surfaces. In order to eliminate the out-
liers, we look at the eight nearest neighbors on the spherical
grid and, if at least four are within a tolerance, the value is
considered valid, otherwise it is removed. We also remove
all the values that are bigger then the dimension of the room
where we did the experiments.

For filling the places that are not scanned well, we apply
a 3× 3 filter that averages the neighboring samples. Figure 2
shows an example of a spherical range and amplitude image
after filtering.

3. Laser-Camera Calibration
Calibrating the laser with respect to the camera involves de-
termining the transformation that will map 3D points in laser
coordinate system (LCS) to 2D image points in camera co-
ordinate system (CCS) given a set of corresponding features
in the two sensors (see Figure 1). We have developed several
methods - point-based, line-based and two types of image-
based methods. The first two methods recover the full 3D
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Figure 2: Spherical range (a) and amplitude (b) images after
filtering

rigid transformation (R, t) between the two reference coordi-
nate systems, assuming that the camera matrix (C) is known.
The last type of methods use image-based techniques to map
3D points to image pixels without considering any calibration
data.

The problem is conceptually similar to the camera cal-
ibration or more precisely object pose problem, with the
key difference that in our case the 3D information about
the calibration object acquired by the laser is a collection
of range/amplitude values along scan lines and not precise
3D measurements of feature points. As mentioned in Sec-
tion 2, the laser range-finder returns range and amplitude
values of a 360◦ vertical scan for each position of the pan-
tilt unit. The trace of the laser is visible in the camera so,
by recording a scan and the light path in the camera image,
we can establish corresponding features for each scan plane.
The extracted features are intersections of object discontinu-
ities with the laser line. The line-based algorithm and one
of the image-based algorithms use these features along the
scan lines. Yet, another way to get corresponding features
is to relate a range/amplitude image obtained by a full scan
(Section 2) and a camera image of the same scene.

3.1. Line Based Algorithms
A 3D line can be represented in terms of a unit vector v,
which indicates the direction of the line, and a vector d,
which represents a point on the line that is closet to the ori-
gin [11] (see Figure 3). The line and the camera center defines
a plane whose normal vector is m. Under perspective projec-
tion, the image line is determined by the intersection of this
plane with the image plane. Assuming unit focal length (nor-
malized image coordinates), the equation of the image line
is:

mxx + myy + mzz = 0

where m = (mx, my, mz) = v × d.
We denote by (vl,dl) the line in laser coordinate system

(LCS), (vc,dc) the line in camera coordinate system (CCS)
and (R, t) the general rigid transformation between CCS and
LCS. The projection of the image line in the image plane is:

m = vc × dc = Rvl × (Rdl + t)
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Figure 3: A 3D line can be represented as (v,d). The image
projection is represented by m

From this equation the following constraints can be deduced:

mT (Rvl) = 0, mT (Rdl + t) = 0 (1)

The rotation can be represented by a unit quaternion q with
the property that Rv = q ∗ ṽ ∗ q, where “*” denotes quater-
nion multiplication, q is the conjugate quaternion and ṽ is
the imaginary quaternion associated with v. We can rewrite
Equation ?? as:

mT (q ∗ vl ∗ q̄) = 0, mT (q ∗ dl ∗ q̄ + t) = 0 (2)

Having N corresponding lines we can solve for the rotation
q by minimizing the objective function

FLRt =
∑N

i=1
(mT

i (q ∗ vli ∗ q̄))2
{

minq FLRt

|q| = 1
(3)

If the rotation is known, the translation t can then be cal-
culated from Equation 2. For N points we solve it as a linear
least square problem. After having an initial estimate for the
rigid transformation (R, t), we refine the solution by globally
minimizing the objective function:

FLG =
∑N

i=1
(mT

i (q ∗ vli ∗ q̄))2 + (mT
i (q ∗ dli ∗ q̄ + t))2

{

minq FLG

|q| = 1
(4)

We solve the non-linear minimization problems using a
Levenberg-Marquardt non-linear minimization algorithm [7].
The problem has a unique solution with at least four corre-
sponding lines where no more than two lines intersect in the
same point (or are parallel). In our experiments the rotation
is mostly a pan so, for having an initial estimate for the ro-
tation, we linearly solve Equation 1 with the rotation matrix
constrained to a pan.

