
Published in Transactions on Machine Learning Research (06/2023)

Reinforcement Teaching

Calarina Muslimani∗1,2 musliman@ualberta.ca
Alex Lewandowski∗1,2 lewandowski@ualberta.ca
Dale Schuurmans1,3,4 daes@ualberta.ca
Matthew E. Taylor1,4 matthew.e.taylor@ualberta.ca
Jun Luo2 jun.luo1@huawei.com
1 Department of Computing Science, University of Alberta
2 Noah’s Ark Lab, Huawei Technologies Canada Co., Ltd.
3 Google Brain
4 Alberta Machine Intelligence Institute (Amii)
∗ Equal Contribution. Work done while interning at Huawei.

Reviewed on OpenReview: https: // openreview. net/ forum? id= G2GKiicaJI

Abstract

Machine learning algorithms learn to solve a task, but are unable to improve their ability to
learn. Meta-learning methods learn about machine learning algorithms and improve them
so that they learn more quickly. However, existing meta-learning methods are either hand-
crafted to improve one specific component of an algorithm or only work with differentiable
algorithms. We develop a unifying meta-learning framework, called Reinforcement Teach-
ing, to improve the learning process of any algorithm. Under Reinforcement Teaching, a
teaching policy is learned, through reinforcement, to improve a student’s learning algorithm.
To learn an effective teaching policy, we introduce the parametric-behavior embedder that
learns a representation of the student’s learnable parameters from its input/output behav-
ior. We further use learning progress to shape the teacher’s reward, allowing it to more
quickly maximize the student’s performance. To demonstrate the generality of Reinforce-
ment Teaching, we conduct experiments in which a teacher learns to significantly improve
both reinforcement and supervised learning algorithms. Reinforcement Teaching outper-
forms previous work using heuristic reward functions and state representations, as well as
other parameter representations.

1 Introduction

As machine learning becomes ubiquitous, there is a growing need for algorithms that generalize better, learn
more quickly, and require less data. Meta-learning is one way to improve a machine learning algorithm,
without hand-engineering the underlying algorithm. Meta-learning is often thought of as “learning to learn”
in which the goal is to learn about and improve another machine learning process (Schmidhuber, 1994; Thrun
& Pratt, 1998; Hospedales et al., 2022). A variety of sub-domains have emerged that design hand-crafted
solutions for learning about and improving a specific component of a machine learning process. The work in
these sub-domains focus on solving one specific problem, whether that be finding the best way to augment
data (Cubuk et al., 2019), sample minibatches (Fan et al., 2018), adapt objectives (Wu et al., 2018a), or
poison rewards (Zhang et al., 2020). Consequently, the meta-learning methods used in these domains are
handcrafted to solve the problem and cannot be applied to solve new problems in a different domain.

Current literature fails to recognize that a more general framework can be used to simultaneously address
multiple problems across these varied sub-domains. Therefore, this work takes an important step toward
answering the following question:

Can we develop a unifying framework for improving machine learning algorithms that can be applied across
sub-domains and learning problems?

1

https://openreview.net/forum?id=G2GKiicaJI

Published in Transactions on Machine Learning Research (06/2023)

As a crucial step towards this unifying framework, we introduce Reinforcement Teaching: an approach that
frames meta-learning in terms of learning in a Markov decision process (MDP). Although the individual
components of our system are based on previously proposed principles and methods from teacher-student
reinforcement learning (Almeida et al., 2021; Garcia & Thomas, 2019; Huang et al., 2019; Cubuk et al., 2019;
Ruiz et al., 2019; Campero et al., 2020; Florensa et al., 2018; Fan et al., 2018; Narvekar et al., 2017; Narvekar
& Stone, 2019; Zhang et al., 2020; Zhu et al., 2019; Zoph & Le, 2017; Jomaa et al., 2019; Biedenkapp et al.,
2020; Sabbioni et al., 2020), learned parameter representations (Harb et al., 2020; Parker-Holder et al., 2020),
and learning progress (Oudeyer et al., 2007), our system combines these components into a novel framework
that unifies meta-learning approaches and can improve machine learning algorithms across sub-domains. To
the best of our knowledge, Reinforcement Teaching is the first attempt at using reinforcement learning as a
general-purpose meta-learning solution method.

In Reinforcement Teaching, a teacher learns a policy via reinforcement learning (RL) to improve the learning
process of a student. The teacher observes a problem-agnostic representation of the student’s behavior and
takes actions that adjust components of the student’s learning process that the student is unable to change,
such as the student’s objective, optimizer, data, or environment. The teacher’s reward is then based on the
student’s performance. The choice of action space for the teacher induces different meta-learning problem
instances. This allows our single teaching-architecture to learn a variety of policies, such as a curriculum
policy to sequence tasks for an RL student or a step-size adaptation policy for a supervised learning student.

Our Reinforcement Teaching framework has several advantages over both gradient-based meta-learning and
other RL teaching methods. Like gradient-based meta-learning, our MDP formalism is problem-agnostic
and thus does not rely on problem-specific heuristics used in other RL teaching methods (Huang et al., 2019;
Almeida et al., 2021; Garcia & Thomas, 2019; Cubuk et al., 2019; Ruiz et al., 2019; Fan et al., 2018; Jomaa
et al., 2019). These prior RL teaching methods use hand-designed features for the RL teaching policy. This
choice limits the generality of these approaches to the base problems they were intended to solve. Other
works use parameter-based state representations which have been shown to learn successful teaching policies
for tabular and linear students (Biedenkapp et al., 2020; Zhang et al., 2020; Narvekar et al., 2017; Sabbioni
et al., 2020). Although the parameter state representation is problem-agnostic, it is difficult to scale to
more complex problems such as if the student uses a deep non-linear neural network. This motivated the
development of the parametric-behavior embedder, a problem-agnostic state representation that can be used
across different problem settings and can scale to deep non-linear students.

Moreover, although successful, gradient-based meta-learning methods (Finn et al., 2017; Xu et al., 2018;
Javed & White, 2019) do not learn a teaching policy and are therefore unable to adapt to the student’s needs
at each step in the student’s learning process. Another limitation of gradient-based meta-learning methods
is the requirement that all learning components are fully-differentiable, which is not always possible. One
example of a component that is not differentiable is the configuration of an environment, which a teacher
policy may control to induce a curriculum for a student.

This paper makes the following contributions:

1. The Reinforcement Teaching framework is formalized as an MDP in which the teacher learns a policy
that adapts the student’s algorithm to improve its performance towards a goal. Unlike previous work,
Reinforcement Teaching can be applied across different problem settings.

2. Rather than having the teacher learn directly from the student’s parameters, a parametric-behavior
embedder learns a state representation from the student’s inputs and outputs. This provides a
problem-agnostic state representation that improves the teacher’s learning, and allows Reinforcement
Teaching with deep non-linear students.

3. We define a learning progress reward function that further accelerates learning by improving the
teacher’s credit assignment.

To demonstrate the generality and effectiveness of Reinforcement Teaching, we apply this framework, with the
parametric-behavior embedded state and learning progress reward, in two domains (1) curriculum learning
and (2) step-size adaptation. Results in discrete and continuous control environments show examples of

2

Published in Transactions on Machine Learning Research (06/2023)

Reinforcement Teaching, in which the teacher learns a policy that selects sub-tasks for an RL student. In
step-size adaptation for supervised learning students, we show that a reinforcement teacher can learn a
policy that adapts the step-size of Adam (Kingma & Ba, 2015), improving upon the best constant step-size.
Moreover, in both settings our Reinforcement Teaching method learns a superior teaching policy, compared
to several other baselines, that results in improved student learning. The primary goal of this paper is to
spur novel developments in meta-learning using the tools of RL, and to unify different RL-based approaches
under the single framework of Reinforcement Teaching.

2 Sequential Decision Making for Meta-learning

Before introducing Reinforcement Teaching, we argue for the importance of a sequential decision making
perspective for meta-learning. Reinforcement Teaching, presented in Section 4, develops a framework that
allows reinforcement learning algorithms to be applied in sequential meta-learning settings.

Many meta-learning settings are sequential, such as hyper-parameter adaptation, curriculum learning, and
learned optimization. While there are many meta-learning settings of interest, we use step-size adaptation
as an illustrative example because of its history and ubiquity in the meta-learning literature (Schraudolph,
1999; Maclaurin et al., 2015; Sutton, 1992; 2022; Kearney et al., 2018). Step-size adaptation is the problem
of selecting a learning rate at each step of an optimization algorithm. This is different from hyperparameter
optimization, or tuning, where a grid-search is used to select the best constant learning rate for all steps
of the optimization algorithm. In particular, we will use the noisy-quadratic problem studied in Schaul
et al. (2013) and Wu et al. (2018b), in which a learner with parameters θ attempts to minimize an objective
with a stochastic minimum. This problem, while simple, is an illustrative example of the importance of
step-size adaptation in stochastic settings. The objective function, defined for a d-dimensional parameter
vector, θ = (θ1, . . . , θd), depends on a stochastic variable, c = (c1, . . . , cd), determining the minimum and a
fixed diagonal hessian with entries, h = (h1, . . . , hd). If we assume that the stochastic minimum follows an
independent Gaussian distribution, ci = N (0, σi), then we can write the expected value of the objective as,
L(θ) = E

[
L̂(θ)

]
= E

[
1
2
∑d
i=1 hi

(
θi − ci

)2
]

= 1
2
∑d
i=1 hi

(
E
[
θi
]2 + V

[
θi
]

+ σ2
i

)
. The learner uses gradient

descent (with or without momentum) to update its parameters from θ(t−1) to θ(t) with a step-size of α(t). In
this setting, the stochastic gradient is ∂L̂

∂θi
= hi(θi − ci) and the deterministic gradient is ∂L

∂θi
= hiθi. Meta-

learning in the noisy quadratic problem amounts to selecting each α(t) such that the learnable parameters
after T steps of gradient descent best minimizes the objective, given by L(θ(T)).

There are two strategies for meta-learning α(t): fully-optimized or one-step greedy-optimal. The fully-
optimized sequence of step-sizes {α(t)}Tt=1 is jointly chosen to minimize the loss at step T , where the loss
is given by L(θ(T)). Even in the simple noisy quadratic problem, fully-optimizing the step-size can be
computationally costly. An alternative is the one-step greedy-optimal schedule which selects α(t) so as to
minimize the loss at the next iteration, L(θ(t)). In either the deterministic-gradient or spherical-gradient
setting (where all entries of h are the same, see Wu et al. (2018b), Theorem 3), the one-step greedy-optimal
step-size coincides with the fully-optimized schedule. In general, however, the fully-optimized step-size
schedule can result in a much lower final loss compared to one-step greedy-optimal schedule.

If we consider the step-size as the meta-learner’s action, at = α(t), the one-step greedy-optimal strategy
treats noisy quadratic optimization as a contextual bandit problem where the state is the current parameter,
st = θ(t). At each time-step, the action is selected so as to minimize the next immediate loss. In the context
of rewards, we may define the reward as rt = −L(θ(t)). The fully optimized sequence of {α(t)}Tt=1 can also be
thought of as a bandit problem where the action is the joint selection of {α(t)}Tt=1. This is costly, requiring
re-computation of every parameter iterate, {θ(t)}Tt=1, for each candidate step-size sequence. A more natural
formulation to learning the fully-optimized schedule can use reinforcement learning, where at each time-step
a policy observes the learnable parameters, θ(t−1), and selects a step-size, at = α(t), so as to minimize the
long-term loss. There are many reward functions that incentive the policy to minimize the long-term loss,
such as a finite-horizon terminal reward (rt<T = 0, rT = −L(θ(T))), or having a reward of −1 until a loss
threshold, L∗, is reached which then terminates the episode (rt = −I(L(θ(t)) > L∗), I(x > y) = 1 if x > y).
This reinforcement perspective is not specific to step-size adaptation; we develop Reinforcement Teaching in
Section 4 for any sequential meta-learning problem.

3

Published in Transactions on Machine Learning Research (06/2023)

3 Related Work

Learning to Teach Using Reinforcement Learning Using an RL teacher to control particular aspects
of another student’s learning process has been previously explored (Almeida et al., 2021; Garcia & Thomas,
2019; Huang et al., 2019; Cubuk et al., 2019; Ruiz et al., 2019; Wu et al., 2018a; Dennis et al., 2020; Campero
et al., 2020; Florensa et al., 2018; Fan et al., 2018; Narvekar et al., 2017; Narvekar & Stone, 2019; Zhu et al.,
2019; Zoph & Le, 2017; Jomaa et al., 2019; Biedenkapp et al., 2020; Sabbioni et al., 2020).

However, by the design of these solution methods, they are only suitable for solving specific meta-learning
problems and lack applicability across different learning problems. More specifically, these works use problem-
specific heuristics to construct the teacher’s state representation that results in non-Markov state represen-
tations (Wu et al., 2018a; Dennis et al., 2020; Campero et al., 2020; Florensa et al., 2018; Fan et al., 2018;
Huang et al., 2019; Jomaa et al., 2019; Zhu et al., 2019). This is commonly done because the Markov
state representation, the student’s parameters, is a large and unstructured state representation that makes
it difficult to learn an effective policy. As a representative of the heuristic approach, the L2T framework
(Fan et al., 2018) successfully learned to sample minibatches for a supervised learner. In this approach, the
teacher’s state representation includes several heuristics about the data and student model and is heavily
designed for the task of minibatch sampling (Fan et al., 2018). These works are tailored to the base problems
they solve and are unable to generalize to new problems with their state and reward design. Some works
have identified that learning from parameters is theoretically ideal for curriculum learning (Narvekar et al.,
2017). However, the success of parameter state representation has been limited to either toy problems (e.g.,
1D regression) or tabular/linear RL students (Biedenkapp et al., 2020; Zhang et al., 2020; Narvekar et al.,
2017; Sabbioni et al., 2020). Until now, no work has attempted to use the behavioral approach proposed in
this paper to enable tractable, generalizable, and transferable learning algorithms.

