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Abstract

This paper presents a new type of image-based map for robot
navigation formed by panoramic models enriched with depth
and 3D planarity information. We take advantage of the
scene geometry implicitly contained in the model to local-
ize a mobile robot that is moving in the same environment.
The novelty of this model compared to the existing image-
based maps is that the motion of the robot is not restricted to
a predefined path or to locations close to the original images.
Experimental results demonstrate this. We also present a new
technique for extracting planar patches using both intensity
and sparse disparity information provided by a trinocular vi-
sion system.

1. Introduction
One of the most difficult problems in mobile robot research
is understanding the surrounding environment and navigat-
ing through it. A variety of world representations have been
proposed depending on the robot sensors, intended applica-
tion, and type and size of the environment. Some of the maps
are built a priori by the human operator [9], while others
are automatically built by the robot. In many cases, mobile
robots utilize vision sensors, and the techniques can be clas-
sified into two major approaches: geometrical-based maps
and image-based maps. The first approach represents the en-
vironment using geometrical features and the absolute rela-
tionship between them [14, 1]. Extracting and matching fea-
tures is a difficult vision problem. Image-based maps over-
come this problem by storing a collection of images that sam-
ple the navigation environment without explicitly extracting
a geometric model.

1.1. Image-Based Maps
Images contain rich information about the surrounding envi-
ronment. That is why a set of images organized in a mean-
ingful way can be used as a map for robot navigation. There
are two different approaches in image-based maps. One is to
memorize images along a path that should then be repeated
by the robot, and the other is to memorize images at fixed
locations as reference points in the navigation environment.

One of the earliest works from the first category (route
representation) was created by Tsuji [24, 10] where a
panoramic representation of the route is obtained by scanning
side views along the route. The robot uses the panoramic rep-
resentation recorded in a trial move, and the current one for
locating itself along the trial route. In [11] the model contains
a sequence of frontal views along the route. The robot mem-
orizes, at each position, an image obtained from a camera
facing forward, and the directional relation to the next view.
An interesting approach is presented in [23] where the route
is memorized as 2D Fourier power spectrums of consecutive
omnidirectional images at the horizon. The robot position is
determined by comparing patterns from memorized Fourier
power spectrum with the principal axis of inertia.

The problem with route representation approaches is that
the robot has to move along the same pre-stored route. To
overcome this problem, omnidirectional images are stored in
fixed places of the environment [5, 4, 22, 6]. This repre-
sentation is very suitable for homing applications where the
robot has to move toward a target location. The omnidirec-
tional images used to represent the space are very similar
and require a lot of memory space, so they are processed
and compressed. Ishiguro [5] transforms the images into the
Fourier space; Hong [4] uses a one-dimensional signature
of the image assuming that the robot is moving on a plane.
Winters [22] and Jogan [6] use an eigenspace representa-
tion of panoramic images. Localization is done by projecting
the representation of the current image into the eigenspace.
Other techniques compare the current image with the stored
ones, and find the optimal position. Ishiguro [5] uses a spring
model to arrange the observation points according to the en-
vironment geometry.

1.2. Problem Formulation

One of the major drawbacks of the existing image-based
maps is that the robot motion is restricted to either a prede-
fined route, or to positions close to the original locations of
the stored images. This is because they use the appearance
of the stored images without considering the geometry be-
hind them. We are proposing here a new type of image based
map formed by panoramic models, enriched with depth and
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Figure 1: (a) Cylindrical panoramic model; (b) Depth map: dark - close objects; whither - far objects; black - no depth value;
(c) Extracted vertical planar patches

3D planarity information, taken in the navigation environ-
ment. This model contains detailed information about the
navigation space without explicit 3D reconstruction. We use
geometric constraints applied to planar patches to localize a
robot that is moving in the same environment. The motion is
constrained to a plane but is not restricted to positions close
to the models.

For acquiring the model we use a trinocular vision system
[17]. As a result, one advantage of our model is that, because
we use the same sensor to acquire both intensity and depth
data, we do not need to register them as in a rendering system
based on multiple sensors of different modalities [12].

Our system is mainly designed for indoor navigation
where planar patches are naturally occurring and not chang-
ing significantly over time, so they will improve the robust-
ness of the localization algorithm. We have designed a spe-
cial segmentation algorithm that extracts planar patches from
the “stereo” panorama.

