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Abstract

Although many convex relaxations of clustering

have been proposed in the past decade, current

formulations remain restricted to spherical Gaus-

sian or discriminative models and are susceptible

to imbalanced clusters. To address these short-

comings, we propose a new class of convex re-

laxations that can be flexibly applied to more

general forms of Bregman divergence clustering.

By basing these new formulations on normalized

equivalence relations we retain additional control

on relaxation quality, which allows improvement

in clustering quality. We furthermore develop

optimization methods that improve scalability by

exploiting recent implicit matrix norm methods.

In practice, we find that the new formulations are

able to efficiently produce tighter clusterings that

improve the accuracy of state of the art methods.

1 Introduction

Discovering latent class structure in data, i.e. clustering,

is a fundamental problem in machine learning and statis-

tics. Given data, the task is to assign each observation

a latent cluster label or distribution over cluster labels.

Clustering has a long history, with diverse approaches

proposed. Unfortunately, computational tractability re-

mains a fundamental challenge: standard clustering formu-

lations are NP-hard (Aloise et al., 2009; Dasgupta, 2008;

Arora & Kannan, 2005) and additional problem structure

must be postulated before efficient solutions can be guaran-

teed. Fortunately, standard clustering formulations are also

efficiently approximable (Kumar et al., 2004), and much

work has sought practical algorithms that improve solution

quality, even in lieu of theoretical bounds. In this paper we

contribute a new family of convex relaxations that improve

clustering quality while admitting efficient algorithms.

The techniques we propose are applicable to a variety

of clustering formulations. Two of the most important

paradigms for clustering are based on generative versus

discriminative modeling, with generative clustering con-

sisting of hard clustering with conditional models, hard

clustering with joint models, and soft clustering with joint

models. We address all but soft clustering in this paper.

Traditionally, clustering formulations have used generative

models to discover interesting latent structure in data. Let

X denote the observation variable and Y denote the la-

tent class variable. The simplest generative approach op-

timizes the conditional model P (X|Y) only, with Y as-

signed with the most likely value. This is also known as

hard conditional clustering. When P (X|Y) is Gaussian,

a popular approach is hard k-means (MacQueen, 1967)

where one alternates between optimizing Y and the model.

Banerjee et al. (2005) extended the formulation to general

exponential families of P (X|Y) via Bregman divergences.

Although hard conditional clustering provides a standard

baseline, finding global solutions in this case is intractable;

efficient methods are only known when the number of

clusters or the dimensionality of the space is constrained

(Hansen et al., 1998; Inaba et al., 1994). Consequently,

there has been significant work on developing approxima-

tions, particularly via convex relaxations that can be solved

in polynomial time. For example, Zha et al. (2001) derived

a convex quadratic reformulation of conditional Gaussian

clustering, and Peng & Wei (2007) obtained a tighter semi-

definite programming (SDP) relaxation. By analyzing the

complete positivity (CP) properties of the resulting con-

straint, Zass & Shashua (2005) propose an approximation

for Gaussian clustering based on CP factorization. These

can be further extended to relaxations of normalized graph-

cut clustering (Xing & Jordan, 2003; Ng et al., 2001). Un-

fortunately, all these relaxations are restricted to Gaussian

P (X|Y), and the optimization algorithms depend heavily

on the linearity of the SDP objective.

The conditional clustering approach can be extended to

hard joint clustering by explicitly including the class prior,

thus optimizing the joint likelihood P (X,Y) with the most

likely Y. Again, efficient solution methods are not gener-

ally known, leaving local approaches as the only option.

To smooth these objectives, the soft joint model optimizes



the marginal likelihood, P (X) =
∑

Y P (Y)P (X|Y)
(Neal & Hinton, 1998; Banerjee et al., 2005), which has

traditionally been tackled by expectation-maximization

(EM) (Dempster et al., 1977). The EM algorithm re-

mains susceptible to local optima however. Intensive re-

search has been devoted to understanding properties of the

Gaussian mixture model in particular (Moitra & Valiant,

2010; Kalai et al., 2010; Dasgupta & Schulman, 2007;

Chaudhuri et al., 2009). Although runtime can be reduced

to polynomial when the number of clusters or data dimen-

sionality is constrained, it remains exponential in these

quantities jointly. A few convex relaxations for soft joint

clustering models have therefore been proposed. For ex-

ample, Lashkari & Golland (2007) restrict cluster centers

to data points, while Nowozin & Bakir (2008) exert spar-

sity inducing regularization over the class priors (while still

embedding an intractable subproblem). Recent spectral

techniques can provably recover an approximate estimate

of Gaussian mixtures in polynomial time (Hsu & Kakade,

2013; Anandkumar et al., 2012). Unfortunately, this for-

mulation remains restricted to Gaussian P (X|Y).

Finally, discriminative models provide a distinct paradigm

for clustering that can be more effective when the goal of

learning is to predict labels from the observation X, e.g.

as in semi-supervised learning (Chapelle et al., 2006). In

this approach, one maximizes the reverse conditional like-

lihood P (Y|X), with Y imputed by the most likely la-

bel. A straightforward optimization strategy can alternate

between optimizing Y and the model, but this quickly

leads to local optima. Thus, here too, convex relax-

ation has been a popular approximation strategy, either in

the case of a large margin loss (Xu & Schuurmans, 2005)

or logistic loss (Joulin & Bach, 2012; Joulin et al., 2010;

Bach & Harchaoui, 2007; Guo & Schuurmans, 2007). To

date, such formulations have been entirely based on

SDP relaxations with unnormalized equivalence matrices,

whose elements indicate whether two examples belong to

the same cluster. Such an approach is plagued by imbal-

anced clustering, since the model employs no mechanism

to avoid assigning all examples to a single cluster.

In this paper we present new convex relaxations for hard

conditional, hard joint, and discriminative clustering. One

of the key results is a tighter convex relaxation of hard

generative models for Bregman divergence clustering that

also accounts for cluster size. We design efficient new al-

gorithms that optimize the resulting nonlinear SDPs us-

ing recent induced matrix norm techniques. By applying

standard rounding methods, we observe that the resulting

clustering algorithms deliver lower sum of intra-cluster di-

vergences and more faithful alignment with class labels in

practice. Finally, applying our formulation to discrimina-

tive models immediately leads to normalized equivalence

relations, which automatically alleviate the problem of im-

balanced cluster assignment faced by current relaxations.

2 Background

Following (Banerjee et al., 2005), we formulate clustering

as maximum likelihood estimation in an exponential fam-

ily model with a latent variable Y ∈ {1, . . . , d} (the class

indicator). The observed variable X is in Rn, from which

an iid sample X = (x1, . . . ,xt)
′ has been collected.

Generative models. In generative modeling we parame-

terize the joint distribution over (X,Y) as Y→X:

p(Y = j) = qj , (1)

p(X = x|Y = j) = exp (−DF (x,µj))Zj(x). (2)

Here Θ:={qj ,µj}dj=1 are the parameters, where q ∈ ∆d,

the d dimensional simplex. We assume P (X|Y) is an ex-

ponential family model defined by the Bregman divergence

DF , where F is a strictly convex function with gradient

f = ∇F (the transfer function), such that

DF (x,y) := F (x)− F (y)− 〈x− y, f(y)〉 . (3)

Here it is known that DF (x,y) = DF∗(f(y), f(x)),
where F ∗ is the Fenchel conjugate of F . Also, f−1 is well

defined by the strict convexity of F , and f−1 = ∇F ∗. Ex-

amples of commonly used Bregman divergences include

Euclidean (f(x) = x), and sigmoid (f(x) = log x
1−x ).

Given data X , the parameters Θ can be estimated via

argmax
Θ

max
Y

p(X,Y |Θ) (4)

or argmax
Θ

p(X|Θ) = max
Θ

∑

Y

p(X,Y |Θ), (5)

depending on whether Y is to be maximized (hard cluster-

ing) or summed out (soft clustering). Here we are letting Y
denote a t×d assignment matrix such that Yij ∈ {0, 1} and

Y 1 = 1 (a vector of all 1’s with proper dimension). If we

additionally let Γ = (µ1, . . . ,µd) and B = (b1, . . . ,bd),
such that bj = f(µj), then the conditional likelihood (2)

can be rewritten over the entire data set as

p(X|Y ) = exp (−DF (X,Y Γ))Z(X) (6)

= exp (−DF∗(Y B, f(X)))Z(X), (7)

where DF (X,Y Γ) :=
∑t

i=1 DF (Xi:, Yi:Γ) and

DF∗(Y B, f(X)) :=
∑t

i=1 DF∗(Yi:B, f(Xi:)) are

row-wise sums, such that Xi: stands for the i-th row of X .