These approaches can be contrasted bandit formulations of the student-teacher setting (Portelas et al., 2019;
Graves et al., 2017; Jiang et al., 2021a; Parker-Holder et al., 2022; Jiang et al., 2021b). Although the bandit
formulation has demonstrated promising results in the automatic curriculum learning domain, it can be
limiting for other meta-learning problems such as step-size adaptation (See Section 2).

Learning Progress Connected to the idea of teaching is a rich literature on learning progress. Learning
progress prescribes that a learning agent should focus on tasks for which it can improve on. This mechanism
drives the agent to learn easier tasks first, before incrementally learning tasks of increasing complexity
(Oudeyer et al., 2007). Learning progress has been represented in several ways such as the change in model
loss, model complexity, and prediction accuracy. In addition, learning progress has been successfully applied
in a variety of contexts, including curriculum learning (Portelas et al., 2019; Oudeyer et al., 2007; Matiisen
et al., 2020; Graves et al., 2017), developmental robotics (Blank et al., 2003; Moulin-Frier Clément, 2014;
Oudeyer et al., 2007), and intelligent tutoring systems (Clement et al., 2015).

Learned Parameter Representations Previous work in RL has argued that policies can be represented
by a concatenated set of outputs (Harb et al., 2020; Parker-Holder et al., 2020). Policy eValuation Networks
(PVN) in RL show that representations of a neural policy can be learned through the concatenated outputs
of a set of learned inputs. PVN is similar to the parametric-behavior embedder that we propose because it
characterizes a neural network by its output behavior. Learning a PVN representation, however, requires
a fixed set of inputs, referred to as probing inputs. While the probing inputs can be learned, they are still
fixed after learning and cannot adapt to different policies. In our setting, the student’s neural network is
frequently changing due to parameter updates and it is unlikely that the outputs of a fixed set of inputs can
represent the changing parameters during learning. Furthermore, Faccio et al. (2021) showed that learning to
evaluate policies directly from parameters is more performant than PVNs for policy improvement, suggesting
that fixed probing inputs are insufficient for representing many neural networks.

Reward Design In standard reinforcement learning, an agent’s goal is to maximize the expected sum of a
discounted scalar reward signal. However, the source of this reward is unspecified and it is typically left to a
designer to craft the agent’s reward function. As reward design is a non-trivial task, past work has cast the
problem of designing the reward function as an optimization problem – the optimal reward problem (Singh

4

Published in Transactions on Machine Learning Research (06/2023)

et al., 2009; Sorg et al., 2010; Jain et al., 2021). Another related sub-area is adaptive reward shaping, in
which an RL teacher agent learns to adaptively shape the student’s reward function (Mguni et al., 2023).
Reward design can be seen as a special case of Reinforcement Teaching. From this perspective, the RL
teacher would take actions that adjust the student’s reward function during the student’s learning process
to improve their overall learning.

Machine Teaching Machine teaching is a general paradigm in which a teacher is used to guide a student.
A widely studied application of machine teaching is the supervised learning setting in which a teacher is
tasked with choosing the best training set such that a machine learning student can learn a target model
(Zhu et al., 2018). Recent work has applied machine teaching to sequential decision-making tasks. In this
setting, machine teaching has been used to study a wide range of problems, from finding the best set of
demonstrations to finding the best reward shaping strategy (Brown & Niekum, 2019; Zhang et al., 2020).

Under the Reinforcement Teaching perspective, machine teaching can be viewed as an RL teacher whose
action determines the data that the student uses for learning. The primary issue with traditional machine
teaching approaches is that they assume the teacher has access to an optimal student model, learning
algorithm, and objective function (Zhu et al., 2018). These assumptions are unrealistic in practice. We show
that our parametric-behavior embedded state and learning progress reward allows the teacher to learn a
policy while only having access to the student’s inputs/outputs and performance.

Meta-Learning While Reinforcement Teaching does not explicitly build on previous meta-learning work,
we point out common meta-learning methods and how they relate to Reinforcement Teaching. Early work in
meta-learning with neural networks (Younger et al., 2001; Hochreiter et al., 2001; Schmidhuber, 1987; Sutton,
1992) inspired follow-up work on learned optimizers (Ravi & Larochelle, 2017; Andrychowicz et al., 2016).
Learned optimizers replace the fixed learning algorithm with a memory-based parameterization, usually an
LSTM (Hochreiter & Schmidhuber, 1997). Learning the optimizer through reinforcement learning has also
been explored (Li & Malik, 2017a;b). This work, like the approach by Fan et al. (2018), employs an ad-hoc
state representation and reward function. Optimization-based meta-learning has other applications, such
as in few-shot learning (Ravi & Larochelle, 2017) and meta-RL (Duan et al., 2016; Wang et al., 2016).
Another approach to meta-learning is gradient-based meta-learning, such as Model Agnostic Meta Learning
(MAML) (Finn et al., 2017) and other work in meta-RL (Xu et al., 2018). These methods are distinguished
from optimization-based meta-learning for the lack of a separately parameterized meta-learner. Instead,
meta-information is encoded in θ by differentiating through gradient descent.

4 Reinforcement Teaching

Before introducing Reinforcement Teaching, we first describe the MDP formalism that underpins reinforce-
ment learning (Lattimore & Szepesvári, 2020; Sutton & Barto, 2018; Puterman, 2014). An MDP M is
defined by the tuple (S,A, r, p, µ, γ), where S is the state space, A denotes the action space, S is the
state space, r : A × S → R is the reward function that maps a state and an action to a scalar reward,
p : S ×A×S → [0, 1] is the state transition function, µ is the initial state distribution, and γ is the discount
factor. Lastly, a Markov reward process (MRP) is an MDP without actions (Sutton & Barto, 2018). For an
MRP, both the reward function r : S → R and state transition p : S × S → [0, 1] are no longer explicitly a
function of an action. Instead, actions are unobserved and selected by some unknown behavior policy.

In Reinforcement Teaching, student refers to any learning agent or machine learning model, and teacher
refers to an RL agent whose role is to adapt to and improve the student’s learning process. We start
by defining the components of the student’s learning process. We then identify states and rewards, thereby
formulating the student’s learning process as an MRP. This MRP perspective on learning processes allows the
Reinforcement Teaching framework to be applied to different types of students with varying data domains,
learning algorithms, and goals. Lastly, we introduce an action set for the teacher which allows the teacher to
alter the student’s learning process. This induces an MDP, in which the teacher learns a policy that interacts
with a student’s learning process to achieve a goal (see Figure 1).

5

Published in Transactions on Machine Learning Research (06/2023)

Figure 1: The teacher takes actions a ∈ A, which will influence an aspect of the teaching MDP, such as the
student, fθ, learning algorithm, Alg, or learning domain D. The student will then update its parameters, θ,
and the teaching MDP will then output r, s′ based on the student’s new parameters.

4.1 Components of the Learning Process

To start, we define the student learning process and its components. Consider a student, fθ, with learnable
parameters θ ∈ Θ. The student receives experience from a learning domain D, which can be labeled data
(supervised learning), unlabelled data (unsupervised learning), or an MDP (reinforcement learning). How
the student interacts with, and learns, in a domain is specified by the student’s learning algorithm Alg. The
student’s learning algorithm updates the student’s parameters, θt+1 ∼ Alg(fθt ,D), in order to maximize a
performance measure that evaluates the student’s current ability, m(fθ,D). Written this way, m can be seen
as the objective function directly optimized by Alg, but m can also be a non-differentiable metric such as
accuracy in classification, or the Monte-Carlo return in RL.

The combination of the student, learning domain, learning algorithm, and performance measure is hereafter
referred to as the student’s learning process, E = (fθ,D,Alg,m). In the remainder of Section 4, we will
outline how the components of the learning process interact as the student learns the optimal parameters
that maximize its performance measure, θ∗ = arg maxθ m(fθ,D).

4.2 States of Reinforcement Teaching

We define the state of the learning process as the student’s current learnable parameters, st = θt. Therefore,
the state space is the set of possible parameters, S = Θ. The initial state distribution, µ, is determined by the
initialization method of the parameters, such as Glorot initialization for neural networks (Glorot & Bengio,
2010). Lastly, the state transitions, p, are defined through the learning algorithm, θt+1 = Alg(fθt ,D), which
can be stochastic in general.

The sequence of learnable parameters, {θt}t≥0, form a Markov chain as long as D and Alg do not maintain
their own state that depends on the parameter history. This is the case, for example, when the learning
domain is a dataset1, D = {xi, yi}Ni=1, and the learning algorithm is gradient descent on an objective function,
θ′ := Alg(fθ,D) = θ−α∇θ 1

N

∑N
i=1 J(fθ(xi), yi) (Mandt et al., 2017; Dieuleveut et al., 2020). While adaptive

optimizers violate the Markov property of Alg, we discuss ways to remedy this issue in Appendix D and
demonstrate that it is possible to learn a policy that controls Adam (Kingma & Ba, 2015) in Section 5.2.

1RL environments are also Markovian learning domains if the environment itself is Markovian.

6

Published in Transactions on Machine Learning Research (06/2023)

4.2.1 Parametric-behavior Embedder

Although θ is a Markov state representation, it is not ideal for learning a policy. To start, the parameter
space is large and mostly unstructured, especially for nonlinear function approximators. While there is some
structure and symmetry to the weight matrices of neural networks (Brea et al., 2019; Fort & Jastrzebski,
2019), this information cannot be readily encoded as an inductive bias of a meta-learning architecture.
Often, the parameter set is de-structured through flattening and concatenation, further obfuscating any
potential regularities in the parameter space. Ideally, the teacher’s state representation should be much
smaller than the parameters. As smaller state spaces simplify the learning problem on behalf of the teacher.
In addition, the teacher’s state representation should allow for generalization to new student models with
different architectures or activations, which is not feasible with the parameter state representation. With
this property, the teacher does not have to learn a separate teaching policy for each type of student model.
See Section 5.2 for empirical evidence of the difficulty of learning from parameters.

To avoid learning from the parameters directly, we propose the parametric-behavior embedder (PE), a novel
method that learns a representation of the student’s parameters from the student’s behavior. To capture the
student’s behavior, we use the inputs and outputs of fθ, as well as the targets for the student. For example, if
the student is a classifier, the inputs to fθ would be the features xi, the targets would be the label yi, and the
outputs would be the classifier’s predictions, fθ(xi). To learn the PE state representation, we first assume that
we have a dataset or replay buffer to obtain the student inputs and targets. Then we can randomly sample
a minibatch of M inputs, {xi, yi}Mi=1, and retrieve the student’s corresponding outputs, fθ(xi). The set of
inputs, targets and student outputs ŝ = {xi, yi, fθ(xi)}Mi=1, or mini-state, provides local information about the
true underlying state s = θ. To learn a vectorized representation from the mini-state, we recognize that ŝ is
a set and use a permutation invariant function h to provide the PE state representation h(ŝ) (Zaheer et al.,
2017). The input-output pair is jointly encoded before pooling, h(ŝ) = hpool

(
{hjoint(xi, yi, fθ(xi))}Mi=1

)
,

where hpool is a pooling operation over the minibatch dimension (see Figure 2).

We argue that the parametric-behavior embedder approximates the Markov state θ. This state representa-
tion uses local information provided by the student’s behavior. With a large enough minibatch of inputs
and outputs, it can summarize pertinent information about the current θ and how it will change, thereby
approximating the Markov state (See Appendix F for more details). Methods that attempt to learn directly
from the parameters must learn to ignore aspects of the parameters that have no bearing on the student’s
progress. This is inefficient for even modest neural networks. As we demonstrate in Section 5, the PE state
representation allows the teacher to learn an effective teaching policy compared to several other baselines.

4.3 Rewards of Reinforcement Teaching

Given a reward function, r, we further formalize the learning process as an MRP, E = (S, r, p, µ), where the
state-space (S), initial distribution (µ), and state-transition dynamics (p) are defined in Section 4.2. The
learning process is formalized as an MRP for two reasons: (1) learning processes are inherently sequential,
and therefore an MRP is a natural way to depict the evolution of the student’s parameters and performance,
and (2) MRPs provide a unifying framework for different students’ algorithms and learning domains.

To specify the reward function, we first identify that reaching a high-level of performance is a common
criterion for training and measuring a learner’s performance.2 For ease of reference, let m(θ) := m(fθ,D). A
simple approach is the time-to-threshold reward in which a learner is trained until a performance condition is
reached, such as a sufficiently high performance measure (i.e., m(θ) ≥ m∗ for some threshold m∗) (Narvekar
et al., 2017). In this case, the reward is constant r(θ) = −I (m(θ) < m∗) until the condition, m(θ) ≥ m∗, is
reached, which then terminates the episode.

Similar to the argument in Section 4.2, the reward function r(θ) = −I (m(fθ,D) < m∗) is also Markov as long
as the learning domain is Markov. The performance measure itself is always Markov because, by definition,
it evaluates the student’s current ability.

2Appendix C outlines alternative reward criteria and reward shaping in the Teaching MRP.

7

Published in Transactions on Machine Learning Research (06/2023)

Figure 2: The neural network architecture used for Reinforcement Teaching with the parametric-behavior
embedding state representation. For a given student, fθ, the parametric-behavior embedder independently
projects a mini-batch of student inputs, {xi}Mi=1, and student outputs, {fθ(xi)}Mi=1, into a latent space before
concatenation and pooling, providing a state representation of θ.

4.3.1 Reward Shaping with Learning Progress

Under the time-to-threshold reward (Narvekar et al., 2017), the teacher is rewarded for taking actions such
that the student reaches a performance threshold m∗ as quickly as possible. We argue, however, that this
binary reward formulation lacks integral information about the student’s learning process.