The rest of the paper is organized as follows. Section 2
presents the panoramic model and Section 3 describes the
segmentation algorithm that is extracting planar patches. The
localization algorithm is presented in Section 4, and experi-
mental results are shown in Section 5.

2. Panoramic Model with Depth
In this section we will present the process of building a
panoramic image-based model by mosaicing. Image mo-
saicing means merging a collection of images into a larger
one [20, 21, 13]. A panoramic mosaic contains a ������� view

of the environment and is constructed by composing planar
images taken from the same center of projection. This mo-
saic is geometrically correct because the input images are
related by a 2D projective transformation (homography).

For acquiring the images we used a trinocular stereo sys-
tem provided by Point Grey Research [17]. This system con-
sists of three cameras and produces a real time disparity map.
We use both intensity and depth information to produce a
“stereo” panorama. A similar approach is presented in [8],
with the difference that they used two panoramas to produce
the depth map, while we use disparity information provided
by the trinocular system for each of the images to be com-
posed in the panorama. In this way we have significant quan-
tizations errors in the generated disparity map because of the
smaller baseline. This causes problems in the modeling pro-
cess which we will address in Section 3.

The trinocular system is rotated around the optical center
of the reference camera. The intensity images are projected
on a cylinder with radius equal to the focal length of the cam-
era, and then correlated in order to determine the amount of
rotation between two consecutive images. In the cylindri-
cal space, a rotation becomes a translation, so we can easily
build the cylindrical image by translating each image with
respect to the previous one. To reduce discontinuities in in-
tensity between images, we weigh the pixels in each image
proportionally to their distance to the edge [21].

Along with the intensity cylindrical panoramic image, we
also build the corresponding depth map using the disparity
values provided by Triclops Stereo System. Because of the



particular geometry of the image, instead of storing depth
values, we store, for each pixel with disparity, the distance
from the center of the cylinder to the corresponding 3D point.
The result of the mosaicing technique is presented in Fig-
ure 1(a) and the corresponding “depth” map in Figure 1(b).

This panorama with depth is enriched with information
about planar patches. Next section describes a segmentation
algorithm that extracts planar features using both intensity
and range data.

3. Planar Patch Extraction
Most of the current algorithms for extracting planar regions
are based on range data [2, 7, 15]. In our case, the depth
information is provided by a stereo system with a relatively
small baseline (10 cm), so it is sparse and noisy. This makes
the segmentation using only range information almost im-
possible. To overcome this problem we designed a new seg-
mentation algorithm that is using both intensity and range
data.

The main observation that led us to the current algorithm
is that in a typical indoor environment, most of the planar
regions have an intensity distinct from the surrounding re-
gions. So the first step in the segmentation algorithm is a
region growing approach based on average intensity. This al-
gorithm is summarized in Subsection 3.1. Next we use depth
information to segment the regions generated by the region
growing algorithm based on a planarity test. To compensate
the errors in depth data, we use a generalized Hough trans-
form to eliminate the non-coplanar points. Subsection 3.2
describes this planar patch selection approach.

3.1. Intensity Based Segmentation
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rectangular
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Figure 2: Flow chart for intensity-based segmentation algo-
rithm

The flow chart of the segmentation algorithm is presented
in Figure 2. The fundamental structure used by the global re-
gion growing algorithm is a triangular mesh. The segmenta-
tion algorithm takes place in the image domain so the mesh
is also generated in pixel space. We choose a constrained
Delaunay triangulation [19] based on edge segments to con-
struct our 2D mesh because it generates a connected mesh
with disjoint triangles. The edge segments input to the tri-
angulation algorithm are edges of the resultant mesh. The
segmentation algorithm extracts regions with distinct aver-
age intensity that should have also distinctive edges.

For edge extraction and linking we used code provided by
Dr. S. Sarkar at University of South Florida [18]. Their edge
detection algorithm is an adaptation of the optimality crite-
ria proposed by Canny to filters designed to respond with a
zero crossing. For edge linking, they segment an edge chain
into a combination of straight lines and constant curvature
segments. Figure 3(b) presents the edge image after the edge
detection and linking algorithm is applied to the original im-
age (3(a)), and Figure 3(c) presents the result of constrained
Delaunay triangulation with the edge segments.