Discriminative models. As an alternative, discriminative

clustering uses a graphical model X→Y, and focuses on

modeling the dependence of the labels Y given X:

p(Y |X;W,b) = exp(−DF∗(Y, f(XW + 1b′)))Z(X),

where b ∈ Rd is the offset for all clusters. A soft clustering

model cannot be applied in this case, since
∑

Y p(X,Y ) =
p(X). Instead, hard optimization of Y leads to

min
W,b,Y

DF (XW + 1b′, f−1(Y )). (8)



All of these problems involve a mix of discrete and contin-

uous variables, which raises considerable challenges. Our

goal is to develop convex relaxations that can be solved

efficiently while leading (after rounding) to higher quality

solutions than those obtained by naive local optimization.

3 Conditional Generative Clustering

We first consider the case of hard conditional clustering,

where the prior q has been fixed to some value beforehand.

3.1 Case 1: Jointly Convex Bregman Divergence

First note that by using (6), the estimator (4) can be re-

duced to minY,Γ DF (X,Y Γ). Here Banerjee et al. (2005)

showed that for any fixed assignment Y the optimal Γ is

given by Γ = (Y ′Y )†Y ′X , for any Bregman divergence

DF . Plugging the solution back into the formulation, the

problem becomes minY DF (X,Y (Y ′Y )†Y ′X). Let us in-

troduce the normalized equivalence matrix

M = Y (Y ′Y )†Y ′ = Y diag(Y ′1)†Y ′, (9)

whereM is the set of possibilities. It then suffices to solve

min
M∈M

DF (X,MX). (10)

This problem remains challenging for two reasons. First,

the objective is not convex in M , since DF is only guar-

anteed to be convex in its first argument. However, many

Bregman divergences are jointly convex in both arguments;

e.g. Mahalonobis distance, KL divergence, Bernoulli en-

tropy, Bose-Einstein entropy, Itakura-Saito distortion, and

von Neumann divergence (Wang & Schuurmans, 2003;

Tsuda et al., 2004). We consider this simpler case first.

The second challenge lies in the non-convexity of the con-

straint setM. Peng & Wei (2007) have shown that

M =
{
M : M = M ′,M2 = M, tr(M) ≤ d,Mi: ∈ ∆t

}
.

Since M2 = M is the source of non-convexity, its convex

hull can be used to construct a convex outer approximation

ofM (note that this is not taking the convex hull ofM):

M1 :=conv
{
M :M=M ′=M2

}
∩
{
M ∈∆t

t : tr(M) ≤ d
}

= {M : 0 �M � I, tr(M) ≤ d,Mi: ∈ ∆t} ,
where by M � 0 we also encode M = M ′. Note that

M � I is implied by 0 � M and Mi: ∈ ∆t (e.g. Mirsky,

1955, Theorem 7.5.4). Conveniently, M1 can be relaxed

further by keeping only the spectral constraints

M2 := {M : 0 �M � I, tr(M) ≤ d,M1 = 1} .
Although this set M1 has been widely used, it is still not

clear whether it is the tightest convex relaxation ofM; that

is, whetherM1 = convM? With some surprise, we show

that this conjecture is not true in Appendix A.

3.1.1 Optimization

Assuming DF is convex in its second argument, one can

easily minimize DF (X,MX) over M ∈M1 by using the

alternating direction method of multipliers (ADMM)

(Boyd et al., 2010). In particular, we split the constraints

into two groups: spectral and non-spectral, leading to the

following augmented Lagrangian:

L(M,Z,Λ)=DF (X,MX)+δ(Mi: ∈ ∆t)+δ(Z ∈M2)

− 〈Λ,M − Z〉+ 1

2µ
‖M − Z‖2F ,

where δ(·) = 0 if · is true;∞ otherwise. The ADMM then

proceeds as follows in each iteration:

1. Mt ← argminM L(M,Zt−1,Λt−1); i.e. optimize ob-

jective under non-spectral constraints.

2. Zt ← argminZ L(Mt, Z,Λt−1); i.e. project to satisfy

the spectral constraints.

3. Λt←Λt−1 +
1
µ (Zt −Mt); i.e. update the multipliers.

Note that since we constrain Mi: ∈ ∆t, the objective

DF (X,MX) remains well defined in Step 1. Furthermore,

since the objective decomposes row-wise, each row of M
can be optimized independently, which constitutes a key

advantage of this scheme. Second, since Step 2 merely in-

volves projection onto spectral constraints M2, a closed

form solution exists based on eigen-decomposition, as es-

tablished in the following lemma.

Lemma 1. Let H = I − 1
t11

′. Then

M2 =
{
HMH + 1

t11
′ : M ∈M3

}
, (11)

whereM3 = {M : 0 �M � I, tr(M) ≤ d− 1} . (12)

Proof. Clearly the right-hand side of (11) is contained in

M2. Conversely, for any M2 ∈M2, we construct an M ∈
M3 as M = M2 − 1

t11
′. Note that M21 = 1 implies

1/
√
t is an eigenvector of M2 with eigenvalue 1. Therefore

M � 0. The rest is easy to verify.

By Proposition 1, the problem of projecting any matrix A
toM2 can be accomplished by solving

min
Z∈M2

‖Z −A‖2 = min
S∈M3

∥
∥HSH − (A− 1

t11
′)
∥
∥
2
.

Let B = A− 1
t11

′ and V = B−HBH . Then HVH = 0,

hence the probem reduces to solving

min
S∈M3

‖HSH−HBH−V ‖2=min
S∈M3

‖HSH−HBH‖2+‖V ‖2.

Now it suffices to solve minT∈M3
‖T −HBH‖2 and

show the optimal T satisfies HTH = T . Suppose HBH
has eigenvalues σi and eigenvectors φi. Then the optimal

T must have eigenvalues µi and eigenvectors φi such that

min
µi

∑

i

(µi−σi)
2, s.t. µi ∈ [0, 1],

∑

i

µi ≤ d−1. (13)

Since 1 is an eigenvector of HBH with eigenvalue 0, it is

trivial that the corresponding µi in the optimal solution is

also 0. Therefore, T1 = 0 and HTH = T . Finally the

optimal Z is simply given by T + 1
t11

′.



3.2 Case 2: Arbitrary Bregman Divergence

When the Bregman divergence is not convex in its second

argument, we require a more general treatment. The key

idea we exploit is to introduce a regularizer that allows a

useful form of representer theorem to be applied. In partic-

ular, we augment the negative log likelihood of P (Y |X) in

(7) with a regularizer on the basis B, weighted by the num-

ber of points in the corresponding cluster. The resulting

objective can be written:

min
Y,B

DF∗(Y B, f(X)) +
α

2
‖Y B‖2F . (14)

Note B must be in the range of f . By the representer theo-

rem, there exists a matrix A ∈ Rt×n such that the optimal

B can be written B = (Y ′Y )†Y ′A, which yields

min
M,A

DF∗(MA, f(X)) +
α

2
tr(A′MA), (15)

where M is defined in (9). We will work with this formu-

lation by relaxing the domain of M to M2. Extension to

M ∈M1 is also straightforward by ADMM.

3.2.1 Optimization

Although (15) does not immediately exhibit joint convexity

in M and A, a change of variable immediately leads to a

convex formulation. Denote T = MA, then Im(T ) ⊆
Im(M) where Im(M) is the range of M . Also, denote

L(Z) := DF∗(Z, f(X)) for clarity.

Proposition 2. The problem (15) is equivalent to

min
M∈M3

min
T :Im(T )⊆Im(M)

L(T ) +
α

2
tr(T ′M†T ) (16)

=min
T

L(T ) +
α

2
min

M∈M3:Im(T )⊆Im(M)
tr(T ′M†T )

︸ ︷︷ ︸

:=Ω2(T ), with Ω(T )≥0

. (17)

That is, any optimal (M,A) for (15) provides an optimal

solution to (16) via T = MA. Conversely, given any

optimal (M,T ) for (16), Im(T ) ⊆ Im(M) guarantees

T = MA for some A. Thus (M,A) is optimal for (15).

This proposition allows one to solve a convex problem in

T , provided that Ω2(T ) is convex and easy to compute. In-

terestingly, Ω(T ) has other favorable properties to exploit.