To address this shortcoming, we define a new reward function based on the student’s learning progress. The
learning progress signal provides feedback about the student’s relative improvement and better informs the
teacher about how its policy influences the student.

We define Learning Progress (LP) as the change in the student’s performance measure, LP (θ′, θ) = m(θ′)−
m(θ) at subsequent states θ and θ′ of the student’s learning process. To shape the time-to-threshold reward,
we add the learning progress term LP (θ′, θ) to the existing reward r(θ′) previously described. Therefore,
our resulting LP reward function is r(θ′, θ) = −I (m(θ) < m∗) +LP (θ′, θ) until m(θ) ≥ m∗, terminating the
episode. It follows that learning progress is a potential-based reward shaping, given by r′ = r+Φ(θ′)−Φ(θ),
where the potential is the performance measure Φ(θ) = m(θ). This means that combining learning progress
with the time-to-threshold reward does not change the optimal policy (Ng et al., 1999).

Unlike the time-to-threshold reward function, the LP reward provides critical information to the teacher
regarding how its actions affected the student’s performance. The LP term indicates the extent to which
the teacher’s adjustment (i.e., action) improved or worsened the student’s performance. For example, if
the teacher’s action results in a negative LP term, this informs the teacher that with the student’s current
skill level (as defined by the student’s parameters), this specific action worsened the student’s performance,
thereby deterring the teacher from selecting such an action. We show empirically that compared to the

8

Published in Transactions on Machine Learning Research (06/2023)

time-to-threshold reward and other reward functions found in the literature, the LP reward function enables
the teacher to learn a more effective teaching policy (See Section 5.1, Figure 4 and Table 3).

4.4 Actions of Reinforcement Teaching

The MRP model demonstrates how the student’s learning process can be viewed as a sequence of param-
eters, {θt}t≥0, with rewards describing the student’s performance at particular points in time, {m(θt)}t>0.
However, the goal of meta-learning is to improve this learning process. The teacher now oversees the stu-
dent’s learning process and takes actions that intervene on this process, thus transforming the MRP into the
Teaching MDP,M = (S,A, p, r, µ). Aside from the action space, A, the remaining elements of the Teaching
MDP tuple have been defined in the previous subsections.

We now introduce the action set, A, that enables the teacher to control some component of the student
learning process. An action can change the student configuration or learning domain of the student, as
shown in Figure 1. Similar to RL environments, we take the action set as part of the meta-learning task
description and do not make further assumptions about the role of the action. The choice of action space
induces different meta-learning problem instances (see Appendix B), such as learning to sample, learning to
explore, curriculum learning (learning a policy for sequencing tasks), and adaptive optimization (learning to
adapt the step-size).

Lastly, the action set determines the time-step of the teaching MDP. The base time-step is each application
of Alg, which updates the student’s parameters. The teacher can operate at this frequency in settings where
it controls an aspect of the learning algorithm, such as the step-size. In this setting, the teacher would take
an action (e.g., select a step-size) after every parameter update for the student. Acting at a slower rate
induces a semi-MDP (Sutton et al., 1999). If the teacher controls the learning domain, such as setting an
episodic goal for an RL agent, then the teacher could operate at a slower rate than the base time-step. This
would result in the teacher taking an action (e.g., selecting a goal) after a complete student episode(s) which
comprises several student parameter updates. With the full Reinforcement Teaching framework outlined,
see Algorithm 1 for the corresponding pseudocode of the teacher-student interaction.

Algorithm 1 Reinforcement Teaching Framework
Input: teacher RL algorithm ψT , student ML algorithm Alg, replay buffer D for student inputs/outputs,
teacher action set A, initial teacher parameters θT , learning domain D, and minibatch size M and student
performance threshold m∗ ∈ [0, 1]
Loop for each teacher episode:

Reset student parameters θs and m(θs) = 0
Set initial teacher state S
While m(θs) < m∗ do:

Choose teacher action A ∈ A and update the student’s learning process E
Train student via Alg. During this training store student inputs x in D
Randomly sample a minibatch of M inputs from D, {xi}Mi=1
Retrieve the student’s corresponding outputs to obtain {xi, fθs(xi)}Mi=1
Calculate S′ = hpool

(
{hjoint(xi, fθ(xi))}Mi=1

)
Evaluate student on learning domain D to obtain m(θ′s)
Calculate LP = m(θ′s)−m(θs)
Calculate R′ = −I (m(θ′s) < m∗) + LP
Update θT according to ψT

5 Experiments

To demonstrate the generality and effectiveness of Reinforcement Teaching, we conduct experiments in both
curriculum learning (Section 5.1) and step-size adaptation (Section 5.2).

9

Published in Transactions on Machine Learning Research (06/2023)

Teacher Action # of Teacher Actions Frequency of Teacher Action Teacher State Teacher Reward
Curriculum Learning Maze Start state 11 After complete student episode(s) PE variants LP

Four Rooms Start state 10 After complete student episode(s) PE variants LP
Fetch Reach Goal distribution 9 After complete student episode(s) PE variants LP

Step-size Adaption Synthetic Classification with SGD Relative change in step-size 3 After each student gradient step PE variants LP
Synthetic Classification with Adam Relative change in step-size 3 After each student gradient step PE variants LP

Table 1: Initialization of teaching MDP for the Curriculum Learning and Step-size adaption problem settings.

In the curriculum learning setting, we show that the teacher using the PE state representation and LP reward
function significantly outperforms other RL teaching baselines in both discrete and continuous environments.
For the step-size adaptation setting, we show that only the PE state representation can learn a step-size
adaptation policy that improves over Adam with the best constant step-size. We further show that this step-
size adapting teacher learns a policy that generalizes to new architectures and datasets. Our results confirm
that both PE state and LP reward are critical for Reinforcement Teaching, and significantly improves over
baselines that use heuristic state representations and other parameter representations.

5.1 Curriculum Learning For Reinforcement Learning Students

In this section, we apply our Reinforcement Teaching framework to the curriculum learning problem. Our
goal is for the teacher to learn a policy for sequencing sub-tasks such that the student can solve a target task
quickly. In our experiments, we consider both discrete and continuous environments: an 11 by 16 tabular
maze, Four Rooms adapted from the MiniGrid suite (Chevalier-Boisvert et al., 2018), and Fetch Reach
(Plappert et al., 2018). For the maze and Four Rooms environment, the student’s objective is to learn the
most efficient path from a target start state to a target terminal state. For the Fetch Reach environment,
the student’s goal is to learn how to move the end-effector to random locations in 3D space, given a fixed
start state. See Appendix I.1 for more details on the student environments.

Teaching MDP for Curriculum Learning To formalize curriculum learning through Reinforcement
Teaching, we establish the teaching MDP (see Table 1). We begin by discussing the teacher’s action space.
The teacher’s actions will control an aspect of the student’s environment. For the maze and Four Rooms
environment, the teacher’s action will change the student’s start state. The teacher can select the student’s
initial position from a pre-determined set of states, which can include states that are completely blocked off.

For Fetch Reach, the teacher’s actions determine the goal distribution. The goal distribution determines the
location the goal is randomly sampled from. Each action gradually increases the maximum distance between
the goal distribution and the starting configuration of the end-effector. Therefore, “easier” student sub-tasks
are ones in which the set of goals are very close to the starting configuration. Conversely, “harder” tasks are
ones in which the set of goals are far from the starting configuration of the end-effector.

For the teacher’s state representation, we consider two variants of PE that use different student outputs
fθ. In both cases, the inputs are the states that the student encounters during its learning process (i.e.,
student training episodes). For PE-Values, the embedded outputs are the state/state-action values, whereas
for PE-Action, the embedded outputs are the student’s actions. Specifically, during each student episode,
the student encounters (state, action) pairs. These pairs are then stored in a buffer. If the student state
is already in the buffer, we keep the latest action that was taken. When it’s time to retrieve the teacher’s
state representation, we randomly sample a minibatch of M (state, action) pairs from this buffer. For the
PE-Values representation, we query the state/action value corresponding to each state in the minibatch
using the most up-to-date value network. Finally, for all reward functions, the performance measure is the
student’s return on the target task.

For the student’s learning algorithm, we used Q learning (Sutton & Barto, 2018), PPO (Schulman et al.,
2017), and DDPG (Lillicrap et al., 2016) for the maze, Four Rooms, and Fetch Reach environments, respec-
tively. This highlights that Reinforcement Teaching can be useful for a variety of students. See Table 10 for
full specification of student hyperparameters.

Teacher Training Now, to train the teacher, we use DQN (Mnih et al., 2015). We use DQN for two
reasons. First, we wanted our Reinforcement Teaching framework to have low sample complexity. As

10

Published in Transactions on Machine Learning Research (06/2023)

a single teacher episode corresponds to an entire training trajectory for the student, generating numerous
teacher episodes involves training numerous students. The teacher agent cannot afford an inordinate amount
of interaction with the student. One way to meet the sample complexity needs of the teacher is to use off-
policy learning, such as Q-learning. Off-policy learning is generally more sample efficient than on-policy
methods because of its ability to reuse past experiences that are stored in the replay buffer. Therefore,
the family of DQN algorithms is one natural choice. Second, our goal is to evaluate the efficacy of our
Reinforcement Teaching framework in solving multiple meta-learning problems. Although there have been
advancements in off-policy learning algorithms (Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,
2018) and these improvements are likely to improve the performance of our framework, we wanted to study
Reinforcement Teaching in the simplest deep RL setting possible.

We follow the pseudocode in Algorithm 1 to train the teacher. See Appendix J for full details on teacher
hyperparameters.

Figure 3: The beginning (left), middle (center), and ending (right) stages of the curriculum generated by
the PE-Actions + LP method for the Maze environment. States outlined in white indicate possible teacher
actions. The state outlined in blue indicates the target start state and the green state indicates the target
goal state. Brighter colors (more yellow/white) indicate the start state was chosen more frequently by the
teacher. Darker red/black indicates the start state was chosen less frequently by the teacher.

Teacher Evaluation To evaluate the teacher’s policy, we follow a similar protocol as done in training.
The teacher’s policy is first frozen, and the teacher is assigned a single newly initialized student. The
teacher then interacts with this student by taking actions (e.g., providing sub-tasks) that are provided to the
student. During the teacher evaluation, the goal is to determine whether the teacher provides a curriculum
of sub-tasks to the student such that the student can learn its target task efficiently. To show this, we
report the student’s learning curves (while using the teacher’s curriculum) in Figure 4. To analyze the
effectiveness of the PE state and the LP reward function on the teacher’s policy, we compare against the
following RL teaching baselines: L2T (Fan et al., 2018) and Narvekar et al. (2017). Narvekar et al. (2017)
uses the parameter state representation with the time-to-threshold reward. Fan et al. (2018) uses a heuristic-
based state representation and a variant of the time-to-threshold reward. We also compare against TSCL
Online (Matiisen et al., 2020), a representative of the multi-armed bandit approaches from the curriculum
learning literature, a random teacher policy, and a student learning the target task from scratch (no teacher).
Moreover, as a typical consequence of using RL to train a teacher is the additional training computation, we
also compare the teacher’s own learning efficiency across the RL-teaching methods (see Figure 4-left). These
results indicate that with our method, the teacher can learn effective curricula more quickly than existing
RL teaching baselines. All results are averaged over 30 seeds with shaded regions indicating 95 % confidence
intervals (CI).

Experimental Results Across all environments, we found that by using either of our PE state represen-
tations along with our LP reward signal, the teacher is able to learn a comparable or superior curriculum
policy compared to the baselines. These teacher policies generated a curriculum of start/goal states for the
student that improved the student’s learning efficiency and/or final performance, as shown in Figure 4-right.
For example, we found that in the Maze domain, the PE-Actions + LP teacher policy initially selected

11

Published in Transactions on Machine Learning Research (06/2023)

starting states close to the target goal state. However, as the student’s skill set improved over time, the
teacher adapted its policy and selected starting states farther away from the goal state (see Figure 3).

Figure 4: The left plots are learning curves for the teacher. The y-axis is the number of episodes needed for
the student to reach the performance threshold, m∗, with the teacher’s current policy, as the teacher learns
over episodes on the x-axis (lower is better). The right plots are the student’s training curves while using
the trained teacher’s curriculum policy (higher is better).

Moreover, in the Maze domain, we found that the teacher was able to learn a comparable policy using the
Narvekar et al. (2017) baseline. This is not surprising because in this domain the student’s parameters are
represented by the tabular action-value table. This parameter set is small and does not come with the same
issues as the parameters of a function approximator as described in Section 4.2.

However, only our method is able to maintain significant improvements in student learning even as the
student environment becomes more complex as demonstrated by Four Rooms and Fetch Reach results.
Lastly, we found that with our approach, the teacher is able to learn these curriculum policies efficiently
compared to the other RL-teaching baselines (See Figure 4-left). This is important because RL-teaching
approaches, like Reinforcement Teaching, require computation on behalf of both the teacher and student
algorithm. Therefore, it is crucial that our framework learns effective policies as quickly as possible.

12

Published in Transactions on Machine Learning Research (06/2023)

Ablating State and Reward Functions To highlight the importance of our state representation and
reward function on the teacher’s learned policy, we ablate over various state representations and reward
functions used in the literature. We report the area under the student’s learning curve (AUC) when trained
using the teacher’s learned curriculum (See Tables 2 and 3). We use a one-tailed independent-samples Welch
t-test (i.e., equal variances are not assumed) to determine if there is a difference in the average AUC between
methods with a p-value of 0.05.3

State ablation
PE-Value (Ours) PE-Action (Ours) L2T (Fan 2018) Parameters (Narvekar 2017)

Maze 62.12 ± 1.73 61.62 ± 1.90 61.44 ± 2.51 66.62 ± 0.96
Four Rooms 25.33 ± 0.56 22.98 ± 0.76 25.18 ± 1.10 6.0 ± 2.94**
Fetch Reach 29.72 ± 2.95 34.76 ± 1.94 29.75 ± 1.56* 16.13 ± 4.54**

Table 2: Ablation of teacher state representation functions with fixed LP reward function. Reporting mean
area under the student’s learning curve plus/minus standard error. The results are over 10 runs. * Indicates
a significant difference (p<.05) between our PE state representation and the baseline representations. **
Indicates a significant difference between baseline and both of our state representations (PE Values/Actions).
Bold indicates the highest mean area under the curve.