3.2. Point Based Algorithms
The point based algorithm is similar to the line based algo-
rithm. Let p = (x, y, 1) represent the normalized homoge-
neous coordinates of an image pixel (u, v),

x =
u − uc

αu

, y =
v − vc

αv

where αu and αv are the vertical and horizontal scale factors
and uc and vc are the pixel coordinates of the center of the
image, all assumed to be known. If Pl is the corresponding
3D point in LCS we have:

sp = RPl + t

Having more than six corresponding points (N > 6), we first
solve the problem linearly without any constraints on the ro-
tation matrix and then refine the solution by minimizing the
distance between the projected image points and the corre-
sponding extracted features

FPN =

N
∑

i=1

√

(ui − uil)2 + (vi − vil)2

where pl = (xl, yl, sl) = RPl + t and ul = xl

sl
, vl = yl

sl
. As

in the case of line features, we solve the nonlinear problem
using a Levenberg-Marquatdt non-linear minimization algo-
rithm. The linear solution is very unstable and sensitive to
errors in the extracted features so in the experiments we solve
the linear problem by constraining the rotation to a pan.

3.3. Affine camera approximation
Image based techniques do not rely on any precise calibra-
tion measurements like camera matrix or rigid transforma-
tion but compute the transformation that maps pixels directly
from image space to the desired space. They are mostly used
in image-based rendering when pixels from sample images
are mapped to new locations in the rendered images without
recovering the 3D Euclidean structure of the scene. In the
case of laser-camera calibration, the proposed image-based
techniques will recover a direct transformation from the laser
points to image pixels.

Following [12], let (ui, vi) be the set of extracted im-
age pixels and m = (mu, mv), mu = 1

N

∑N

i=0
ui, mv =

1

N

∑N

i=0
vi be their centroid. Compose measurement matri-

ces

W =

(

u

v

)

W̄ =

(

u− mu

v − mu

)

where W̄ is zero mean and is called the registered measure-
ment matrix.
Rank theorem Under orthography rank(W̄ ) = 3 (for proof
see [12]). Under most viewing conditions with a real camera
the effective rank is 3. The registered measurement matrix
W̄ can be expressed as

W̄ = RS

where S = (P1 ... PN ) is the shape matrix with the affine

coordinates of (u1; v1) ... (uN , vN ) and R =

(

I

J

)

repre-

sents the camera rotation. In fact, the rows of R can be inter-
preted as the orientation of the vertical and horizontal image
axes in the range data and the columns as the projections of
the affine basis vectors into the image. Hence rotation and



scaling are represented by R and image plane translation by
m = (mu, mv). The columns of S are 3D affine coordi-
nates of the feature points with respect to their centroid. In
our case, S is formed with the 3D coordinates of the laser
points (normalized with respect to centroid mP ) and W with
the corresponding image features.
Reprojection property Given a new set of 3D points P ′ in
the laser coordinate system they can be reprojected by

(

u′

v′

)

= R(P ′ − mP ) +

(

mu

mv

)

The laser-camera transformation can be represented by the
rotation matrix R, the centroid of image test points m

and the centroid of the corresponding laser points mP =
(X0, Y0, Z0).

Compared to the projective model u = f X
Z

+ uc this
approach is approximating the 1

Z
variation in depth with a

line u = s(X − X0) + k(Z − Z0). As a consequence we
expect that the algorithm will work for objects that have a
small range variation.