Theorem 3. Ω(T ) defines a norm on T . Ω and its dual

norm Ω∗ can be computed in O(t3) and O(t2d) time resp.

The same conclusion holds for M ∈ M2 (proof in Ap-

pendix B).

With these conclusions, we can optimize (17) using a gen-

eralized conditional gradient method, accelerated by local

search (Laue, 2012; Zhang et al., 2012); see Algorithm 1

(further details are given in Appendix C). At each iteration,

the algorithm employs a linear approximation of L The in-

ner oracle searches for a steepest descent direction by com-

puting a subgradient of the dual norm Ω∗. Algorithm 1 is

Algorithm 1 Conditional gradient for optimizing (17)

1: Initialize T0 = 0. s0 = 0.

2: for k = 0, 1, . . . do

3: Set Sk ∈ ∂Ω∗(∇L(Tk)), i.e. find a minimizer of

minS 〈∇L(Tk), S〉+ α
2Ω

2(S) up to scaling.

4: Line search:

(a, b) := argmina≥0,b≥0 L(aTk+bSk)+
α
2 (ask+b)

2.

5: Set Tk+1 = aTk + bSk, sk+1 = ask + b.
6: end for

guaranteed to find an ǫ accurate solution to (17) in O(1/ǫ)
iterations; see e.g. (Zhang et al., 2012). The optimal M can

then be recovered by evaluating Ω at the optimal T .1

We prove Theorem 3 in three steps.

1. Computing Ω. Let the singular values of T be s1 ≥
. . . ≥ st. Since Ω2(T ) = minM∈M3

tr(TT ′M†), by von

Neumann’s trace inequality (Mirsky, 1975) the optimal M
must have eigenvectors equal to the left singular vectors of

T . The minimal objective value is then
∑

i s
2
i /σi, where

σi are the eigenvalues of M . It suffices to solve

f(s) := min
{σi}

t∑

i=1

s2i
σi

, s.t. σi∈ [0, 1],
t∑

i=1

σi ≤ d−1 (18)

= min
σi∈[0,1]

max
λ≥0

t∑

i=1

s2i
σi

+ λ

(

1− d+

t∑

i=1

σi

)

(19)

= max
λ≥0

{

λ(1−d) + min
σi∈[0,1]

t∑

i=1

(
s2i
σi

+λσi

)}

. (20)

Fixing λ, the optimal σi is attained at σi(λ) = si√
λ

if

λ ≥ s2i , and 1 if λ < s2i . Note that σi(λ) decreases

monotonically for λ ≥ s2t , hence we only need to find a

λ that satisfies
∑t

i=1 σi(λ) = d − 1, since the constraint
∑

i σi ≤ d− 1 must be equality at the optimum. This only

requires a line search over λ, which can be conducted effi-

ciently as follows. Suppose the optimal λ lies in [s2k, s
2
k+1].

Then σi(λ) = 1 for all i ≤ k and σi(λ) = si/
√
λ for all

i > k. So k + 1√
λ

∑t
i=k+1si = d− 1, hence

√
λ=

1

d−1−k

t∑

i=k+1

si∈ [sk, sk+1]⇒







k+
∑

t

i=k+1
si

sk
≤d−1

k+
∑

t

i=k+1
si

sk+1
≥d−1

.

Now note there must be a k satisfying these two conditions.

Since both k+ 1
sk

∑t
i=k+1 si and k+ 1

sk+1

∑t
i=k+1 si grow

monotonically in k, the smallest k that satisfies the second

condition must also satisfy the first condition. Hence the

optimal solution is σi = 1 for all i ≤ k, and σi = (d− 1−
k)si/

∑t
i=k+1 si for i > k.

1 This solution is valid since (16) minimizes over M and T . If
the problem were minT maxM instead, the optimal M could not
be generally recovered by maximizing M for fixed optimal T .



Algorithm 2 Compute f(s) with given d.

1: for k = 0, 1, . . . , d− 2 do

2: if
∑t

i=k+1 si ≥ (d− 1− k)sk+1 then break

3: end for

4: Return f(s) =
∑k

i=1 s
2
i +

1
d−1−k

(
∑t

i=k+1 si

)2

.

The algorithm for evaluating f(s) = Ω2(T ) is given in

Algorithm 2. The ‘if’ condition in step 2 must be met when

k = d − 2. The computational cost is dominated by a full

SVD of T , and fortunately our method needs to compute

Ω(T ) only once at the optimal T .

2. Ω is a norm. Note that Ω(T ) depends only on the

singular values of T . So it suffices to show that κ(s) :=
√

f(s) is a symmetric gauge (Horn & Johnson, 1985, The-

orem 3.5.18), where f(s) is defined in (18). Clearly κ(s)
is permutation invariant, κ(as)= |a|κ(s) for all a∈R, and

κ(s) = 0 iff s = 0. So it suffices to prove the triangle in-

equality for κ(s). For any s1 and s2, let t1 = κ(s1) and

t2=κ(s2). Then κ( s1t1 ) = κ( s2t2 ) =1, and

s1 + s2

t1 + t2
=

t1
t1 + t2

s1

t1
+

t2
t1 + t2

s2

t2
. (21)

Note f(s) is convex because
∑

i s
2
i /σi is jointly convex in

(s,σ), and f(s) just minimizes out σ. So the sub-level

set at level 1 for f (and κ) is convex. Therefore by (21),

κ((s1+ s2)/(t1+ t2)) ≤ 1, and so κ(s1+ s2) ≤ t1+ t2 =
κ(s1) + κ(s2). The claim follows.

3. Compute the subgradient of Ω∗. Given a matrix R,

the dual norm is Ω∗(R) = maxT :Ω(T )≤1 tr(R
′T ). Let the

SVD of R be R = U diag{r1, . . . , rt}V ′, where r1 ≥
. . . ≥ rt. Since Ω is defined via the singular values of

T , again by von Neumann’s trace inequality the maximum

is attained when the left and right singular values of T are

U and V , resp. Then Ω∗(R) =maxs:f(s)≤1 r
′s, which by

(18) is equivalent to

max
s,σ

r′s, s.t. σi ∈ [0, 1],

t∑

i=1

σi ≤ d−1,
t∑

i=1

s2i
σi
≤ 1. (22)

Using the Cauchy-Schwarz inequality, we have

r′s =
t∑

i=1

si√
σi
· ri
√
σi ≤

(
t∑

i=1

s2i
σi

)1/2( t∑

i=1

r2i σi

)1/2

≤
(

t∑

i=1

r2i σi

)1/2

≤ ‖(r1, r2, . . . , rd−1)
′‖ . (23)

where the last two inequalities use the constraints in

(22). The equalities can all be attained by setting si =
ri/ ‖(r1, r2, . . . , rd−1)

′‖ and σi = 1 for i ≤ d − 1, and

si = 0 and σi = 0 for i ≥ d. Clearly U diag(s)V ′ is a

subgradient of Ω∗ at R. Evaluating the dual norm is inex-

pensive, since it requires only the top d− 1 singular values

of R.

4 Discriminative Clustering

Although generative models can often reveal useful latent

structure in data, many problems such as semi-supervised

learning and multiple instance learning are more con-

cerned with accurate label prediction. In such settings,

discriminative models X → Y can often be more ef-

fective (Joulin & Bach, 2012; Bach & Harchaoui, 2007;

Xu & Schuurmans, 2005).

Before attempting a convex relaxation for the discrimina-

tive model (8), it is important to recognize that a plain op-

timization over (W, b, Y ) will lead to vacuous solutions,

where all examples are assigned to a single cluster j and

bj = ∞. A common solution is to add a regularizer on Y
to enforce a more balanced cluster distribution. Note that

this situation is opposite of generative clustering, where

one must upper bound d, since otherwise the joint likeli-

hood would be trivially maximized by assigning each data

point to its own cluster.

For discriminative clustering, we consider a special case

F (x) = log
∑

i exp(xi), i.e. where the transfer ∇F is sig-

moidal (Joulin & Bach, 2012). A natural choice of regu-

larizer on Y is the entropy of cluster sizes, i.e. −h(Y ′1)
where h(x) =

∑

i xilog xi. In this setting, we derive a

convex relaxation for discriminative clustering that uses the

normalized equivalence matrix.