Reward ablation

LP (Ours) Time-to-threshold L2T reward Ruiz (2019)
reward

Matiisen (2020)
reward

Maze PE-Value (Ours) 62.12 ± 1.73 57.42 ± 6.20 6.94 ± 6.58* 63.42 ± 1.55 15.80 ± 4.03*
PE-Action (Ours) 61.62 ± 1.90 59.06 ± 5.18 3.80 ± 3.60* 14.67 ± 7.53* 53.83 ± 2.64*

Four Rooms PE-Value (Ours) 25.33 ± 0.56 17.61 ± 1.99* 17.27 ± 2.42* 13.00 ± 1.98* 24.05 ± 0.84
PE-Action (Ours) 22.98 ± 0.76 12.61 ± 3.11* 19.93 ± 1.83 21.18 ±1.02 21.81 ± 0.97

Fetch Reach PE-Value (Ours) 29.72 ± 2.95 16.40 ± 3.50* 15.94 ± 4.35* 23.51 ± 3.54 33.55 ± 1.54
PE-Action (Ours) 34.76 ± 1.94 18.08 ± 3.71* 14.07 ± 2.98* 23.37 ± 2.78* 33.56 ± 1.20

Table 3: Ablation of teacher reward functions with fixed PE state representations. Reporting mean area
under the student’s learning curve plus/minus standard error. The results are over 10 runs. * Indicates
a significant difference (p<.05) between our LP reward function and the baseline reward functions. Bold
indicates the highest mean area under the curve.

We first compare both variants of our parametric-behavior embedder, PE-Values and PE-Actions, against
the student parameters (Narvekar et al., 2017) and the heuristic state representation used by Fan et al.
(2018). In this setting, the teacher’s reward is fixed to be our LP reward. Overall, we found that the PE
state representation is a more robust teacher state representation as the student’s environments get more
complex. With our PE state representations, the teacher’s curriculum policy resulted in a higher AUC for
the student in both Four Rooms and Fetch Reach environments (see Table 2).

Next, we compare our LP reward against the reward functions used in Narvekar et al. (2017), Fan et al.
(2018), Ruiz et al. (2019) and Matiisen et al. (2020). In this setting, the teacher’s state representation is
fixed to be either our PE-Actions or PE-Values representation. We found that in 4/6 of our experiments
(student environment x PE variant), the student achieves a higher AUC value when trained with a teacher
utilizing the LP reward (see Table 3). Moreover, we found that in both the reward and state ablation
experiments, by using our LP reward or PE state representations, the teacher has comparable or improved
learning efficiency across the differing student environments (see Figures 19 and 20 in Appendix K). To
that end, we have successfully demonstrated that (1) Reinforcement Teaching can be used to learn effective
curricula that improve student learning and (2) our PE state representations and LP reward function are
important elements of our framework.

3The Welch t-test was found to be more robust to violations of their assumptions compared to other parametric and non-
parametric tests (e.g., t-test, ranked t-test) (Colas et al., 2019). In certain results we found the normality assumption to be
violated, therefore the Welch t-test a better choice than others.

13

Published in Transactions on Machine Learning Research (06/2023)

5.2 Step-size Adaptation for Supervised Learning Students

For the step-size adaption setting, the goal is for the teacher to learn a policy that adapts the step-size of
a student’s base optimizer. The student is a supervised learning algorithm with the objective of learning a
synthetic classification task. See Appendix I.2 for more details on the classification task. Learning a step-size
adaptation policy that improves over a tuned optimizer is a challenging problem because of the effectiveness
of natively adaptive optimizers, such as Adam (Kingma & Ba, 2015).

Teaching MDP for Step-size Adaption We start by formalizing the teaching MDP for the step-size
adaption problem setting (see Table 1). For this problem, the teacher will control the step-size of the
student’s optimizer. More specifically, the teacher’s action is a relative change in the step-size, doubling it,
halving it, or remaining constant. For each step in the student’s learning process, the student neural network
takes a gradient step with a step-size determined by the teacher.

For the PE state representation, we fix the mini-state size at 256 and include three variations: PE-0, which
observes only outputs, PE-X, which observes inputs and outputs, and PE-Y, which observes targets and
outputs. In this setting, the inputs are the features xi, the outputs are the classifier’s predictions, fθ(xi),
and the targets are the ground truth labels yi. Lastly, for all reward functions, the performance measure is
the student’s validation accuracy.

Teacher Training To train the teacher, we use a variant of DQN, Double DQN, and follow the pseudocode
in Algorithm 1. As discussed in Section 5.1, we use DQN style algorithms for the teacher because of their
simplicity and sample efficiency. Our use of Double DQN here also shows that our results are robust to
different choices of RL algorithms. See Appendix J.2 for full details on teacher and student hyperparameters.

Teacher Evaluation We evaluate the teacher in a similar manner as mentioned in Section 5.1. The
teacher’s policy is fixed and then evaluated on a newly initialized student. One goal is to determine whether
the teacher learned an effective policy to adapt the student optimizer’s step-size over time. Therefore, we show
the student’s learning curve, while the student uses the step-sizes proposed by the teacher (see Figures 5-right
and 6-right). It is also important that our Reinforcement Teaching approach is sample-efficient, therefore
we show the teacher’s own learning curve during training (see Figures 5-left and 6-left). Furthermore, we
perform a policy-transfer experiment, where we demonstrate that with our approach, the teacher can learn a
step-size adaptation policy that can be transferred to new students classifying different benchmark datasets
(MNIST, Fashion MNIST) and even new students with different architectures (see Figure 7).

To compare against existing work, we first conduct two ablation studies on the state representation using
SGD and Adam as the base optimizers for the synthetic classification task. We compare the variants of our
parametric-behavior embedder against (1) student parameters (Narvekar et al., 2017), (2) Policy Evaluation
Networks (PVNs), and (3) a heuristic state representation that contains the time-step, train accuracy and
validation accuracy. The heuristic state is representative of previous work like L2T (Fan et al., 2018).

Moreover, in the same synthetic classification task with the Adam optimizer, we further ablate the reward
of Reinforcement Teaching, comparing our LP reward function to the time-to-threshold reward (Narvekar
et al., 2017) and the L2T reward (Fan et al., 2018). All results are averaged over 30 random seeds, and the
shaded regions are 95% CIs.

Ablating State Representations Using SGD as the base optimizer, we use an easy synthetic classifi-
cation task where most random teacher trajectories can reach the performance threshold. We do this to
disentangle any effects of the reward function, and use only the time-to-threshold reward. We find that
using the PE variants significantly increases the teacher’s learning efficiency compared to the baselines (see
Figure 5-top left). In particular, PE-X is slower to fit the data because it must learn to fit the Gaussian
inputs, whereas PE-0 is able to more quickly learn from its smaller state representation (while this seems
surprising that outputs alone are effective, we discuss why this is effective in supervised learning in Appendix
E). Both the PVN and the parameter state representation are no better than the simple heuristic in this
problem. Observing the learning rate schedule that the teaching policy induces in Figure 21, we see that the
parameter state representation uses a nearly constant learning rate and is not adaptive. The parameter state

14

Published in Transactions on Machine Learning Research (06/2023)

Figure 5: State ablation experiments. The left plots are learning curves for the teacher. The y-axis is
the number of gradient steps needed for the student to reach the performance threshold with the teacher’s
current policy, as the teacher learns over episodes on the x-axis (lower is better). The right plots are the
student’s training curves while using the trained teacher’s step-size policy (higher is better). Top: student’s
base optimizer is SGD. Bottom: student’s base optimizer is Adam, classification task is harder.

representation is the Markov state for SGD, but, learning from parameters is difficult even for this student’s
2-layer neural network (19k parameters). PVN is also unable to improve even after increasing the number
of probing inputs from 10 to 128. Furthermore, with respect to the student’s learning curve in Figure 5 (top
right), we see similar results as previously found in the Curriculum Learning setting. With the PE state
representations, the teacher is able to output a policy that either improves the student’s learning efficiency
or results in greater final validation accuracy compared to the baselines.

Ablating Mini-state Size Using the same synthetic classification problem as before, with the student
using the SGD optimizer, we now ablate PE’s mini-state size (i.e. the number of inputs and outputs used
before pooling). In Figure 6 (bottom center), we find that the teacher improves with larger mini-state
sizes. However, even a mini-state size of 32 provides a state representation that is able to improve over the
baselines: heuristic, parameters, and PVNs.

Ablating State Representation With Adam as Base Optimizer We now conduct an experiment
with Adam as the base optimizer and with a more difficult synthetic classification task. The only difference
in this synthetic classification task, is that the performance threshold is higher. This is needed because
Adam can quickly solve the previous synthetic classification task with a large range of constant learning
rates. Adam uses a running trace of the parameter gradients in the momentum term, so the Reinforcement
Teaching MDP is no longer Markov in the parameters. To account for momentum, the mini-state can be
augmented to include, in addition to the inputs and outputs, the change in outputs after a gradient step
(denoted by -grad in legend, see Appendix D for details). Referring to Figure 5 (bottom left and right), we
find that PE is the only state representation to improve over Adam with the best constant step-size. More
specifically, we found that in 200 teacher episodes, by using the PE state representations the teacher can learn
a step-size adaption policy that results in the student reaching its performance threshold in approximately
200 time-steps. Given the same amount of teacher training time with the heuristic state, the teacher’s policy
only enables the student to reach its performance threshold after 300 time-steps (see Figure 5-bottom left).
Moreover, it is surprising to note that PE-0 is the best performing state representation despite not being a

15

Published in Transactions on Machine Learning Research (06/2023)

Figure 6: Top: Reward ablation experiments where the teacher adapts step-size of Adam. The left plot is
the learning curve for the teacher (lower is better). The right plot is the student’s training curves while
using the trained teacher’s step-size policy (higher is better). Bottom: Teacher’s learning curve ablating the
PE mini-state size where the teacher adapts the SGD optimizer’s step size.

Markov state representation for this problem. The policy learned by Reinforcement Teaching with PE also
successfully transfers to new architectures (see Appendix L.2).

Ablating Reward Functions Using Adam, PE-0, and the hard synthetic classification problem from the
previous experiment, we now ablate the reward function of Reinforcement Teaching. The earlier experiments
were designed to be insensitive to the reward function in such a way that a random teaching policy would
reach the performance threshold. We note that the policy found in the Adam experiments can reach the
performance threshold in under 200 steps, while the initially random policy takes more than 350 steps. We
now ablate reward shaping with a max steps of only 200, making both the L2T and time-to-threshold reward
relatively sparse due to time-outs. Referring to Figure 6 (top-left), we find that learning progress shapes
the reward and allows the teacher to learn a step-size adaptation policy that improves over Adam in only
100 teacher episodes, compared to 200 episodes in the previous experiment in Figure 5 (bottom-left). This
indicates that our LP reward function is important for improving the teacher’s learning efficiency. Similarly,
we found that with the LP reward the teacher’s policy significantly improves the student’s final validation
accuracy and learning efficiency compared to the other reward baselines (see Figure 6- top right).

Transferring the Policy To learn a general step-size adaptation policy, which is effective across bench-
mark datasets, the teacher must train students on a large range of optimization problems. We now conduct
experiments in which the teacher learns in the “Neural Network Training Gym” environment, in which we
sample a new synthetic classification task at the beginning of each episode. The teacher then learns to adapt
the step-size for the student’s neural network on that classification task for that episode. While synthetic,
this problem covers a large range of optimization problems by varying the classification task at each episode.
After training the teacher’s policy in the NN Training Gym, we transfer the policy to adapt the step-size for
a student learning on benchmark datasets: MNIST (LeCun et al., 2010) and Fashion-MNIST (Xiao et al.,
2017). This transfer experiment changes not only the data, but also the student’s neural network architecture
(see details in Appendix I.2). We find that the heuristic state representation is able to reach the performance
threshold for the synthetic data (see Figure 7-top left). Referring to Figure 7 (top-right and bottom), the
heuristic teaching policy does not transfer well to benchmark datasets. Our PE state representation, how-

16

Published in Transactions on Machine Learning Research (06/2023)

0 100 200 300 400
Number of Episodes

160

170

180

190

200

N
um

 S
te

ps
NN Training Gym

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, MnistCNN

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, FashionCNN

Figure 7: Reinforcement Teaching in the Neural Network Training Gym. Student learning curves use either
the best constant step-size or a step-size adaptation policy that was transferred after being learned in the
training gym. Top-left: Teacher learning curves, lower is better. Top-right: Student learning curves with
CNN on MNIST. Bottom: Student learning curves with CNN on Fashion MNIST.

ever, is able to transfer the step-size adaptation policy to both MNIST and Fashion MNIST, as well as to
a student that is learning with a Convolutional Neural Network (CNN). This is surprising because the NN
Training Gym did not provide the teacher with any experience in training students with CNNs.

6 Discussion

Our experiments have focused on a narrow slice of Reinforcement Teaching: meta-learning curricula for a
reinforcement learner and the step-size of an optimizer for a supervised learner. However, several other
meta-learning problems can be formulated using Reinforcement Teaching, such as learning to explore.