The global region growing algorithm starts with the tri-
angular mesh and merges the initial triangular regions into
larger ones that have similar average intensity. The process
stops when a threshold in the number of regions or total mesh
error is exceeded. We used a modified version of the region
growing algorithm presented in [2, 7].

From the initial triangular regions, region adjacency
graph is created, where the vertices represent the regions and
the edges indicate that two regions are adjacent. Each edge
is weighted by the error given by
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where & � and & � are the adjacent regions that share the edge,�
is the initial image to be segmented, and

� �
represents the

number of pixels from region & � . Larger regions are grown
from the initial mesh by merging adjacent regions. At each
iteration the two regions that produce the smallest error

���'�
are merged. This guarantees that the total error grows as
slowly as possible. After each merge the adjacency graph
is updated.

There are two thresholds for stopping the region growing
process. One is the total number of regions and the other is
an upper bound for the total error. In our case the first one
works better.

The resulting regions are presented in Figure 3 (d). They
usually have irregular shapes that can be either concave or
convex. We developed a heuristic algorithm that extracts the
biggest trapezoid out of a region. The algorithm proceeds by
first filling all the interior small holes and then finding the
biggest rectangle included in the original region. For easily
testing if a certain pixel belongs to the current region or not,
we created a black and white image that contains only the
current region. We then detect the bigger interior rectangle -
&�( - by horizontally scanning the image. The initial rectan-
gle is the longest vertical scan scan line of the current region.
This rectangle is extended in both left and right directions till
its area stops growing. The procedure is repeated for verti-
cal scan to obtain & � . The final rectangle is the biggest one
between & ( and & � . This is the expanded up and down into
a trapezoid to fit the original region shape. The result of this
algorithm is shown in Figure 3 (e).
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Figure 3: Planar region segmentation (a) Original image; (b) Edge detection and linking; (c) Constraint Delaunay triangula-
tion; (d) Region growing (e) Extracted trapezoidal regions; (f) Vertical planar regions;

3.2. Planar Regions Selection
The trapezoidal regions that result from the intensity based
segmentation algorithm are distinct regions not necessary
planar. This section describes the algorithm that thresholds
these regions based on a planarity error measure and proper-
ties of the corresponding 3D plane.

The trinocular system provides 3D information for some
of the interior points in each trapezoidal region. This depth
data is very noisy, so, before calculating the best fitted plane
to region points, we eliminate the outliers using a generalized
Hough transform [3]. Figure 4 shows a point cloud near a
planar region before (a) and after (b) the Hough transform.
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Figure 4: Point cloud for a planar region before (a) and after
(b) the Hough Transform

For computing the plane equation of a planar patch, we
compute the best fitted plane that approximates the points
selected by Hough transform. The plane parameters

��� �����
are determined by minimizing the error measure
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where
� �

are the points in the region,
�

is the number of

points,
�

in the unit normal of the plane, and
�

is the dis-
tance from the origin to the plane (all in the camera-based
coordinate system). This is a classical non-linear optimiza-
tion problem [2] and the solution for the plane normal

��� ���
is an eigenvector of length one of the covariance matrix �
associated with the smallest eigenvalue � , which is also the
minimum error. The covariance matrix is given by

� ����
�� ����� � � � 	� � � � ��� � � ������� � ���� � � �

The minimum distance to the best fitted plane is given by

�!� ��� � � ��
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After computing the plane that best approximates the
points in each region, we decide if this is a real planar patch
by thresholding the plane error - Equation (2), the number of
points with disparity relative to patch size, and patch size in
the image space. Since a typical indoor environment is dom-
inated by vertical walls, and these walls are quite useful for
the localization, we extract only planes that are almost verti-
cal and add them to the image model. Figure 3 (f) shows an
example of the extracted vertical planar patches.

We used this segmentation algorithm to extract planar
patches out of the cylindrical panoramic model. For each
planar patch we store its position in the panoramic image and
the corresponding plane equation. The result is presented in
Figure 1(c).

4. Localization
Having a panoramic image-based model with extracted pla-
nar patches, we want to find the position and orientation of



a robot with respect to the model’s coordinate system using
the current image observed by the robot and its correspond-
ing disparity map. We assume that the motion takes place in
a plane (the floor). For indoor environments this is normal
because the floor is almost flat. We first extract the trape-
zoidal planar patches from the current image using the algo-
rithm (Section 3). For each patch, we store the position in
the image and the corresponding plane equation.