By adding value regularization ‖WY ′‖2 to (8), one obtains

min
W,b,Y

1

t
DF (XW+1b′, f−1(Y )) +

γ

2
‖WY ′‖2+h(Y ′1)

= min
W,b,Y

1

t
F (XW + 1b′)− 1

t
tr((XW + 1b′)Y ′)

− 1

t
F (Y ) +

γ

2
‖WY ′‖2 + h(Y ′1)

= min
W,b,Y

max
Λ:Λi:∈∆

−1

t
F ∗(Λ) +

1

t
tr(Λ′(XW + 1b′))

− 1

t
F (Y )−tr((XW + 1b′)Y ′)+

γ

2
‖WY ′‖2+h(Y ′1)

= min
W,b,Y

max
Ω:Ωi:∈∆

−1

t
F ∗(ΩY ) +

1

t
tr(Y ′Ω′(XW + 1b′))

− 1

t
F (Y )− 1

t
tr((XW+1b′)Y ′)+

γ

2
‖WY ′‖2+h(Y ′1).

Here, the second step follows from Fenchel’s identity

F (x) = maxz∈domF∗ x′z − F ∗(z), where dom denotes

the effective domain of a convex function. The last step in-

volves a change of variable, Λ = ΩY , and converted the

constraints on Λ to Ωi: ∈ ∆ (Guo & Schuurmans, 2007).

By taking the gradient with respect to W and b, one ob-

tains

W = 1
tX

′(I − Ω)Y (Y ′Y )†, and Ω′1 = 1. (24)

Note that − 1
tF

∗(ΩY ) + h(Y ′1) ≤ − 1
tF

∗(Ω) + c0 where

c0 is some constant (Joulin & Bach, 2012, Eq 3). Using



(24) and the fact that F (Y ) is a constant, one can upper

bound the objective by

min
M∈M

max
Ω:Ωi:∈∆,Ω′1=1

−1

t
F ∗(Ω)− 1

2γt2
‖X ′(I−Ω)M‖2. (25)

Importantly, this formulation is expressed completely in

terms of the normalized equivalence matrix M , which

constitutes a significant advantage over (Joulin & Bach,

2012; Guo & Schuurmans, 2007). Rather than resort to

the proximal gradient method to solve for Ω given M
(Joulin & Bach, 2012), which is slow in practice, we can

harness the power of second order solvers like L-BFGS by

dualizing the problem back to the primal form, which leads

to an unconstrained problem. This reformulation also sheds

light on the nature of the relaxation (25).

Fixing M ∈ M, we add a Lagrange multiplier τ ∈ Rt to

enforce Ω′1 = 1. By introducing the change of variable

Ψ = I −Ω, the optimization over Ω becomes equivalent to

min
Ψ≤I:Ψ1=0

1

t
F ∗(I −Ψ)+

1

2γt2
‖X ′ΨM‖2+1

t
τ ′Ψ1. (26)

The tool we use for dualization is provided by the following

lemma.

Lemma 4. (Borwein & Lewis, 2000, Theorem 3.3.5) Let

J and G be convex functions, and A a linear transform.

Suppose Adom J has nonempty intersection with {x ∈
domG∗ : G∗ is continuous at x}. Then

min
x

J(x) +G(Ax) = max
y
−J∗(−A′y)−G∗(y). (27)

To apply Lemma 4 to (26), choose the linear transform

A to be Ψ 7→ 1
tX

′ΨM , G(Ψ) = 1
2γ tr(ΨM†Ψ′),2 and

J(Ψ) = 1
tF

∗(I − Ψ) + 1
t τ

′Ψ1 over Ψ1 = 0 and Ψ ≤ I
(elementwise). Then the problem (26) becomes equivalent

to

min
M,τ ,Υ∈Rt×n

1

t

∑

i

[F ( 1tXi:Υ
′M+τ ′)− ( 1tXi:Υ

′M:i+τi)]

+
γ

2
tr(Υ′MΥ). (28)

Note that F = g can be interpreted as a soft max, hence

the result is related to the typical max-margin style model.

The loss of each example i is the soft max of Xi:Υ
′M +τ ′

(a row vector) minus Xi:Υ
′M:i + τi. Here τi is an off-

set associated with each training example (cf. bj for each

cluster).

4.1 Optimization

The most straightforward method for optimizing (28) is to

treat it as a convex function of M , whose gradient and ob-

jective value can be evaluated by minimizing out Υ and τ .

2Since M
2 = M for M ∈ M, (26) can also be recovered

by setting G(Ψ) = 1

2γ
tr(ΨΨ′). However, to reformulate the

problem into (29), which is the key to efficient optimization, it is
crucial to include M

† in G.

Since both Υ and τ are unconstrained, this can be easily

accomplished by quasi-Newton methods like L-BFGS. In-

terestingly, thanks to the structure of the problem, we can

optimize (28) even more efficiently by applying the same

change of variable as in §3.2.1. Letting V = MΥ ∈ Rt×n

and constraining M toM3, the problem (28) becomes

min
V,τ

γ

2
Ω2(V )+

1

t

∑

i

[F ( 1tXi:V
′+τ ′)−( 1tXi:V

′
i:+τi)]. (29)

This objective again absorbs the spectral constraints on M
into the norm Ω, and can be readily solved by generalized

conditional gradient in Algorithm 1. The extension to M ∈
M2 is also immediate.

5 Joint Generative Clustering

In all models considered so far, we have ignored the cluster

prior q. This quantity is often useful in practice for infer-

ence at cluster level, and can often be learned well by joint

generative models. In this section, we extend our convex

relaxation technique to this setting.

Assume a multinomial distribution over cluster prior pa-

rameterized by w ∈ Rd: p(Y = j) = exp(wj − g(w))
where g(w) = log

∑

i exp(xi). Then by (1) and (7),

the negative log joint likelihood is: −1′Yw + tg(w) +
L(Y B) + const. As above, one can add regularizers on w

and B, as well as an entropic regularizer h(Y ′1) to encour-

age cluster diversity, yielding:

min
w,B,Y

− 1

t
1′Yw + g(w) +

β

2
‖Yw‖2 + h(Y ′1) (30)

+
1

t
L(Y B) +

α

2
‖Y B‖2F .

This formulation can be convexified in terms of M by using

the same techniques as §4 and §3.2, respectively. In par-

ticular, consider the prior p(Y ) as a discriminative model

Z → Y , where Z can only take a constant scalar value 1.

Then treating Z as the X in §4, it is easy to show that the

first line of (30) can be relaxed into (ignoring the offset τ ):

min
s∈Rt

β

2
tr(s′Ms)− 1

t
1′Ms+ g

(
1

t
Ms

)

. (31)

Finally by applying the same technique that converted (14)

to (15) in conditional model, one can reformulate (30) into:

min
A,M,s

β

2
tr(s′Ms)− 1

t
1′Ms+ g( 1tMs) (32)

+
1

t
L(MA) +

α

2
tr(A′MA).

To optimize this formulation, let u = Ms ∈ Rt and T =



Data set t n d Data set t n d

Yale 165 1024 15 Diabetes 768 8 2

ORL 400 1024 40 Heart 270 13 2

E-mail 1000 57 2 Breast 699 9 2

Balance 625 4 2

Table 1: Properties of the data sets used in the experiments.

MA ∈ Rt×n. Then with M ∈M3, (32) becomes

min
u,T

g
(u

t

)

− 1

t
1′u+

1

t
L(T )+min

M∈M3

β

2
u′M†u+

α

2
tr(T ′M†T )

=min
u,T

g
(u

t

)

− 1

t
1′u+

1

t
L(T )+

1

2
Ω2([

√

βu,
√
αT ]), (33)

which can be solved by the methods outlined above.

6 Experimental Evaluation

We evaluated the proposed convex relaxations for the three

models developed in this paper: conditional (jointly convex

or arbitrary Bregman divergence), joint, and discriminative.

Datasets. We used seven labeled data sets for these ex-

periments. Five of them are from the UCI repository

(Frank & Asuncion, 2010): Balance, Breast Cancer, Dia-

betes, Heart, and Spam E-mail. The two others are mul-

ticlass face data sets: ORL3 and Yale4. We downsampled

Spam-Email to 1000 points preserving the class ratio. The

properties of these data sets are summarized in Table 1, giv-

ing the values of t, n, and d. We shifted all features to be

nonnegative so that all transfer functions can be applied.

Finally the features were normalized to unit variance.

Transfer functions. For all generative models, we tested

two transfer functions: linear and sigmoid.

Parameters settings. To closely approximate the original

objective without creating numerical difficulty, we chose

all the regularization parameters α, β and γ to be rea-

sonably small α ∈ {10−5, 10−9}, β ∈ {10−5, 10−9},
γ ∈ {10−6, 10−9} and report the experimental results for

the choices that obtain highest accuracy. However, the re-

sults were not sensitive to these values.