The main limitation of Reinforcement Teaching is the limitation of current RL algorithms. In designing the
reward function, we used an episodic formulation because RL algorithms currently struggle in the continuing
setting. Another limitation of the RL approach is that the dimensionality of the teacher’s action space
cannot be too large, such as directly parameterizing an entire neural network. While we have developed the
parametric-behavior embedder to learn indirectly from parameters, an important extension of Reinforcement
Teaching would be to learn to represent actions in parameter space.

In this paper, we presented Reinforcement Teaching: a general formulation for meta-learning using RL.
To facilitate learning in the teacher’s MDP, we introduced the parametric-behavior embedder that learns a
representation of the student’s parameters from behavior. For credit assignment, we shaped the reward with
learning progress. We demonstrated the generality of Reinforcement Teaching across several meta-learning
problems in RL and supervised learning. While an RL approach to meta-learning has certain limitations,
Reinforcement Teaching provides a unifying framework that will continue to scale as RL algorithms improve.

17

Published in Transactions on Machine Learning Research (06/2023)

7 Acknowledgements

Part of this work was done in the Intelligent Robot Learning (IRL) Lab at the University of Alberta. The
authors would like to thank Antonie Bodley, as well as all the anonymous reviewers for their constructive
feedback. This research was supported, in part, by funding from the Canada CIFAR AI Chairs program,
Alberta Machine Intelligence Institute (Amii), Compute Canada, Huawei, Mitacs, Alberta Innovates, and
the Natural Sciences and Engineering Research Council (NSERC).

References
Diogo Almeida, Clemens Winter, Jie Tang, and Wojciech Zaremba. A generalizable approach to learning
optimizers. ArXiv, 2021. URL https://arxiv.org/abs/2106.00958.

Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. Proceedings
of the 30th International Conference on Neural Information Processing Systems, 2016. URL https:
//proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf.

Andre Biedenkapp, H Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius Lindauer. Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In Twenty-fourth European
Conference on Artificial Intelligence, 2020. URL https://ecai2020.eu/papers/1237_paper.pdf.

Douglas Blank, Deepak Kumar, Lisa Meeden, and James Marshall. Bringing up robot: Fundamental
mechanisms for creating a self-motivated, self-organizing architecture. Cybernetics & Systems, 36:125
– 150, 2003. doi: 10.1080/01969720590897107. URL https://www.tandfonline.com/doi/abs/10.1080/
01969720590897107.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep networks
gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape. ArXiv, 2019.
URL http://arxiv.org/abs/1907.02911v1.

Daniel Brown and Scott Niekum. Machine teaching for inverse reinforcement learning: Algorithms and
applications. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7749–7758, 2019. URL
https://arxiv.org/pdf/1805.07687.pdf.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B. Tenenbaum, Tim Rocktäschel, and Ed-
ward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. Eighth International
Conference on Learning Representations, 2020. URL https://openreview.net/pdf?id=ETBc_MIMgoX.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for openai
gym. https://github.com/maximecb/gym-minigrid, 2018.

Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, and Manuel Lopes. Multi-armed bandits for intelligent
tutoring systems. Journal of Educational Data Mining, 7(2):20–48, 2015. doi: 10.5281/zenodo.3554667.
URL https://jedm.educationaldatamining.org/index.php/JEDM/article/view/JEDM111.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhiker’s guide to statistical comparisons
of reinforcement learning algorithms. ArXiv, 2019. doi: 10.48550/ARXIV.1904.06979. URL https:
//arxiv.org/abs/1904.06979.

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. Conference on Computer Vision and Pattern Recogni-
tion, 2019. URL https://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_
Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, and
Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment design. Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems, 2020. URL
https://dl.acm.org/doi/abs/10.5555/3495724.3496819.

18

https://arxiv.org/abs/2106.00958
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://ecai2020.eu/papers/1237_paper.pdf
https://www.tandfonline.com/doi/abs/10.1080/01969720590897107
https://www.tandfonline.com/doi/abs/10.1080/01969720590897107
http://arxiv.org/abs/1907.02911v1
https://arxiv.org/pdf/1805.07687.pdf
https://openreview.net/pdf?id=ETBc_MIMgoX
https://github.com/maximecb/gym-minigrid
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/JEDM111
https://arxiv.org/abs/1904.06979
https://arxiv.org/abs/1904.06979
https://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf
https://dl.acm.org/doi/abs/10.5555/3495724.3496819

Published in Transactions on Machine Learning Research (06/2023)

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John
Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https://github.com/
openai/baselines, 2017.

Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size stochastic
gradient descent and markov chains. The Annals of Statistics, 48(3):1348–1382, 2020. URL https:
//alain.perso.math.cnrs.fr/data/paper/sgd_markov.pdf.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. ArXiv, 2016. URL http://arxiv.org/abs/1611.
02779v2.

Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber. Parameter-based value functions. Ninth In-
ternational Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
tV6oBfuyLTQ.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. Sixth International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=HJewuJWCZ1.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. Fifth International Conference on Learning Representations, 2017. URL https:
//proceedings.mlr.press/v70/finn17a/finn17a.pdf.

Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, and Satinder
Singh. Bootstrapped meta-learning. The Tenth International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=b-ny3x071E5.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement
learning agents. Proceedings of the 35th International Conference on Machine Learning, 2018. URL
https://proceedings.mlr.press/v80/florensa18a.html.

Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss landscapes. Thirty-
third Conference on Neural Information Processing Systems, 2019. URL https://proceedings.neurips.
cc/paper/2019/file/48042b1dae4950fef2bd2aafa0b971a1-Paper.pdf.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. ArXiv,
2021. URL http://arxiv.org/abs/2106.06860v1.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. Thirty fifth International Conference on Machine Learning, 2018. URL https://arxiv.org/
pdf/1802.09477.pdf.

Francisco M. Garcia and Philip S. Thomas. A meta-mdp approach to exploration for lifelong reinforce-
ment learning. Thirty-third Conference on Neural Information Processing Systems, 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/c1b70d965ca504aa751ddb62ad69c63f-Paper.pdf.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010. URL
https://proceedings.mlr.press/v9/glorot10a.html.

Alex Graves, Marc G. Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated curricu-
lum learning for neural networks. Proceedings of the 34th International Conference on Machine Learning,
2017. URL https://proceedings.mlr.press/v70/graves17a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. 2018. URL https://arxiv.org/pdf/1801.
01290.pdf.

Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy evaluation networks. ArXiv, 2020.
URL http://arxiv.org/abs/2002.11833v1.

19

https://github.com/openai/baselines
https://github.com/openai/baselines
https://alain.perso.math.cnrs.fr/data/paper/sgd_markov.pdf
https://alain.perso.math.cnrs.fr/data/paper/sgd_markov.pdf
http://arxiv.org/abs/1611.02779v2
http://arxiv.org/abs/1611.02779v2
https://openreview.net/forum?id=tV6oBfuyLTQ
https://openreview.net/forum?id=tV6oBfuyLTQ
https://openreview.net/forum?id=HJewuJWCZ1
https://proceedings.mlr.press/v70/finn17a/finn17a.pdf
https://proceedings.mlr.press/v70/finn17a/finn17a.pdf
https://openreview.net/forum?id=b-ny3x071E5
https://proceedings.mlr.press/v80/florensa18a.html
https://proceedings.neurips.cc/paper/2019/file/48042b1dae4950fef2bd2aafa0b971a1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/48042b1dae4950fef2bd2aafa0b971a1-Paper.pdf
http://arxiv.org/abs/2106.06860v1
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://proceedings.neurips.cc/paper/2019/file/c1b70d965ca504aa751ddb62ad69c63f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c1b70d965ca504aa751ddb62ad69c63f-Paper.pdf
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v70/graves17a.html
https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
http://arxiv.org/abs/2002.11833v1

Published in Transactions on Machine Learning Research (06/2023)

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. URL https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/
Long-Short-Term-Memory?redirectedFrom=fulltext.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent. Inter-
national Conference on Artificial Neural Networks, 2001. URL https://link.springer.com/chapter/
10.1007/3-540-44668-0_13.

Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. Meta-learning in neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:5149–5169,
2022. URL https://www.computer.org/csdl/journal/tp/2022/09/09428530/1twaJR3AcJW.

Chen Huang, Shuangfei Zhai, Walter A. Talbott, Miguel Ángel Bautista, Shi Sun, Carlos Guestrin,
and Joshua M. Susskind. Addressing the loss-metric mismatch with adaptive loss alignment. Thirty-
sixth International Conference on Machine Learning, 2019. URL https://www.semanticscholar.
org/paper/Addressing-the-Loss-Metric-Mismatch-with-Adaptive-Huang-Zhai/
55112cbf0d65380072281c43f10f0f8472fa4b20.

Avik Jain, Lawrence Chan, Daniel S. Brown, and Anca D. Dragon. Optimal cost design for model predictive
control. in learning for dynamics and control. In Proceedings of the 3rd Conference on Learning for
Dynamics and Control, pp. 1205–1217. PMLR, 2021. URL https://arxiv.org/pdf/2104.11353.pdf.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Thirty-third
Conference on Neural Information Processing Systems, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/f4dd765c12f2ef67f98f3558c282a9cd-Abstract.html.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob N. Foerster, Edward Grefenstette, and Tim Rock-
taschel. Replay-guided adversarial environment design. Thirty-fifth Conference on Neural Information
Processing Systems, 2021a. URL https://openreview.net/forum?id=5UZ-AcwFDKJ.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. Proceedings of the 38th
International Conference on Machine Learning, 2021b. URL https://proceedings.mlr.press/v139/
jiang21b.html.

Hadi S. Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. Hyp-rl: Hyperparameter optimization by rein-
forcement learning. 2019. URL https://arxiv.org/pdf/1906.11527.pdf.

Alex Kearney, Vivek Veeriah, Jaden B Travnik, Richard S Sutton, and Patrick M Pilarski. Tidbd: Adapting
temporal-difference step-sizes through stochastic meta-descent. ArXiv, 2018. URL https://arxiv.org/
abs/1804.03334.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Third International
Conference on Learning Representations, 2015. URL https://openreview.net/forum?id=8gmWwjFyLj.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Thirty-fourth Conference on Neural Information Processing Systems, 2020. URL https://
proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html.

T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. ISBN 9781108486828.
URL https://books.google.ca/books?id=bydXzAEACAAJ.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Ke Li and Jitendra Malik. Learning to optimize. Fifth International Conference on Learning Representations,
2017a. URL https://openreview.net/forum?id=ry4Vrt5gl.

Ke Li and Jitendra Malik. Learning to optimize neural nets. ArXiv, 2017b. URL https://arxiv.org/pdf/
1703.00441.pdf.

20

https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://link.springer.com/chapter/10.1007/3-540-44668-0_13
https://link.springer.com/chapter/10.1007/3-540-44668-0_13
https://www.computer.org/csdl/journal/tp/2022/09/09428530/1twaJR3AcJW
https://www.semanticscholar.org/paper/Addressing-the-Loss-Metric-Mismatch-with-Adaptive-Huang-Zhai/55112cbf0d65380072281c43f10f0f8472fa4b20
https://www.semanticscholar.org/paper/Addressing-the-Loss-Metric-Mismatch-with-Adaptive-Huang-Zhai/55112cbf0d65380072281c43f10f0f8472fa4b20
https://www.semanticscholar.org/paper/Addressing-the-Loss-Metric-Mismatch-with-Adaptive-Huang-Zhai/55112cbf0d65380072281c43f10f0f8472fa4b20
https://arxiv.org/pdf/2104.11353.pdf
https://proceedings.neurips.cc/paper/2019/hash/f4dd765c12f2ef67f98f3558c282a9cd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f4dd765c12f2ef67f98f3558c282a9cd-Abstract.html
https://openreview.net/forum?id=5UZ-AcwFDKJ
https://proceedings.mlr.press/v139/jiang21b.html
https://proceedings.mlr.press/v139/jiang21b.html
https://arxiv.org/pdf/1906.11527.pdf
https://arxiv.org/abs/1804.03334
https://arxiv.org/abs/1804.03334
https://openreview.net/forum?id=8gmWwjFyLj
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://books.google.ca/books?id=bydXzAEACAAJ
https://openreview.net/forum?id=ry4Vrt5gl
https://arxiv.org/pdf/1703.00441.pdf
https://arxiv.org/pdf/1703.00441.pdf

Published in Transactions on Machine Learning Research (06/2023)

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Fourth International
Conference on Learning Representations, 2016. URL https://openreview.net/forum?id=tX_O8O-8Zl.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113–2122. PMLR,
2015.

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18(1):4873–4907, 2017. URL https://www.
jmlr.org/papers/volume18/17-214/17-214.pdf.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learning.
IEEE Transactions on Neural Networks and Learning Systems, 31:3732 – 3740, 2020. doi: 10.1109/tnnls.
2019.2934906. URL https://ieeexplore.ieee.org/document/8827566.

David Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Yaodong Yang, Tianpei Yang, Matthew
Taylor, Wenbin Song, Feifei Tong, Hui Chen, Jiangcheng Zhu, and Jun Wang. Learning to shape rewards
using a game of two partners. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intel-
ligence, 2023. URL https://arxiv.org/pdf/2103.09159.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015. URL https://www.nature.com/articles/
nature14236.

Oudeyer Pierre-Yves Moulin-Frier Clément, Nguyen Sao Mai. Self-organization of early vocal development
in infants and machines: the role of intrinsic motivation. Frontiers in Psychology, 4, 2014. doi: 10.3389/
fpsyg.2013.01006. URL https://www.frontiersin.org/articles/10.3389/fpsyg.2013.01006.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent System, 2019. URL https:
//dl.acm.org/doi/abs/10.5555/3306127.3331670.