The localization algorithm uses at least two pairs of corre-
sponding planar patches in the model and the image captured
by the robot to be localized. For matching the planar patches,
we compare their average intensities and then, if the differ-
ence in intensities is below a certain threshold, we correlate
a middle portion of the trapezoidal regions. For each planar
patch in the current image, we choose as the corresponding
patch in the model the one with the highest correspondence
score and the lowest difference in intensity, if it exists. If the
light has not changed since the model was taken, this algo-
rithm gives very good results.
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Figure 5: Localization using planar patches

The localization problem proceeds as follows (see Fig-
ure 5). Given two or more planes of known positions and
orientations with respect to different coordinate frames, com-
pute the position and orientation of one coordinate system
relative to the other, assuming motion in the

��� ��� �
plane

only.
Let us consider a plane that has parameters in the model

coordinate frame
� � � � �

and in the image coordinate frame���
	�� ��	 �
. The equations of this plane in the two coordinate

frames and their relationship are the following:
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and, � ����� � 	 
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(4)

where
� �

is a rotation about � axis, and
� ��� ���%� � ������� 	 is a

translation in
��� ��� �

plane. By substituting Equation (4) into
the plane equations and comparing them we get the following

constraints: � � � � ��	
� 	 � 
 � � �!	!� � (5)

The rotation
�"�

can be computed from the first constraint
(rotation about � axis), but for the translation

�
we need an-

other plane non-parallel with the first one. So for completely
localizing the robot we need at least two non-parallel planar
patches. We used a least square algorithm to solve this prob-
lem if more than two planar patches are available. The results
are further refined by minimizing

� � �� ����� ��#%$'& � � � � 	 � 

�� �����)( � � � 	 (

where
�

is the number of planar patches, and
��#%$'& � � � � 	 �

is
the distance between the normal vectors

� � �*	
. We solved

the minimization problem using a Levenberg-Marquadt non-
linear minimization algorithm [16]. The next subsection
presents the results of the localization algorithm.

5. Experimental Results
For evaluating the localization algorithm we took images in
seven locations around the panoramic model. In order to
demonstrate that our system works for positions that are not
necessarily close to the model, four of the chosen locations
are at more then 3 m away from the model. Figure 6 repre-
sents the original locations and computed locations, together
with the positions of the planes that were used for localiza-
tion. The errors in X, Z and rotation angle + for each position
are listed in Table 1. The dimension of the room is 10 m ,
8 m. The average error was about 30 cm in position and - �
in orientation. We have noticed that if the orientation of the
robot is close to one of the principal axes, the position error
along that axis is big compared to the error along the other
axis. This is because errors along the axis perpendicular to
the image plane are bigger, a classical vision-based recon-
struction problem.
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Figure 6: Results for localization experiments.

6. Conclusions and Future Work
This paper presents a new type of image-based map for
robot navigation formed by panoramic models enriched with



ErrX (cm) ErrZ (cm) Err( + ) (deg)

A -39 8 3
B -9 50 2
C -4 -23 8
D -11 25 9
E -3 -9 6
F -20 33 6
G -40 34 5

Table 1: Error for recovered position and orientation

sparse depth and 3D information about planar patches. We
used geometric constraints applied to planar patches to lo-
calize a robot that is moving in the same environment. The
novelty of this approach over the existing image-based maps
is that, by considering the geometry contained in the images,
we do not constrain the motion of the robot to a predefined
path or to locations close to the models. We also developed a
new type of segmentation algorithm that uses both intensity
and depth information for extracting planar patches.

One of the major limitations of the current approach is
that the intensity-based segmentation algorithm is very sensi-
tive to illumination changes. We want to overcome this prob-
lem by using a precise depth sensor (laser range-finder) and
more efficiently extract planar surfaces only from depth data.
This might also solve the time problem currently caused by
the slow Hough transform algorithm.

In the future we want to make use of multiple image-
based models for improving the accuracy of the extracted
planes. We also want to consider vertical lines as features
and compare the performance of a line-based localization al-
gorithm with the current one.
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