6.1 Conditional: Jointly Convex Bregman Divergence

Algorithms. Our method (cvxCondJC) first minimizes

DF (X,MX) as in (10), but over M ∈M1. The optimal

M is then rounded to a hard cluster assignment via spec-

tral clustering (SC rounding, Shi & Malik, 2000). The re-

sult is further used to initialize a local re-optimization using

the original objective DF (X,Y Γ). Since k-class spectral

clustering involves a k-means algorithm, with random ele-

ments, this was repeated 10 times and variance reported.

3cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4http://cvc.yale.edu/projects/yalefaces/yalefaces.html

cvxCondJC cvxCondJC

altCondJC+SC rounding +SC+re-opt

Spam E-mail

lin obj(×102) 9.4± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 71.5±11.6 76.3±13.6 75.1±12.6

sigm obj(×103) 7.8± 0.1 7.7± 0.1 7.7± 0.1

sigm acc(%) 75.1±12.0 80.0± 9.4 76.0± 7.2

ORL

lin obj(×103) 3.3± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 57.0± 3.5 55.4± 2.9 40.6± 2.3

sigm obj(×102) 3.8± 0.1 3.5± 0.1 3.7± 0.1

sigm acc(%) 57.8± 3.6 58.2± 4.1 48.2± 3.0

Yale

lin obj(×101) 5.6± 0.1 5.5± 0.0 5.8± 0.1

lin acc(%) 46.8± 1.7 47.0± 2.1 44.5± 4.2

sigm obj(×102) 9.6± 0.4 9.2± 0.1 9.6± 0.3

sigm acc(%) 49.9± 2.1 51.5± 2.1 46.6± 4.1

Balance

lin obj(×101) 7.2± 0.0 7.1± 0.0 7.2± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 54.2± 4.6

sigm obj(×102) 5.0± 0.3 3.9± 0.0 4.0± 0.0

sigm acc(%) 49.3± 5.1 50.5± 5.1 49.4± 4.3

Breast Cancer

lin obj(×102) 1.8± 0.2 1.6± 0.0 1.7± 0.0

lin acc(%) 72.5±12.7 84.7± 8.8 78.7±10.4

sigm obj(×102) 8.5± 0.2 8.5± 0.1 8.5± 0.1

sigm acc(%) 72.4±13.7 72.5±13.7 70.6±11.6

Diabetes

lin obj(×102) 2.0± 0.1 2.0± 0.0 2.0± 0.0

lin acc(%) 57.1± 0.5 58.5± 0.0 58.5± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.1± 0.0

sigm acc(%) 58.8± 3.9 58.2± 0.1 58.0± 0.6

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 68.1±10.0 65.6± 7.8 65.4± 5.0

sigm obj(×102) 7.5± 0.2 7.2± 0.2 7.2± 0.2

sigm acc(%) 63.4± 5.9 64.9± 6.6 64.4± 7.8

Table 2: Experimental results for the conditional model with
jointly convex Bregman divergences. Here “lin” and “sigm” refer
to linear and sigmoid transfers respectively. Best results in bold.

We compared our algorithm with altCondJC (hard EM),

which optimizes DF (X,Y Γ) by alternating, with Y reini-

tialized randomly 30 times.

Results. In Table 2, the first and third rows of each

block gives the optimal value of DF (X,Y Γ) found by

altCondJC, and by cvxCondJC (both after SC rounding

and re-optimization). The second and fourth lines give the

highest accuracy among all possible matchings between the

clusters and ground truth labels. Across all data sets and

transfer functions, cvxCondJC with SC rounding and re-

optimization finds a lower objective value and higher accu-

racy than altCondJC. In addition, although the objective



cvxCond cvxCond

altCond+SC rounding +SC rounding

& re-opt

Spam E-mail

lin obj(×102) 9.3± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 75.0± 9.0 79.8±10.2 73.9±13.3

sigm obj(×103) 8.0± 0.2 7.7± 0.1 7.7± 0.1

sigm acc(%) 64.8±12.5 78.7± 7.8 75.3± 5.5

ORL

lin obj(×103) 2.7± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 62.6± 3.0 59.4± 2.4 40.1± 2.3

sigm obj(×102) 4.0± 0.1 3.4± 0.0 3.7± 0.1

sigm acc(%) 60.1± 6.1 60.0± 4.9 48.6± 2.7

Yale

lin obj(×101) 6.1± 0.2 5.7± 0.1 5.8± 0.1

lin acc(%) 43.3± 3.2 45.2± 3.2 44.4± 4.0

sigm obj(×102) 10.3± 0.2 9.3± 0.1 9.5± 0.2

sigm acc(%) 46.6± 2.6 51.1± 2.7 46.2± 3.0

Balance

lin obj(×101) 8.0± 0.4 7.1± 0.0 7.1± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 55.5± 5.1

sigm obj(×102) 4.0± 0.0 3.9± 0.0 4.0± 0.1

sigm acc(%) 54.1± 8.3 53.0± 6.0 50.9± 5.2

Breast Cancer

lin obj(×102) 1.7± 0.1 1.6± 0.0 1.7± 0.0

lin acc(%) 75.4±13.3 85.8± 6.6 78.7±10.9

sigm obj(×102) 8.8± 0.2 8.5± 0.1 8.6± 0.2

sigm acc(%) 66.8± 8.4 72.3±12.5 70.3±11.0

Diabetes

lin obj(×102) 2.0± 0.0 2.0± 0.0 2.0± 0.0

lin acc(%) 58.1± 0.6 58.3± 0.0 58.2± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.0± 0.0

sigm acc(%) 54.7± 3.0 58.2± 0.2 58.1± 0.5

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 69.4± 9.3 67.0± 5.5 66.1± 5.2

sigm obj(×102) 7.2± 0.1 7.1± 0.1 7.3± 0.2

sigm acc(%) 66.9±10.7 64.9± 8.2 65.8± 6.3

Table 3: Experimental results for the conditional model with ar-
bitrary Bregman divergences. Best results shown in bold.

achieved after rounding might be higher than that of alt-

CondJC, the accuracy is usually comparable. Overall, the

final clustering found by cvxCondJC is superior to ran-

domized local optimization.

6.2 Conditional: Arbitrary Bregman Divergence

Algorithms. Our method (cvxCond) first optimized (15)

over M ∈M2 using Algorithm 1. Then similar to §6.1, the

optimal M was rounded by spectral clustering (10 repeats).

Here subsequent re-optimization (based on local optimiza-

tion) was performed on the objective DF∗(Y B, f(X)).
The competing algorithm, altCond, optimizes this objec-

tive by alternating with 30 random initializations of Y .