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task sequencing for customized curriculum
design in reinforcement learning. Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017. URL https://doi.org/10.24963/ijcai.2017/353.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. Proceedings of the Sixteenth International Conference on
Machine Learning, 1999. URL https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/
NgHaradaRussell-shaping-ICML1999.pdf.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V. Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation, 11(2):265–286, 2007. doi: 10.
1109/TEVC.2006.890271. URL http://www.pyoudeyer.com/ims.pdf.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effec-
tive diversity in population based reinforcement learning. Thirty-third Conference on Neural In-
formation Processing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d1dc3a8270a6f9394f88847d7f0050cf-Paper.pdf.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward Grefenstette,
and Tim Rocktäschel. Evolving curricula with regret-based environment design. Proceedings of the 39th
International Conference on Machine Learning, 2022. URL https://proceedings.mlr.press/v162/
parker-holder22a.html.

21

https://openreview.net/forum?id=tX_O8O-8Zl
https://www.jmlr.org/papers/volume18/17-214/17-214.pdf
https://www.jmlr.org/papers/volume18/17-214/17-214.pdf
https://ieeexplore.ieee.org/document/8827566
https://arxiv.org/pdf/2103.09159.pdf
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.01006
https://dl.acm.org/doi/abs/10.5555/3306127.3331670
https://dl.acm.org/doi/abs/10.5555/3306127.3331670
https://doi.org/10.24963/ijcai.2017/353
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
http://www.pyoudeyer.com/ims.pdf
https://proceedings.neurips.cc/paper/2020/file/d1dc3a8270a6f9394f88847d7f0050cf-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d1dc3a8270a6f9394f88847d7f0050cf-Paper.pdf
https://proceedings.mlr.press/v162/parker-holder22a.html
https://proceedings.mlr.press/v162/parker-holder22a.html

Published in Transactions on Machine Learning Research (06/2023)

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas
Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech Zaremba. Multi-
goal reinforcement learning: Challenging robotics environments and request for research, 2018. URL
https://arxiv.org/abs/1802.09464.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for curriculum
learning of deep rl in continuously parameterized environments. Proceedings of the Conference on Robot
Learning, 2019. URL https://proceedings.mlr.press/v100/portelas20a.html.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014. URL https://dl.acm.org/doi/10.5555/528623.

Sachin Ravi and H. Larochelle. Optimization as a model for few-shot learning. Fifth International Conference
on Learning Representations, 2017. URL https://openreview.net/pdf?id=rJY0-Kcll.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. 16th European Conference on Machine Learning, 2005. URL https://link.springer.
com/chapter/10.1007/11564096_32.

Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. Learning to simulate. Seventh International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=HJgkx2Aqt7.

Luca Sabbioni, Francesco Corda, and Marcello Restelli. Meta learning the step size in policy gradient
methods. In Eighth International Conference on Machine Learning: Workshop on Automated Machine
Learning, 2020. URL https://openreview.net/pdf?id=zRn12do9p0.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. Proceedings of the 30th Interna-
tional Conference on Machine Learning, 2013. URL https://proceedings.mlr.press/v28/schaul13.
html.

J Schmidhuber. On learning how to learn learning strategies (technical report fki-198-94). Fakultat Fur
Informatik, Technische Universitat Munchen, 1994.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: The
meta-meta-... hook. Diplomarbeit, Technische Universität München, München, 1987.

NN Schraudolph. Local gain adaptation in stochastic gradient descent. In 1999 Ninth International Con-
ference on Artificial Neural Networks ICANN 99.(Conf. Publ. No. 470), volume 2, pp. 569–574. IET,
1999.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. ArXiv, 2017. URL http://arxiv.org/abs/1707.06347v2.

Satinder Singh, Richard L. Lewis, and Andrew G. Barto. Where do rewards come from? In Proceedings
of the annual conference of the cognitive science society, 2009. URL https://all.cs.umass.edu/pubs/
2009/singh_l_b_09.pdf.

Jonathan Sorg, Richard L. Lewis, and Andrew G. Barto. Reward design via online gradient ascent. In Ad-
vances in Neural Information Processing Systems, 2010. URL https://papers.nips.cc/paper_files/
paper/2010/file/168908dd3227b8358eababa07fcaf091-Paper.pdf.

Richard S Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. Tenth
National Conference on Artificial Intelligence, 1992. URL https://dl.acm.org/doi/10.5555/1867135.
1867162.

Richard S. Sutton. A history of meta-gradient: Gradient methods for meta-learning. ArXiv, 2022. URL
http://arxiv.org/abs/2202.09701v1.

22

https://arxiv.org/abs/1802.09464
https://proceedings.mlr.press/v100/portelas20a.html
https://dl.acm.org/doi/10.5555/528623
https://openreview.net/pdf?id=rJY0-Kcll
https://link.springer.com/chapter/10.1007/11564096_32
https://link.springer.com/chapter/10.1007/11564096_32
https://openreview.net/forum?id=HJgkx2Aqt7
https://openreview.net/pdf?id=zRn12do9p0
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v28/schaul13.html
http://arxiv.org/abs/1707.06347v2
https://all.cs.umass.edu/pubs/2009/singh_l_b_09.pdf
https://all.cs.umass.edu/pubs/2009/singh_l_b_09.pdf
https://papers.nips.cc/paper_files/paper/2010/file/168908dd3227b8358eababa07fcaf091-Paper.pdf
https://papers.nips.cc/paper_files/paper/2010/file/168908dd3227b8358eababa07fcaf091-Paper.pdf
https://dl.acm.org/doi/10.5555/1867135.1867162
https://dl.acm.org/doi/10.5555/1867135.1867162
http://arxiv.org/abs/2202.09701v1

Published in Transactions on Machine Learning Research (06/2023)

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive computation
and machine learning. MIT Press, 2018. ISBN 0262193981. URL http://www.worldcat.org/oclc/
37293240.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999. URL
https://www.sciencedirect.com/science/article/pii/S0004370299000521.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pp.
3–17. Springer, 1998.

Hado van Hasselt. Double q-learning. Twenty-fourth Conference on Neural Information
Processing Systems, 2010. URL https://proceedings.neurips.cc/paper/2010/hash/
091d584fced301b442654dd8c23b3fc9-Abstract.html.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. URL https://dl.acm.
org/doi/10.5555/3016100.3016191.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. ArXiv, 2016. URL
http://arxiv.org/abs/1611.05763v3.

Lucas Willems and Kiran Karra. Pytorch actor-critic deep reinforcement learning algo-
rithms: A2c and ppo, 2020. URL https://github.com/lcswillems/torch-ac/tree/
85d0b2b970ab402e3ab289a4b1f94572f9368dad.

Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, and Tie-Yan Liu.
Learning to teach with dynamic loss functions. Thirty-second Conference on Neural Infor-
mation Processing Systems, 2018a. URL https://proceedings.neurips.cc/paper/2018/file/
8051a3c40561002834e59d566b7430cf-Paper.pdf.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
2019. URL http://arxiv.org/abs/1911.11361v1.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in stochastic
meta-optimization. Sixth International Conference on Learning Representations, 2018b. URL https:
//openreview.net/forum?id=H1MczcgR-.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv, 2017. URL https://arxiv.org/abs/1708.07747.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning. Thirty-second
Conference on Neural Information Processing Systems, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. International
Joint Conference on Neural Networks, 2001. URL https://ieeexplore.ieee.org/document/938471.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Thirty-fourth Conference on Neu-
ral Information Processing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a322852ce0df73e204b7e67cbbef0d0a-Abstract.html.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexan-
der Smola. Deep sets. Thirty-first Conference on Neural Information Processing Systems, 2017. URL
https://papers.nips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

23

http://www.worldcat.org/oclc/37293240
http://www.worldcat.org/oclc/37293240
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://dl.acm.org/doi/10.5555/3016100.3016191
https://dl.acm.org/doi/10.5555/3016100.3016191
http://arxiv.org/abs/1611.05763v3
https://github.com/lcswillems/torch-ac/tree/85d0b2b970ab402e3ab289a4b1f94572f9368dad
https://github.com/lcswillems/torch-ac/tree/85d0b2b970ab402e3ab289a4b1f94572f9368dad
https://proceedings.neurips.cc/paper/2018/file/8051a3c40561002834e59d566b7430cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8051a3c40561002834e59d566b7430cf-Paper.pdf
http://arxiv.org/abs/1911.11361v1
https://openreview.net/forum?id=H1MczcgR-
https://openreview.net/forum?id=H1MczcgR-
https://arxiv.org/abs/1708.07747
https://proceedings.neurips.cc/paper/2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html
https://ieeexplore.ieee.org/document/938471
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://papers.nips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

Published in Transactions on Machine Learning Research (06/2023)

Xuezhou Zhang, Yuzhe Ma, Adish Kumar Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. Proceedings of the 37th International Conference on Machine Learning,
2020. URL http://proceedings.mlr.press/v119/zhang20u/zhang20u.pdf.

Xiaojin Zhu, Adish Kumar Singla, Sandra Zilles, and Anna N. Rafferty. An overview of machine teaching.
ArXiv, 2018. URL https://arxiv.org/pdf/1801.05927.pdf.

Yingda Zhu, Teruaki Hayashi, and Yukio Ohsawa. Gradient descent optimization by reinforcement learning.
In Thirty-third Annual Conference of the Japanese Society of Artificial Intelligence, 2019. URL https:
//www.jstage.jst.go.jp/article/pjsai/JSAI2019/0/JSAI2019_2H4E204/_pdf/-char/ja.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Fifth International
Conference on Learning Representations, 2017. URL https://arxiv.org/pdf/1611.01578.pdf.

24

http://proceedings.mlr.press/v119/zhang20u/zhang20u.pdf
https://arxiv.org/pdf/1801.05927.pdf
https://www.jstage.jst.go.jp/article/pjsai/JSAI2019/0/JSAI2019_2H4E204/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/pjsai/JSAI2019/0/JSAI2019_2H4E204/_pdf/-char/ja
https://arxiv.org/pdf/1611.01578.pdf

Published in Transactions on Machine Learning Research (06/2023)

A Code for Experiments

The source code to run our experiments can be found in this anonymized dropbox link:
https://www.dropbox.com/sh/hjkzzgctnqf6d8w/AAAYEycaDvPOeifz8FZbR3kLa?dl=0

B Teacher’s Action Space

The diagram highlights how the choice of action space for the teacher enable the teacher to learn varied
policies that can be applied across different domains

Figure 8

C More Details on Reward Functions

The reward function discussed in Section 4.3 is a time-to-threshold reward function for some threshold m∗.
Another common criterion trains the learner for T iterations and records the performance at the end. The
learning process in this case is a fixed horizon, undiscounted, episodic learning problem and the reward is
zero everywhere except that rT = m(θT ,D). In this setting, the policy that optimizes the learning progress
also optimizes the final performance m(θT). Hence, adding learning progress can be seen as balancing the
criteria previously discussed and in Section 4.3: reaching a performance threshold and maximizing overall
performance.

For reward shaping, one issue with a linear potential is that a constant improvement in performance at lower
performance levels is treated as equivalent to higher performance levels. Improving the performance of a
classifier, for example, is much more difficult when the performance is higher. One way to account for this
non-linearity in the classification setting is to introduce a non-linearity into the shaping, Φ(θ) = log(1−m(θ)).

25

Published in Transactions on Machine Learning Research (06/2023)

In the non-linear potential function, we may need to add ε to ensure numerical stability. With this nonlinear
learning progress, the agent will receive higher rewards for increasing the performance measure at higher
performance levels as opposed to lower ones.

In addition to learning progress, we can shape with only the new performance m′. Assuming that the
performance measure is bounded, 0 ≤ m′ ≤ 1, such as for the accuracy of a classifier, we have that −2 ≥
−1 + m′ ≥ 0. Because the reward function is still negative, it still encodes the time-to-threshold objective.
This, however, changes the optimal policy. The optimal policy will maximize its discounted sum of the
performance measure, which is analogous to the area under the curve.

When the performance measurem is not bounded between 0 and 1, as is the case for the sum of rewards when
the student is a reinforcement learner, we outline three alternatives. The first is to simply normalize the
performance measure if a maximum and minimum is known. The second, when the maximum or minimum
is not known, is to clip the shaping term to be between −1 and 1. The last possibility, which is used when
the scale of the performance measure changes such as in Atari (Mnih et al., 2015), is to treat any increase
(resp. any decrease) in the performance measure as equivalent. In this case, we cannot use a potential
function and instead shape with a constant, F (s, a, s′) = 2 I(γm′−m > 0)−1. The teacher receives a reward
of 1 for increasing the performance measure and a reward of −1 for decreasing the reward function. This
also respects the structure of the time-to-threshold reward, while still providing limited feedback about the
improvement in the agent’s performance measure.

D Non-Markov Learning Settings

Most components of the learner’s environment will not depend on more than the current parameters. Adap-
tive optimizers, however, accumulate gradients and hence depend on the history of parameters. In the
context of reinforcement learning, this introduces partial observability. To enforce the Markov property in
the teaching MDP, we would need to include the state of the optimizer or maintain a history of past states
of the teaching MDP. Both appending the state of the optimizer and maintaining a history can be avoided
by augmenting the mini-state ŝ = {xi, fθ(xi)}Mi=1 with additional local information about the change due to
a gradient step, gθ(xi) = fθ−α∇θJ(xi) − fθ(xi) yielding ŝgrad = {xi, fθ(xi), gθ(xi)}Mi=1. We will investigate
the necessity of this additional state variable in Section 5.2.

E Learning From Outputs Alone in Stationary Problems

Each of the mini-states is a minibatch of inputs and outputs from the student. This means that training a
teacher using stochastic gradient descent involves sampling a minibatch of minibatches. When the inputs
are high-dimensional, such as the case of images, the mini-state that approximates the state can still be
large. The inputs are semantically meaningful and provide context to the teacher for the outputs. Despite
contextualizing the output value, the inputs put a large memory burden on training the teacher. We can
further approximate the representation of the parameters by looking at the outputs alone.