3.4. Plane homography
Another image-based technique can be derived by consider-
ing the laser scan plane and its image projection. It is well
known [10] that planar scene views are related by 2D projec-
tive transformations (homographies).

u = Hp

This transformation is up to a scale so in general H has eight
independent parameters.
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Figure 4: Mapping points using the homographies of the clos-
est laser scan planes

Laser points in each scan are on a vertical plane. When
panning the laser it generates planar points for each scan.
These points are related to their image projection by a ho-
mography Hi, i = 1, ..., M , where M is the number of sam-
pled scan planes. The homography for each scan plane can be
computed from at least 4 corresponding points. Knowing the
homography Hi, 3D laser points that lie on the same plane
can be reprojected on the image plane. For a point p that lies
in between the originally sampled scan planes, we compute
its projection as the interpolation between the projection of
this point through the homographies Hleft and Hright corre-
sponding to the closet sampled scan planes. More precisely
(see Figure 4), if p is lying on the scan plane at pan angle φ

and the closest sampled scan planes were taken at φleft and
φright, the projection of p is

uleft = Hleftp

uright = Hrightp

ū =
φ−φleft

φright−φleft
ūleft +

φright−φ

φright−φleft
ūright

where ū represents the affine coordinates of the homogenious
point u (divided by the scale factor).

Note that when moving from scan plane scanright to
scanleft p describes a circular arc whose projection in the
image is an elliptic arc. Following from this the exact pro-
jection of p can be computed as the interpolation along this
ellipse of pleft and pright. This can be done if we know the
projection of p in four or more scan planes. In the approach
we took we approximate the elliptic arc with a straight line.
For small rotations this is a reasonable approximation.

4. Experimental Results
4.1. Feature extraction
The proposed calibration algorithms require corresponding
point and line features. There are two different approaches
for extracting corresponding features. One is to extract and
match features that are distinctive in both camera image and
range/amplitude spherical laser images. The other method
relies on the property that the laser scan-line is visible in the
camera image, so that features along each scan line can be
put in correspondence with image pixels if there is an image
taken at the scan time.

Figure 5: Image of the calibration pattern and the correspond-
ing laser amplitude image. The extracted feature points are
marked with ’+’

For the first method we design a calibration pattern simi-
lar to the one usually used for camera calibration with white
dots on two planes. We threshold both the camera and laser
amplitude images, and then extract centroids of the black
dots (see Figure 5). The point extraction and correspon-
dence process is semi-automatic. In order to have a signif-
icant variation in depth, we repeat the process for images in
four positions one in front (pattern 1) and three further
back (pattern 2,3,4) extracting about 150 correspond-
ing points. The point based (PL,PN) and the first type of
image based algorithm (IA) are using this type of data.

For the second method we placed boxes at different
depths in front of the laser-camera system and record six
scans and the corresponding camera images (boxes 1-6)



Algorithm Calibration features Feature extraction alg. Calib method
LRT image-3D lines range and images of scan planes first estimates rot. R and then transl. t
LG image-3D lines range and images of scan planes globally minimize both R and t
PL image-3D points calibration pattern linear solution for both R (pan) and t
PN image-3D points calibration pattern globally minimize both R and t
IA image-3D points calibration pattern affine approximation of camera
IH image points - 2D points on

scan planes and pan angle
range and images of scan planes interpolation of scan planes’ homographies

Table 1: Summary of calibration algorithms
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Figure 6: Image of a scan line and corresponding laser points.
Corresponding feature points are marked with a circle.

(see Figure 6). We designed an user interface that allows the
selection of corresponding points along the scan. For the line
based algorithm the user extracts corresponding lines by se-
lecting two points along each line. In general there are about
6 to 8 corresponding points and 4 or 5 lines.

4.2. Point reprojection error
For testing the accuracy of the calibration algorithms we
compute the error between the reprojected 3D point features
and the corresponding image features. Table 1 presents a
summary of the implemented calibration algorithms.

Alg Calibration data Error

LRT boxes 1-6 34.85
LG boxes 1-6 26.25
PL patterns 1-4 62.16
PN patterns 1-4 15.63
IA patterns 1-4 (range variation) 19.46

patterns 2,4 (similar range) 4.66
IH boxes 1-6 25.51

Table 2: Average pixel/feature error between projected points
and extracted features for different algorithms

We took a full scan of the calibration pattern in a new
position (pattern 5), different from the ones used for cal-
ibration, together with an image of the pattern, and we apply
the point extraction algorithm. Table 2 summarizes the per-
formance of different types of algorithms on this data set.