cvxDisc JB GS

Spam E-mail

run time (×104s) 0.005 0.651 2.148

obj w/ SC rounding (×103) 8.0± 0.2 8.7± 0.0 8.2± 0.2

obj w/ SC + re-opt (×103) 7.6± 0.0 7.9± 0.2 7.6± 0.0

acc w/ SC rounding (%) 69.9±14.3 60.7± 0.1 62.8± 9.2

acc w/ SC + re-opt (%) 83.5± 7.8 61.3± 9.2 81.4± 5.6

ORL

run time (×104s) 0.080 0.695 6.372

obj w/ SC rounding (×102) 4.1± 0.1 7.1± 0.0 3.6± 0.0

obj w/ SC + re-opt (×103) 3.5± 0.0 3.8± 0.1 3.6± 0.0

acc w/ SC rounding (%) 59.4± 2.7 20.0± 1.1 54.6± 2.1

acc w/ SC + re-opt (%) 59.5± 2.8 45.2± 2.5 54.6± 2.4

Yale

run time (×103s) 0.050 0.648 6.745

obj w/ SC rounding (×103) 8.6± 0.2 13.2± 0.0 10.2± 0.3

obj w/ SC + re-opt (×103) 7.6± 0.1 8.3± 0.1 7.8± 0.3

acc w/ SC rounding (%) 44.3± 2.5 16.2± 0.6 33.8± 3.6

acc w/ SC + re-opt (%) 46.1± 2.9 34.1± 2.6 42.4± 2.7

Balance

run time (×104s) 0.004 0.155 0.078

obj w/ SC rounding (×102) 5.1± 0.0 6.1± 0.0 4.9± 0.1

obj w/ SC + re-opt (×102) 3.9± 0.0 4.5± 0.0 4.1± 0.2

acc w/ SC rounding (%) 62.0± 2.3 47.0± 1.8 46.5± 6.3

acc w/ SC + re-opt (%) 58.7± 0.0 62.3± 1.8 52.2± 5.2

Breast Cancer

run time (×104s) 0.006 0.479 1.758

obj w/ SC rounding (×102) 8.5± 0.0 10.0± 0.0 9.1± 0.2

obj w/ SC + re-opt (×102) 8.4± 0.0 8.7± 0.3 8.4± 0.1

acc w/ SC rounding (%) 79.8±15.7 60.4± 3.6 72.3±10.3

acc w/ SC + re-opt (%) 80.7±12.5 60.0± 4.2 84.4± 8.8

Diabetes

run time (×104s) 0.012 1.722 2.731

obj w/ SC rounding (×103) 1.2± 0.1 1.4± 0.0 1.3± 0.1

obj w/ SC + re-opt (×103) 1.1± 0.0 1.1± 0.0 1.1± 0.0

acc w/ SC rounding (%) 53.5± 3.1 64.8± 0.0 56.6± 4.2

acc w/ SC + re-opt (%) 58.3± 0.2 58.6± 0.0 58.3± 0.2

Heart

run time (×104s) 0.001 0.212 6.848

obj w/ SC rounding (×102) 7.6± 0.4 8.6± 0.0 7.7± 0.4

obj w/ SC + re-opt (×103) 7.3± 0.3 7.9± 0.0 7.3± 0.2

acc w/ SC rounding (%) 61.7± 5.8 55.2± 0.0 64.4± 9.5

acc w/ SC + re-opt (%) 66.0± 5.7 51.1± 0.0 65.2± 8.4

Table 4: Experimental results for the discriminative models.

Results. The results in Table 3 are organized in the same

manner as Table 2. Here it can be observed that for all

data sets and transfer functions, cvxCond with SC round-

ing and reoptimization yields lower optimal objective value

and higher accuracy than altCond. Moreover, the objective

values also exhibits lower standard deviation than altCond,

which suggests that the value regularization scheme helps

stabilize the reoptimization. Finally note the accuracy of

cvxCond with rounding is already comparable with that of

altCond on most data sets.

6.3 Discriminative Models

Algorithms. Our method (cvxDisc) optimized (28) over

M ∈M2 by solving (29). We also tested on the algorithms



of Joulin & Bach (2012) and Guo & Schuurmans (2007),

which we refer to as JB and GS. The result of all the three

methods were rounded by spectral clustering, then used to

initialize a local re-optimization over DF (X,Y Γ). Since

the discriminative model is logistic, we used the sigmoid

transfer in DF only.

Results. According to Table 4, it is clear that even without

reoptimization, cvxDisc after rounding already achieves

higher or comparable accuracy to both JB and GS in all

cases. Further improvements are obtained by reoptimiza-

tion. Regarding the runtime for solving the respective con-

vex relaxations, cvxDisc is at least 10 times faster than

both JB and GS. This confirms the computational advan-

tage of our primal reformulation (28), compared to other

implementations of convex relaxation.

6.4 Joint Generative Models

Algorithms. Our method, cvxJoint, optimized (32) over

M ∈ M2 by solving (33). As before, we rounded the

optimal M by spectral clustering, and used the Y to initial-

ize local reoptimization of the joint likelihood −1′Yw +
tg(w) + L(Y B).

We compared the results to those of three soft generative

models. The standard soft EM (Banerjee et al., 2005, Al-

gorithm 3) was randomly reinitialized 20 times. The other

two algorithms are LG (Lashkari & Golland, 2007), and

NB5 (Nowozin & Bakir, 2008). Since they do not directly

control the number of clusters, we tuned their parameters

so that the resulting number of cluster is d, or a little higher

than d which could be truncated based on the cluster prior.

Results. Since joint models also learn a cluster prior, ac-

curacy can take two forms. The hard accuracy is computed

by argmaxy p(y|xi) = argmaxy p(y)p(xi|y) in the case

of soft EM, LG, and NB. Our model outputs a hard accu-

racy by locally reoptimizing the joint likelihood. For all

methods, we define the soft accuracy based on the poste-

rior distribution: maxπ EY∼p(Y |X)[Accuracy(Y, π(Y ∗))],
where Y ∗ is the ground truth label and π is a matching be-

tween the cluster and label.

As can be observed from Table 5, cvxJoint with rounding

and reoptimization achieves superior or comparable perfor-

mance to the competing algorithms in most cases, both in

terms of hard and soft accuracy.

7 Conclusion

In this paper we constructed convex relaxations for cluster-

ing with Bregman divergences. Using normalized equiv-

alence relations, we also designed efficient algorithms for

5http://www.nowozin.net/sebastian/infex. Since their ap-
proach relies heavily on the Gaussian model, we put NA in the
corresponding cells in Table 5.

linear sigmoid

acc(%) soft acc(%) acc(%) soft acc(%)

Spam E-mail

cvxJoint1 55.7±1.9 55.9±1.4 62.6±9.0 67.7±11.0

cvxJoint2 60.5±0.0 60.5±0.0 81.5±16.4 79.2±15.1

softEM 60.5±0.0 54.5±2.6 58.2±7.4 52.9±2.0

LG 60.0 0.1 40.6 1.8

NB 60.5 51.4 NA NA

ORL

cvxJoint1 61.0±1.3 52.6±1.5 63.0±2.3 58.6±1.8

cvxJoint2 55.9±1.4 52.8±1.2 58.7±2.7 58.7±2.7

softEM 39.6±2.1 37.0±2.0 44.9±3.1 44.7±3.1

LG 40.0 1.9 36.0 0.5

NB 12.0 5.3 NA NA

Yale

cvxJoint1 47.9±3.8 45.9±3.1 61.9±8.3 55.9±1.4

cvxJoint2 45.8±3.4 45.1±3.1 60.5±0.0 60.5±0.0

softEM 39.6±2.1 37.0±2.0 60.5±0.0 60.5±0.0

LG 35.2 4.8 66.9 0.1

NB 20.6 10.4 NA NA

Balance

cvxJoint1 50.5±2.3 36.3±0.7 51.6±2.7 39.5±1.2

cvxJoint2 46.1±0.0 46.1±0.0 46.1±0.0 46.1±0.0

softEM 46.1±0.0 38.1±2.8 46.1±0.0 39.6±0.0

LG 57.4 0.2 59.0 0.2

NB 54.2 54.7 NA NA

Breast Cancer

cvxJoint1 71.0±11.9 56.9±4.7 70.9±13.0 63.9±8.1

cvxJoint2 65.5±0.0 65.5±0.0 65.5±0.0 65.5±0.0

softEM 65.5±0.0 57.7±4.5 65.5±0.0 55.5±5.4

LG 61.8 0.1 65.5 0.1

NB 69.8 50.3 NA NA

Diabetes

cvxJoint1 56.0±2.6 53.6±2.5 57.5±5.5 57.6±5.6

cvxJoint2 65.1±0.0 65.1±0.0 62.0±3.3 62.6±2.6

softEM 65.1±0.00 57.6±4.6 65.1±0.0 57.4±5.2

LG 56.8 0.1 58.5 0.1

NB 65.1 60.2 NA NA

Heart

cvxJoint1 63.0±6.4 53.3±1.8 63.0±7.4 61.0±6.2

cvxJoint2 55.6±0.0 55.5±0.0 64.0±7.5 61.3±7.1

softEM 55.6±0.0 51.7±1.6 55.6±0.0 52.7±0.0

LG 57.4 0.4 55.2 0.4

NB 55.6 53.0 NA NA

Table 5: Experimental results for the joint generative model.
Here cvxJoint1 is cvxJoint followed by SC rounding, whereas
cvxJoint2 uses additional re-optimization. Best results in bold.

optimizing the models. For future work, it will be interest-

ing to extend these approaches to generative soft clustering,

and further scale up the optimization to large applications.
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A Tightness of Relaxation ofM1

We show here thatM1 is not the convex hull ofM. Our

proof is by constructing a new convex relaxation of convM
that is a proper subset ofM1:

MS := {M : 0 �M � I, γS(M) ≤ d,Mi: ∈ ∆t} ,

where S =
{

1
‖u‖2uu

′ : u ∈ {0, 1}t
}

, and γS is the gauge

function of S: γS(M) := infλ≥0,M∈λ·conv(S) λ. Clearly

MS is convex and M ⊆ MS . Similarly, M1 can be

rewritten as

M1 = {M : 0 �M � I, γB(M) ≤ d,Mi: ∈ ∆t} ,

where B = {vv′ : ‖v‖ ≤ 1}. It is easy to see that

γS(M) ≤ d is strictly more restrictive than γB(M) ≤ d be-

cause S ( B. Therefore it is conceivable thatMS (M1,

and the rest of this appendix section will be devoted to con-

structing an element inM1\MS . In essence,M1 andMS
employ doubly positive relaxation and completely posi-

tive factorization respectively, and their gap has been well

studied (Berman & Xu, 2004). Note it is still open as to

whetherMS is the convex hull ofM. In terms of optimiza-

tion, it is much more convenient to use the relaxationM1

because the γS(M) term inMS is hard to evaluate. In par-

ticular the separation oracle is NP-hard: maxZ∈S 〈Z,X〉
for a given X .