To see this, suppose hpool is mean pooling and that the joint encoder hjoint is a linear weighting of the
concatenated input and output. Then the parametric behavior embedder simplifies 1

M

∑M
i=1 W

[
xi, fθ(xi)

]
=

W
[1
M

∑M
i=1 xi,

1
M

∑M
i=1 fθ(xi)

]
. For a large enough sample size, and under a stationary distribution x ∼ p(x),

1
M

∑
i xi ≈ E[xi] is a constant. Hence, if the minibatch batch size is large enough and the distribution on

inputs is stationary, such as in supervised learning, we can approximate the state θ by the outputs of fθ
alone. While this intuition is for mean pooling and a linear joint encoding, we will verify empirically that this
simplification assumption is valid for both a non-linear encoder and non-linear pooling operation in Section
5.2.

26

Published in Transactions on Machine Learning Research (06/2023)

F Parametric-behavior Embedder As Approximating A Markov State Representation

If θ is a Markov state representation, then the Parametric-behavior Embedding (PE) of θ is an approximate
Markov state representation. Requiring that θ is a Markov state representation is described in the paper
and holds for SGD without momentum in supervised learning for example.

Denote the student’s objective function as J(θ) = Ex,y∼p(x,y)J(fθ(x), y). We show how PE is approximately
Markov by showing that the mini-state (which is the input to PE) can represent J(θ) (reward) and ∇θJ(θ)
(state-transition).

Note that for any particular θ, the objective function is determined by the input (x), output of the student
(fθ(x)), and the target (y). Hence, J(θ) is representable as function of the mini-state (the input to PE). It
remains to show that the objective function after a step of gradient descent is also representable in terms of
the mini-state.

Using a first-order Taylor expansion: J(θ′(θ)) = J(θ) + (θ′(θ) − θ)∇θJ(θ) + o(α2). As argued previously,
J(θ) = Ex,y∼p(x,y)J(fθ(x), y) can be represented in terms of the mini-state. We now turn our attention to
(θ′(θ)− θ)∇θJ(θ) = α∇θJ(θ) · ∇θJ(θ).

For a linear function, fθ(x) = θx, we have that ∇θJ(θ) = Ex,y∼p(x,y)
[
∇fθ(x)J(fθ(x), y)x>

]
. This means

that ∇θJ(θ) is also representable in terms of the mini-state, with inputs x, outputs y and targets fθ(x).

For deep linear networks and non-linear networks, we require that the mini-state includes the outputs of
each layer. However, we have demonstrated empirically that we are able to learn policies using PE without
this theoretically needed information in the mini-state. Our experiments show that even for deep non-
linear neural networks, the student’s outputs (fθ(x)) and the targets (y) is enough to learn a policy that
outperforms the Markov state (θ) and cruder heuristic approximations used in the literature.

G Efficiently Learning to Reinforcement Teach

One criterion for a good Reinforcement Teaching algorithm is low sample complexity. Interacting with
the teacher’s MDP and evaluating a teacher can be expensive, due to the student, its algorithm or its
environment. A teacher’s episode corresponds to an entire training trajectory for the student. Hence,
generating numerous teacher episodes involves training numerous students. The teacher agent cannot afford
an inordinate amount of interaction with the student. One way to meet the sample complexity needs of
the teacher is to use off-policy learning, such as Q-learning. Offline learning can also circumvent the costly
interaction protocol, but may not provide enough feedback on the teacher’s learned policy. There is a large
and growing literature on offline and off-policy RL algorithms (Yu et al., 2020; Wu et al., 2019; Fujimoto
& Gu, 2021; Kumar et al., 2020). However, we found that DQN (Mnih et al., 2015; Riedmiller, 2005) and
DoubleDQN (van Hasselt, 2010; Van Hasselt et al., 2016) were sufficient to learn adaptive teaching behaviour
and leave investigation of more advanced deep RL algorithms for future work.

27

Published in Transactions on Machine Learning Research (06/2023)

H Connecting Reinforcement Teaching to Gradient-Based Meta-Learning

Summarized briefly, gradient-based meta-learning (or meta-gradient) methods learn some traditionally non-
learnable parts of a machine learning algorithm by backpropagating through the gradient-descent learning
update. Meta-gradient’s broad applicability, relative simplicity, and overall effectiveness make it a common
framework for meta-learning. For example, Model-Agnostic Meta Learning (MAML) is a meta-gradient
method that can be applied to any learning algorithm that uses gradient-descent to improve few-shot per-
formance (Finn et al., 2017) and similar ideas have been extended to continual learning (Javed & White,
2019) and meta RL (Xu et al., 2018). Here we outline how MAML and other meta-gradient methods can be
viewed relative to Reinforcement Teaching.

When Alg and m are both differentiable, such as when Alg is an SGD update on a fixed dataset, meta-
gradient methods unroll the computation graph to optimize the meta objective directly. Using MAML as
an example, the meta-gradient ∂

∂θ0
m(fθT ,D) can be compute by noticing that fθT = Alg(fθt−1 ,D) and

expanding recursively, we have

m(fθT ,D) = m(Alg(fθT−1 ,D),D) = m(Alg(· · · Alg(fθ0 ,D)),D).

Using the language of Reinforcement Teaching, we can express MAML and other meta-gradient algorithms
as a type of Reinforcement Learning algorithm. Meta-gradient algorithms make use of the known gradient-
update model and its connection to the teaching MDP’s state-transition model. If the teacher is interacting
with the teaching MDP in such a way that the state-transition model is only a gradient update, then a meta-
gradient algorithm is analogous to a type of model-based trajectory optimization method. In trajectory
optimization, an action sequence is planned by unrolling both the state-transition model and the reward
model in simulation. Then, the first action in the sequence is taken by the teacher. At the next time
step, the teacher must execute the planning procedure again. This planning procedure is costly, requiring
memory proportional to the product of the state-space size and the planning horizon, O(|S||T |). Others
have also noted, that meta-gradient learning can have difficult to optimize loss landscapes especially as the
unrolling length of the computation graph increases (Flennerhag et al., 2022). We remark, however, that
the Reinforcement Teaching approach described in this work is not mutually exclusive to meta-gradient
methods. An interesting direction for future work is combining both model-free (Reinforcement Teaching)
and model-based (meta-gradient) in one meta-learning algorithm.

Lastly, we provide further discussion on why gradient-based meta-learning is not a good approach for the
problems that we address in our experiments. Gradient-based meta-learning, which can be thought of as
model-based trajectory optimization, is only applicable if 1) we have the state-transition model, 2) that state-
transition model is fully-differentiable and 3) planning an entire trajectory using the fully-differentiable model
is computationally feasible. In our reinforcement learning experiments, the state-transition model is not just
a gradient-update but a sequence of interactions between the student’s policy and its environment. While
the gradient-update itself is differentiable, the interaction between the student’s policy and the environment
is not differentiable. Hence, the state-transition model is not differentiable, making gradient-based meta-
learning inapplicable. For our supervised learning experiments, gradient-based meta-learning is applicable
in principle because the state-transition model is just a gradient-update. As discussed in Section 2, however,
gradient-based optimization requires extensive trajectory-based optimization that is specific to each state
and student or architecture. Reinforcement teaching allows us to learn a policy that can be queried quickly
at any step and for any student or architecture, but gradient-based meta-learning requires expensive re-
computation at each time-step. Hence gradient-based meta-learning is computationally infeasible, and less
generalizable to changes in the meta-learning problem, compared to Reinforcement Teaching.

28

Published in Transactions on Machine Learning Research (06/2023)

I Environment and Baseline Specification

In this section, we will outline the environments used for both the RL and supervised learning experiments.

I.1 Environments for RL experiments

Maze The Maze environment is an 11 × 16 discrete grid with several blocked states (see Figure 9). An
agent can take four deterministic actions: up, down, left, or right. If an agent’s action takes the agent off
the grid or into a blocked state, the agent will remain in its original location. See Table 4 for details on the
environment reward. To make this environment more difficult, we limited the max number of time-steps
per episode to only 40. Therefore, the agent cannot simply randomly explore until it reaches the goal.
Furthermore, in this environment, the teacher’s action will change the student’s start state. The teacher
can start the student at 11 possible locations, including the start state of the target task. The teacher’s
action set contains both impossible tasks (e.g., start states that are completely blocked off) and irrelevant
tasks (e.g., start states that are not necessary to learn for the target task). This environment is useful to
study for several reasons. First, the reduced maximum time-step makes exploration difficult thus curriculum
learning becomes a necessity. Secondly, the set of impossible and irrelevant sub-tasks in the teacher’s action
set ensure that the teacher is able to learn to avoid these actions and only suggest actions that enable the
student to learn the target task efficiently (i.e., navigating from the blue to green state, see Figure 9).

Four Rooms The Four Rooms environment is adapted from the MiniGrid suite Chevalier-Boisvert et al.
(2018). It is a discrete state and action grid-world. Although the state space is discrete, it is very large.
The state encodes each grid tile with a 3 element tuple. The tuple contains information on the color and
object type in the tile. Due to the large state space, this environment requires a neural network function
approximator on behalf of the RL student agent. The large state space makes Four Rooms much more
difficult than the tabular Maze environment. Similar to the Maze domain, Four Rooms has a fixed start and
goal state, as shown in see Figure 10. In addition, the objective is for an agent to navigate from the start state
to the goal state as quickly as possible. In our implementation, we used the compact state representation
and reward function provided by the developers. The state representation is fully observable and encodes
the color and objects of each tile in the grid. See Table 4 for more details on the environment.

Fetch Reach Fetch Reach is a continuous state and action simulated robotic environment Plappert et al.
(2018). It is based on a 7-DoF Fetch robotics arm, which has a two-fingered parallel end-effector (see Figure
11). In Fetch Reach, the end-effector starts at a fixed initial position, and the objective is to move the
end-effector to a specific goal position. The goal position is 3-dimensional and is randomly selected for
every episode. Therefore, an agent has to learn how to move the end-effector to random locations in 3D
space. Furthermore, the observations in this environment are 10-dimensional and include the Cartesian
position and linear velocity of the end-effector. The actions are 3-dimensional and specify the desired end-
effector movement in Cartesian coordinates. See Table 4 for more details on the environment. The teacher
controls the goal distribution. The goal distribution determines the location the goal is randomly sampled
from. There are 9 actions in total, each action gradually increasing the maximum distance between the goal
distribution and the starting configuration of the end-effector. Therefore, “easier” tasks are ones in which
the set of goals are very close to the starting configuration. Conversely, “harder” tasks are ones in which the
set of goals are far from the starting configuration of the end-effector. It is important to note, however, that
the goal distribution of each action subsumes the goal distribution of the previous action. For example, if
action 1 allows the goal to be sampled within the interval [0, .1], then action 2 allows the goal to be sampled
within the interval [0, .2]. This allows for learning on “easy” tasks to be useful for learning on “harder”
tasks.

29

Published in Transactions on Machine Learning Research (06/2023)

Figure 9: Maze: The green square represents the goal state, and the blue square represents the start state
of the target task. Yellow squares indicate the teacher’s possible actions — possible starting states for the
student.

Figure 10: Four Rooms: The green square represents the goal state, and the blue square represents the start
state of the target task. Yellow squares indicate the teacher’s possible actions — possible starting states for
the student.

Figure 11: Fetch Reach

30

Published in Transactions on Machine Learning Research (06/2023)

Maze Four Rooms Fetch Reach
Env action type Discrete Discrete Continuous
Number of env actions 4 3 NA
Env state space type Discrete Continuous Continuous
Dimension of env state 1 243 10
Max number of time-steps 40 40 50
Env reward R(t) = 0 except R(T) = (.99)T R(t) = 0 except R(T) = 1− 0.9 ∗ T

maxsteps R(t) = −1 except R(T) = 0
Performance Threshold .77 (discounted return) .6 (discounted return) .9 (success rate)

Table 4: Environment characteristics. T denotes the time-step at termination.

RL Experiment Baselines For the L2T Fan et al. (2018) baseline, we used the reward function exactly as
described in the paper. For the state representation, we used an approximation of their state which consisted
of the teacher’s action, the student’s target task score, the source task score, and the student episode number.
For the Narvekar et al. (2017) baseline, we used the time-to-threshold reward function which is a variant of
their reward function. For the state, we used the student parameters, as described in their paper. Lastly,
for the Matiisen et al. (2020) baseline, we implemented it as directed by the pseudocode in the paper. We
also swept over the tau and alpha hyperparameters, as those were the only hyperparameters required. For
both, we swept over the values in {.01, .1, .5, 1.0}.

I.2 Supervised Learning

We describe the classification datasets used by the student. Note that the teacher’s action is a relative
change in the step size, so we also append the current step-size for all state representations.

Synthetic Classification: At the beginning of each episode, we initialize a student neural network
with 2 hidden layers, 128 neurons, and relu activations. The batch size is 64. For each episode, we also
sample data xi ∼ N(0, I), i = 1, . . . , 1000 and 0 ∈ R10 and I is the identity matrix. Each xi is labelled
yi ∈ 1, . . . , 10 according to its argmax yi = arg max xi. For each step in the environment, the student
neural network takes a gradient step with a step size determined by the teacher. We use a relative action
set, where the step size can be increased, kept constant or decreased. This problem was designed so that
the default step size of the base optimizer would be able to reach the termination condition within the 200
time steps allotted in the episode. Exploration is not a requirement to solve this problem, as we are pri-
marily evaluating the state representations for Reinforcement Teaching and the quality of the resulting policy.

• SGD Variant: Termination condition based on performance threshold of m∗ = 0.95, max steps is
200.

• Adam Hard Variant: Termination condition based on performance threshold of m∗ = 0.99, max
steps is 400.