For testing the influence of the errors present in the
calibration data on geometric and image-based algorithms,
we projected this data back to the original images. The
pixel/feature error is about 5 pixels for the image-based tech-
niques and about 15 pixels for point based techniques. This
shows that the image-based techniques are more flexible to
data fitting and local inaccuracies of the model than the
geometric-based approaches, which impose a rigid transfor-
mation. From this we can also expect that the image feature
extraction error is within the range 5 to 15 pixels.

4.3. Applications
The registered image-range data can be used to rerender an
object from a different position than the original image. We
used the data from the scanned robot arm. The object data is
first segmented from the background (threshold range values)
and the remaining points are projected on the image. We tri-
angulate the image points using a 2D Delaunay triangulation
and render the corresponding 3D triangles using OpenGL. In
a complete mesh, some of the triangles might not represent
physical planes, and in most of the cases this appears at sil-
houette edges [6] where points from the object are connected
with background points. To avoid this phenomenon we elim-
inate all the triangles that are parallel to the viewing direction
within a threshold. The results for the rendered arm with the
four registration algorithms are presented in Figure 7.

The image-based rendering idea can be applied to the
problem of mobile robot localization. We have created a
panoramic image-based model of the navigation environment
[1]. The model is a panoramic mosaic formed from images
taken by rotating the camera around the optical center. This
model can be registered with the laser range data in a similar
way we registered the planar image. The localization prob-
lem involves finding the position and orientation of the robot
using the image-based model and assuming that the robot is
carrying an on-board camera. The registered intensity-range
data is used to generate new renderings from any location.
The position of the robot can be computed from the displace-
ment between the actual image taken by the robot and a ren-
dered image from the vicinity of the robot (assuming the ap-
proximate location is known - from odometry for example).

5. Discussion and Conclusion
We have presented four 2D-3D registration algorithms ad-
dressing the problem of registering range data acquired from
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Figure 7: Rendered arm images with different registration algorithms (a) point based (b) line based (c) affine camera approxi-
mation (d) scan planes’ homographies

a laser rangefinder and intensity data from a camera near the
laser. Two of the algorithms (point-based PL, PN and line-
based LRT and LG) are recovering the rigid 3D transforma-
tion between the sensors (rotation R and translation t) and
the other two (IA and IH) are computing a local mapping
between range points and image pixels.

The nonlinear versions (PN and LG) of the geometry-
based algorithm are performing better when applied to a data
set different than the calibration data (e.g. robotic arm scan,
Figure 7). The linear image-based algorithm (IA) is very
good when there is little range variation in the 3D data. This
is because it uses an affine camera model, which allow a
somewhat more general fit of the data than the rigid transfor-
mation in point and line based algorithms. The homography
based algorithm (IH) correctly models the perspective 3D-2D
transformation for each of the scan planes. Its performance
can be improved if more scan planes are considered in the
calibration process, but this will require an automatic feature
detection and matching algorithm. Its main drawback is that
several features have to be found in each scan plane.

In general, the applicability of each of the presented meth-
ods is dependent on the practical problem that has to be
solved. The geometric-based methods are more suitable in
applications that require high precision - like medical imag-
ing applications. A line-based method will work better if
line/edges are presented in the data set (e.g. modeling an of-
fice type environments). When the camera has high distortion
and it can not be modeled as a perfect projective camera, the
image based algorithms can be applied to locally recover the
transformation for portions of the data set. The image-based
methods are in general fast and can be used for applications
that require real-time registration like in robotics.

In the future, we will apply the registration algorithms to a
panoramic image and the laser range scan to create an image-
based model for robot navigation. In this problem we have
to model a more complicated cylindrical projection for the
image data.
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