To construct an element in M1\MS , we exploit the dif-

ference between doubly positive matrices and completely

positive matrices. Let Dn denote the set of t × t doubly

positive matrices, i.e. real symmetric matrices that are pos-

itive semi-definite and elementwise nonnegative. Let Ct de-

note the set of t × t completely positive matrices, i.e. real

matrices that can be written as AA′, where A is a t × k
elementwise nonnegative matrix (k ∈ N). It is well known

that Ct ( Dt when t ≥ 5.

ClearlyM1 is the intersection of Dt with

F := {M : M � I, tr(M) ≤ d,M1 = 1} .

SinceMS ⊆ Ct, to find M ∈ M1\MS it suffices to find

M ∈ M1 such that M /∈ Ct. Berman & Xu (2004) gave

a sufficient and necessary condition for a matrix to be in

D5\C5, under mild assumptions on the structure of the ma-

trix. So we only need to further restrict this condition to

F .

Let t = 5. Consider a matrix M of the form

M =






Y α β

α′ 1 0

β′ 0 1




 .

Denote the Schur complement as C = Y −αα′ − ββ′.

Theorem 5. (Berman & Xu, 2004, Theorem 4.2) Sup-

pose Y ∈ D3, M ∈ D5, and rank(M) = 3. Then

M ∈ D5\C5 if and only if

• There are exactly two negative components above the

diagonal in C, and

• λ4 + λ5 < 1, where

λ4 = min
1≤i<j≤3

{
αiαj

−Cij

∣
∣
∣
∣
Cij < 0

}

,

λ5 = min
1≤i<j≤3

{
βiβj

−Cij

∣
∣
∣
∣
Cij < 0

}

.

Since d is a parameter, it can be set in our favor and so we

ignore it for now. Also we can scale F by

Fρ := {M : M � (ρ+ 1)I,M1 = (ρ+ 1)1} ,

where ρ > 0 is a constant. So it suffices to find M ∈
D5 ∩ Fρ such that M /∈ C5, i.e. M ∈ (D5\C5) ∩ Fρ. Now

let us apply Theorem 5.

1. Since rank(M) = rank(C) + 2 = 3 (property of Schur

complement), we can assume C = γγ′. So

Y = αα′ + ββ′ + γγ′. (34)

2. Since M1 = (ρ+ 1)1, we have α′1 = β′1 = ρ, and

Y 1+α+ β = (ρ+ 1)1

⇔ (αα′ + ββ′ + γγ′)1+α+ β = (ρ+ 1)1

⇔ γγ′1+ (ρ+ 1)(α+ β) = (ρ+ 1)1. (35)

Left multiply it by 1′, we obtain

(γ′1)2 + 2(ρ+ 1)ρ = 3(ρ+ 1). (36)

So we first randomly generate α and β that are element-

wise nonnegative and α′1 = β′1 = ρ. Then γ can be

determined by using (35) and (36) (up to negation).

By (36), we must set ρ < 1.5.

3. Check if C = γγ′ has exactly two negative components

above its diagonal. If not, then regenerate α and β.

4. Check if λ4 + λ5 < 1 and Y from (34) is elementwise

nonnegative (Y � 0 is guaranteed by construction). If not,

then regenerate α and β.

5. Check if the maximum eigenvalue of M is ρ+ 1. If not,

regenerate α and β.

6. Scale M down by multiplying it with 1/(ρ+ 1). Set

d = (tr(Y ) + 2)/(1 + ρ)

= (‖α‖2 + ‖β‖2 + ‖γ‖2 + 2)/(1 + ρ).

In our experiments, we set ρ = 1.25 and found an example

matrix immediately.



B Extending Optimal Results FromM3 to

M2

Now we replaceM3 in Proposition 2 byM2. In particular,

we redo the characterization of Ω(T ) whenM3 is replaced

byM2, and we call the new regularizer as Ξ(T ) ≥ 0:

Ξ2(T ) = min
M∈M2:Im(T )⊆Im(M)

tr(T ′M†T ). (37)

If we can again show that Ξ(T ) is a norm such that both Ξ
and the dual norm Ξ∗ are efficiently computable, then the

Algorithm 1 can also be applied without change. So the

rest of this section proceeds in parallel to Section 3.2.1.

Proposition 1 allows us to convert the optimization inM2

into that inM3, making it easy to utilize the previous re-

sults.

Lemma 6. If AB = 0, then A†B = 0.

Proof. Let A = UΣV ′ be the SVD of A. Then

AB = 0 ⇒ UΣV ′B = 0 ⇒ ΣV ′B = 0

⇒ Σ†V ′B = 0 ⇒ A†B = UΣ†V ′B = 0.

Similarly, if BA = 0 then BA† = 0.

B.1 Efficient computation of Ξ(T )

tr(T ′M†T ) = tr(QM†) where Q = TT ′. To minimize it

over M ∈M2, by Proposition 1, it suffices to solve

min
M∈M3:Im(T )⊆Im(HMH+ 1

t
11′)

tr

(

Q(HMH +
1

t
11′)†

)

.

We first ignore the range constraint, and will show later that

it will be automatically satisfied. Since 1/
√
t is an eigen-

vector of HMH with eigen-value 0, we have

(HMH +
1

t
11′)† = (HMH)† + (

1

t
11′)†

= (HMH)† +
1

t
11′. (38)

By definition of H:

Q = IQI = (H +
1

t
11′)Q(H +

1

t
11′)

= HQH + 1q′H +Hq1′ + s11′, (39)

where q := Q1/t and s := 1′q/t = 1′Q1/t2. Since

(HMH)(1q′H) = 0

(HMH)(s11′) = 0

(Hq1′)(HMH) = 0,

so by Lemma 6, we have

(HMH)†(1q′H) = 0

(HMH)†(s11′) = 0

(Hq1′)(HMH)† = 0.

Therefore combining (38) and (39) we obtain

tr

(

Q(HMH +
1

t
11′)†

)

= tr
(
(HQH)(HMH)†

)
+

1

t
1′Q1. (40)

Clearly HMH ∈M3 for any M ∈M3. So if we find

M∗ = argmin
M∈M3

tr
(
(HQH)M†) , (41)

and show M∗ = HM∗H , then M∗ must be the minimizer

of (40) over M ∈ M3. (41) is obviously in the same form

as Ω2(T ) = minM∈M3
tr(TT ′M†) and its optimal objec-

tive value is Ω2(HT ). By the discussion on how to com-

pute Ω in Section 3.2.1, if HQH has eigenvectors φi with

eigenvalue λi > 0, then

M∗ =
∑

i

µiφiφ
′
i (42)

for some µi > 0. Since 1/
√
t is an eigenvector of HQH

with eigenvalue 0, so φ′
i1 = 0. Therefore M∗1 = 0 and

HM∗H = M∗.

Finally we show Im(T ) ⊆ Im(HM∗H + 1
t11

′). By

(42) and HM∗H = M∗, the nonzero eigenvectors6 of

HM∗H + 1
t11

′ are S :=
{
1/
√
t
}
∪ {φi}i. So it suf-

fices to show that S spans the left singular vectors of T ,

or equivalently the nonzero eigenvectors of Q. This means

for any u that is orthogonal to 1 and φi, Qu = 0. Since

Q � 0, we only need to show u′Qu = 0, which is obvious

because by (39),

u′Qu = u′(HQH)u+ u′1q′Hu+ u′Hq1′u+ su′11′u

= 0 + 0 + 0 + 0 + 0 = 0.

To conclude,

Ξ2(T ) = Ω2(HT ) +
1

t
‖T ′1‖2 , (43)

M∗ +
1

t
11′ = argmin

M∈M2:Im(T )⊆Im(M)

tr(T ′M†T ). (44)

B.2 Ξ(T ) is a norm

Based on (43), it is quite easy to see that Ξ(T ) is a norm.

Trivially, Ξ(aT ) = |a|Ξ(T ) for all a ∈ R. To make

Ξ(T ) = 0, we need Ω(HT ) = 0 and ‖T ′1‖ = 0. Since Ω
is a norm, so we need HT = 0 and T ′1 = 0. Therefore

T = IT = (H + 1
t11

′)T = 0. Finally, since both Ω(HT )
and 1√

t
‖T ′1‖ are semi-norms in T , it is easy to verify that

Ξ(T ) also satisfies the triangle inequality.

6 Eigenvectors whose corresponding eigenvalue is not zero



B.3 Dual norm of Ξ(T )

Given G, the dual norm of Ξ(·) on G is

Ξ∗(G) = max
T :Ξ(T )≤1

tr(G′T )

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr(G′T )

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr((HG+
1

t
11′G)′(HT +

1

t
11′T ))

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr((HG)′(HT )) +
1

t
(G′1)′(T ′1).

We can optimize HT and T ′1 independently because

Proposition 7. {(HT, T ′1) : T}={(S,v) : S′1 = 0}.

Proof. ⊆ is obvious because (HT )′1 = 0. For ⊇, just

define T = S+ 1
t1v

′. Then HT = HS = HS+ 1
t11

′S =
S and T ′1 = S′1+ 1

tv1
′1 = v.

By Proposition 7, the problem becomes

max
S,v:S′1=0,Ω2(S)+ 1

t
‖v‖2≤1

tr((HG)′S) +
1

t
(G′1)′v.

Denote ‖v‖ = τ , then (G′1)′v ≤ τ ‖G′1‖ with equal-

ity attained at v = τG′1/ ‖G′1‖. So the problem can be

further reformulated as

max
τ∈[0,

√
t]

max
S:S′1=0,Ω2(S)≤1− τ2

t

tr((HG)′S) +
τ

t
‖G′1‖ .

In the inner optimization over S, if we ignore the S′1 = 0

constraint, then by the discussion on how to compute Ω∗
in Section 3.2.1, the left and right singular vectors of the

optimal S are the same as those of HG. Since (HG)′1 =
0, so S′1 = 0 is automatically satisfied. Then the problem

becomes

Ξ∗(G) = max
τ∈[0,

√
t]







τ

t
‖G′1‖+ max

S:Ω∗(S)≤
√

1−τ2

t

tr((HG)′S)







= max
τ∈[0,

√
t]

τ

t
‖G′1‖+Ω(HG)

√

1− τ2

t

= max
τ∈[0,

√
t]

1√
t
‖G′1‖ τ√

t
+Ω(HG)

√

1− τ2

t

=

(
1

t
‖G′1‖2 +Ω2(HG)

) 1
2
(
τ2

t
+ 1− τ2

t

) 1
2

(45)

=

√

1

t
‖G′1‖2 +Ω2(HG),

where (45) used Cauchy-Schwartz and the optimal τ is at-

tained at

τ∗ =
‖G′1‖

√
t

√

‖G′1‖2 + tΩ2(HG)
(<
√
t).

The optimal T is

T ∗ =

√

1− (τ∗)2

t
argmax
S:Ω∗(S)≤1

tr((HG)′S) +
τ∗

t ‖G′1‖11
′G.

Again, this procedure only requires the top d − 1 singular

values of HG.

C Generalized Conditional Gradient

Method

Due to Proposition 2, the norm regularizer in (17) induces

a low rank optimal T admits low rank in general. So if we

explicitly represent Tk with a low-rank factorization (say

Tk = PkQ
′
k where Pk and Qk have a small number of

columns), then Ω∗ (and its gradient) can be efficiently eval-

uated because a full SVD on T can be performed efficiently

by making use of such a low-rank factorization. For any

vector x, Tk ∗ x can be computed by Pk ∗ (Q′
k ∗ x).

For (17), we can write T = PQ′ where P and Q have k
columns (k is small). Then we can optimize over P and

Q using any local solver and obtain any local solution. In

practice, when k is large enough, there is a good chance

that the solution is already very good.

Recall that at each iteration in Algorithm 1, Sk can be writ-

ten as
∑d

i=1 siuiv
′
i. So after k iterations, T can be written

as
∑dk

i=1 siuiv
′
i (the set of ui are not necessarily orthog-

onal, and neither are vi). If d and k are both small, this

factorization will allow us to compute the full SVD of T
efficiently. Therefore, based on low-rank factorization, the

generalized conditional gradient method can be modified

into

1. Initialize by T0 = 0, P0 = Q0 = [ ] (Matlab empty

matrix), r0 = 0, and k = 1.

2. Compute gradient of L at Tk−1: G = ∇L (Tk−1, X).

3. Generate weak hypothesis

Sk = argmin
T :Ω(T )≤1

tr(G′T ) = − argmax
T :Ω(T )≤1

tr(G′T ). (46)

By the discussion in Section B.3 and 3.2.1, Sk can be writ-

ten as
∑d−1

i=1 siuiv
′
i.

4. Check termination criteria. If

tr(G′Sk) + αrk−1 > −ǫ

then stop and return Tk−1.

5. Partially corrective update

{η∗1 , η∗2} := argmin
η1,η2≥0

L (η1Tk−1 + η2Sk, X) (47)

+α
2 (η1rk−1 + η2)

2
.



6. Locally solve minP,Q L(PQ′)+ α
2Ω

2(PQ′) by initializ-

ing P as (
√

η∗1Pk−1,
√

η∗2s1u1, . . . ,
√

η∗2sd−1ud−1) and

Q as (
√

η∗1Qk−1,
√

η∗2s1v1, . . . ,
√

η∗2sd−1vd−1). Denote

the locally optimal solution as (Pk, Qk).

7. Set the solution at iteration k: Tk = PkQ
′
k. Restore rk

by solving

rk = min
ηi,Si:ηi≥0,Ω(Si)≤1,

∑

i
ηiSi=Tk

∑

i

ηi.

This is actually the gauge function of the unit ball of Ω
evaluated at Tk. So trivially rk = Ω(Tk) (which matches

our intuition).

8. Goto step 2 (loop) with k incremented by 1.

C.1 Extension toM2

By the discussion in Appendix B, we can then extend the

optimization procedure above fromM3 toM2:

1. Initialize by T0 = 0, P0 = Q0 = [ ] (Matlab empty

matrix), r0 = 0, and k = 1.

2. Compute gradient of L at Tk−1: G = ∇L (Tk−1, X).

3. Generate weak hypothesis

Sk = argmin
T :Ξ(T )≤1

tr(G′T ) = − argmax
T :Ξ(T )≤1

tr(G′T ). (48)

By the discussion in Section B.3, we have free way to rep-

resent

Sk = −(aHUS + bee′UΣ)V ′

= −(ãHU + bee′U)
︸ ︷︷ ︸

Ũ

ΣV ′ (49)

where a =
√

1− (τ∗)2

t , ã = 1
‖ diag(Σ)‖

√

1− (τ∗)2

t , b =
τ∗

t‖G′e‖ , the top d − 1 SVD of G = UΣV ′ and S =

Σ/‖diag(Σ)‖. Thus, Sk =
∑d−1

i=1 σiũiv
′
i.

4. Check termination criteria. If

tr(G′Sk) + αrk−1 > −ǫ (50)

then stop and return Tk−1.

5. Partially corrective update

{η∗1 , η∗2} := argmin
η1,η2≥0

L (η1Tk−1 + η2Sk, X)

+α
2 (η1rk−1 + η2)

2
. (51)

6. Locally solve minP,Q L(PQ′)+ α
2Ξ

2(PQ′) by initializ-

ing P as (
√

η∗1Pk−1,
√

η∗2σ1ũ1, . . . ,
√

η∗2σd−1ũd−1) and

Q as (
√

η∗1Qk−1,
√

η∗2σ1v1, . . . ,
√

η∗2σd−1vd−1). Denote

the locally optimal solution as (Pk, Qk).

7. Set the solution at iteration k: Tk = PkQ
′
k. Restore rk

by solving

rk = min
ηi,Si:ηi≥0,Ξ(Si)≤1,

∑

i
ηiSi=Tk

∑

i

ηi = Ξ(Tk).

8. Goto step 2 (loop) with k incremented by 1.
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