Neural Network Training Gym: At the beginning of each episode, we initialize a student neural network
with 2 hidden layers, 128 neurons, and relu activations. The batch size is 128. For each episode, we also
sample data xi ∼ N(0, I), i = 1, . . . , 4000 and 0 ∈ R784 and I is the identity matrix. The data xi are
classified by a randomly initialized labeling neural network yi = f∗(xi). The labeling neural network f∗

has the same number of layers as the student’s neural network but has 512 neurons per layer and tanh
activations to encourage a roughly uniform distribution over the 10 class labels.

MNIST: The student’s neural network is a feed-forward neural network with 128 neurons and 2 hidden
layers. The CNN Variant uses a LeNet5 CNN with a batch size of 64. Subsampled dataset to 10000 so that
an episode covers one epoch of training.
Fashion-MNIST: The student’s neural network is a feed-forward neural network with 128 neurons and 2
hidden layers. The CNN Variant uses a LeNet5 CNN with a batch size of 256. Subsampled dataset to 10000
so that an episode covers one epoch of training.

31

Published in Transactions on Machine Learning Research (06/2023)

CIFAR-10: The student’s neural network is a LeNet5 CNN wih a batch size of 128. Subsampled dataset
to 10000 so that an episode covers one epoch of training.

32

Published in Transactions on Machine Learning Research (06/2023)

J Hyperparameters for Experiments

In this section, we will outline all hyperparameters used for the RL and supervised learning experiments.

J.1 Reinforcement Learning Experiments

Teacher Hyperparameters In the Maze experiments, for the DQN teacher, we performed a grid search
over batch size ∈ {64, 128, 256}, learning rate ∈ {.001, .005}, and minibatch ∈ {75, 100}. Next, in the Four
Rooms experiments, for the DQN teacher, we performed a grid search over batch size ∈ {128, 256}, and
minibatch ∈ {75, 100}. We use a constant learning rate of .001. Lastly, in the Fetch Reach experiments, for
the DQN teacher, we performed a grid search over batch size ∈ {128, 256}. We use a constant learning rate
of .001 and mini-batch size of 200. The best hyperparameters for each of the baselines are reported in the
tables.

Hyperparameters used across all envs
Teacher agent type DQN
Optimizer ADAM
Gamma .99
Tau 10−3

Target network update frequency 1
Starting epsilon .5
Epsilon decay rate .99
Value network 2 layers with 128 units each, Relu activation

Table 5: Fixed teacher hyperparameters used across all methods.

Maze
Baseline Batch size Learning rate
L2T state and LP reward 128 .001
Student parameters state and LP reward 64 .001

Four Rooms
Baseline Batch size Learning rate
L2T state and LP reward 128 .001
Student parameters state and LP reward 128 .001

Fetch Reach
Baseline Batch size Learning rate
L2T state and LP reward 256 .001
Student parameters state and LP reward 128 .001

Table 8: Teacher agent hyperparameters for teacher state ablation experiments.

33

Published in Transactions on Machine Learning Research (06/2023)

Maze
Baseline Batch size Learning rate Mini-batch size Tau Alpha
PE-Actions and LP (Ours) 256 .001 100 NA NA
PE-Values and LP (Ours) 256 .005 100 NA NA
Narvekar et al. (2017) 64 .001 NA NA NA
L2T Fan et al. (2018) 128 .005 NA NA NA
TCSL Online NA NA NA 0.1 1.0

Four Rooms
Baseline Batch size Learning rate Mini-batch size Tau Alpha
PE-Actions and LP (Ours) 128 .001 100 NA NA
PE-Values and LP (Ours) 128 .001 100 NA NA
Narvekar et al. (2017) 256 .001 NA NA NA
L2T Fan et al. (2018) 128 .001 NA NA NA
TCSL Online NA NA NA 0.1 1.0

Fetch Reach
Baseline Batch size Learning rate Mini-batch size Tau Alpha
PE-Actions and LP (Ours) 256 .001 200 NA NA
PE-Values and LP (Ours) 256 .001 200 NA NA
Narvekar et al. (2017) 256 .001 NA NA NA
L2T Fan et al. (2018) 128 .001 NA NA NA
TCSL Online NA NA NA 0.1 0.5

Table 6: Teacher agent hyperparameters for all methods (excluding ablation experiments).

Teacher-Student Protocol Hyperparameters This section contains information about the hyperpa-
rameters used for the teacher-student interaction protocol.

Maze Four Rooms Fetch Reach
Student training iterations 100 50 50
episodes/epochs per student training iteration 10 25 6
evaluation episodes/epochs per student training iteration 30 40 80
of teacher episodes 300 100 50

Table 9: Hyperparameters used in the teacher-student training procedure.

Student Hyperparameters For the PPO student, we used the open-source implementation in (Willems
& Karra, 2020). For the DDPG student, we used the OpenAI Baselines implementation Dhariwal et al.
(2017). We used the existing hyperparameters as in the respective implementations. We did not perform a
grid search over the student hyperparameters.

34

Published in Transactions on Machine Learning Research (06/2023)

Maze
Baseline Batch size Learning rate Mini-batch size
PE-Actions and Time-to-threshold 256 .001 100
PE-Values and Time-to-threshold 128 .005 75
PE-Actions and L2T reward 256 .001 75
PE-Values and L2T reward 256 .001 100
PE-Actions and Ruiz et al. (2019) reward 128 .001 100
PE-Values and Ruiz et al. (2019) reward 64 .001 100
PE-Actions and Matiisen et al. (2020) reward 128 .001 75
PE-Values and Matiisen et al. (2020) reward 128 .001 75

Four Rooms
Baseline Batch size Learning rate Mini-batch size
PE-Actions and Time-to-threshold 256 .001 75
PE-Values and Time-to-threshold 256 .001 100
PE-Actions and L2T reward 256 .001 75
PE-Values and L2T reward 256 .001 100
PE-Actions and Ruiz et al. (2019) reward 256 .001 75
PE-Values and Ruiz et al. (2019) reward 128 .001 100
PE-Actions and Matiisen et al. (2020) reward 256 .001 75
PE-Values and Matiisen et al. (2020) reward 128 .001 75

Fetch Reach
Baseline Batch size Learning rate Mini-batch size
PE-Actions and Time-to-threshold 256 .001 200
PE-Values and Time-to-threshold 256 .001 200
PE-Actions and L2T reward 256 .001 200
PE-Values and L2T reward 128 .001 200
PE-Actions and Ruiz et al. (2019) reward 128 .001 200
PE-Values and Ruiz et al. (2019) reward 256 .001 200
PE-Actions and Matiisen et al. (2020) reward 128 .001 200
PE-Values and Matiisen et al. (2020) reward 256 .001 200

Table 7: Teacher agent hyperparameters for teacher reward ablation experiments.

Maze Four Rooms Fetch Reach
Student Agent Type Tabular Q Learning PPO DDPG
Optimizer NA ADAM ADAM
Batch size NA 256 256
Learning rate .5 .001 .001
Gamma .99 .99 NA
Entropy coefficient/Epsilon .01 .01 NA
Adam epsilon NA 10−8 10−3

Clipping epsilon NA .2 NA
Maximum gradient norm NA .5 NA
GAE NA .95 NA
Value loss coefficient NA .5 NA
Polyak-averaging coefficient NA NA .95
Action L2 norm coefficient NA NA 1
Scale of additive Gaussian noise NA NA .2
Probability of HER experience replay NA NA NA
Actor Network NA 3 layers with 64 units each, Tanh activation 3 layers with 256 units each, ReLU activation
Critic Network NA 3 layers with 64 units each, Tanh activation 3 layers with 256 units each, ReLU activation

Table 10: Student hyperparameters.

35

Published in Transactions on Machine Learning Research (06/2023)

J.2 Supervised Learning Experiments

The teacher in the supervised learning experiment used DoubleDQN with ε-greedy exploration and an ε
value of 0.01. The batch size and hidden neural network size was 256. The action-value network had 1
hidden layer, but the state encoder has 2 hidden layers. There are three actions, one of which keeps the step
size the same and the other two increase or decrease the step size by a factor of 2.

Optenv Sgd Optenv Adam Optenv Miniabl
Init Num Episodes 200 200 200

Optimizer ADAM ADAM ADAM
Batch Size 256 256 256
Update Freq 100 100 100
AgentType DoubleDQN DoubleDQN DoubleDQN

Num Episodes 200 200 200
Num Env Steps 2 2 2
Hidden Size 256 256 256

Max Num Episodes 200 200 200
Activation Relu Relu Relu

Num Grad Steps 1 1 1
Num Layers 1 1 1
Init Policy Random Random Random
Gamma 0.99 0.99 0.99

Max Episode Length 200 400 200

Table 11: Fixed hyperparameter settings for (Left-Right): SGD state ablation experiment, Adam state
ablation experiment, Ministate ablation experiment.

Optenv Reward Optenv Pooling Optenv Transfer
Init Num Episodes 200 200 200

Optimizer ADAM ADAM ADAM
Batch Size 256 256 256
Update Freq 100 100 100
AgentType DoubleDQN DoubleDQN DoubleDQN

Num Episodes 400 400 400
Num Env Steps 2 2 2
Hidden Size 256 256 256

Max Num Episodes 200 200 200
Activation Relu Relu Relu

Num Grad Steps 1 1 1
Num Layers 1 1 1
Init Policy Random Random Random
Gamma 0.99 0.99 0.99

Max Episode Length 200 200 200

Figure 12: Fixed hyperparameter settings for (Left-Right): Reward shaping ablation experiment, Pooling
Function ablation experiment, Transferring to real data experiment.

36

Published in Transactions on Machine Learning Research (06/2023)

Optenv Sgd
Pooling Func ["mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0", "PE-x", "PE-y", "heuristic", "parameters", "PVN_10", "PVN_128"]

Num. Seeds 30
EnvType ["OptEnv-NoLP-syntheticClassification-SGD"]

Figure 13: Other specification and hyperparameters that are swept over in the SGD state ablation experi-
ment.

Optenv Adam
Pooling Func ["mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0", "PE-0-grad", "PE-x-grad", "heuristic"]

Num. Seeds 30
EnvType ["OptEnv-NoLP-syntheticClassification-ADAM"]

Figure 14: Other specification and hyperparameters that are swept over in the Adam state ablation experi-
ment.

Optenv Miniabl
Pooling Func ["mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0_4", "PE-0_8", "PE-0_16", "PE-0_32", "PE-0_64", "PE-0_128"]

Num. Seeds 30
EnvType ["OptEnv-NoLP-syntheticClassification-SGD"]

Figure 15: Other specification and hyperparameters that are swept over in the ministate size ablation
experiment.

Optenv Reward
Pooling Func ["mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0"]

Num. Seeds 30
EnvType OptEnv-["L2T","LP", "NoLP"]-syntheticClassification-ADAM

Figure 16: Other specification and hyperparameters that are swept over in the reward ablation experiment.

Optenv Pooling
Pooling Func ["attention", "max", "mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0"]

Num. Seeds 30
EnvType ["OptEnv-LP-syntheticClassification-ADAM"]

Figure 17: Other specification and hyperparameters that are swept over in the pooling ablation experiment.

37

Published in Transactions on Machine Learning Research (06/2023)

Optenv Transfer
Pooling Func ["mean"]

Lr [0.001, 0.0005, 0.0001]
State Representation ["PE-0", "heuristic"]

Num. Seeds 30
EnvType ["OptEnv-LP-syntheticNN-ADAM"]

Figure 18: Other specification and hyperparameters that are swept over in transferring to benchmark datasets
experiment.

K Additional RL Experimental Results

A typical consequence of using RL to train a teacher is the additional training computation. In our method,
there is both an inner RL training loop to train the student, and an outer RL training loop to train the
teacher. Although this is true, we show that our method can greatly improve the teacher’s learning efficiency
and therefore reduce the overall amount of computation.

Figure 19: Left: Maze, Middle: Four Rooms, Right: Fetch Reach. This figure shows the teacher’s training
curves in the reward ablation experiments. Top: The state is fixed to be PE-Actions. Bottom: The state is
fixed to be PE-Values. Lower is better.

Figure 20: Left: Maze, Middle: Four Rooms, Right: Fetch Reach. This figure shows the teacher’s training
curves in the state ablation experiments. The reward is fixed to be LP. Lower is better.

38

Published in Transactions on Machine Learning Research (06/2023)

L Additional Supervised Learning Experimental Results

L.1 Training Curves with Base SGD Optimizer After Meta-Training

Figure 21: SGD State Ablation experiment. Top Student training curves with a trained teacher. Top:
Step sizes selected by the teacher. Right: Same architecture as training. Center: A narrower but deeper
architecture. Right: A wider but shallower architecture.

L.2 Training Curves with Base Adam Optimizer After Meta-Training

Figure 22: Adam State Ablation experiment. Top Student training curves with a trained teacher. Top:
Step sizes selected by the teacher. Right: Same architecture as training. Center: A narrower but deeper
architecture. Right: A wider but shallower architecture. Unlike using SGD as the base optimizer, the
Reinforcement Teaching Adam optimizer generalizes well in both narrow and wide settings.

39

Published in Transactions on Machine Learning Research (06/2023)

L.3 Training Curves from Ministate Size Ablation

Figure 23: Synthetic Classification, Adam, Ministate size Ablation. Student training trajectories with a
trained teacher. Left is training accuracy, right is testing accuracy. From top to bottom: same architecture
as training, narrower architecture but deeper, wide architecture but shallower.

40

Published in Transactions on Machine Learning Research (06/2023)

L.4 Training Curves from Reward Ablation

Figure 24: Synthetic Classification, Adam, Reward Ablation. Student training trajectories with a trained
teacher. Left is training accuracy, right is testing accuracy. From top to bottom: same architecture as
training, narrower architecture but deeper, wide architecture but shallower.

41

Published in Transactions on Machine Learning Research (06/2023)

L.5 Training Curves from Pooling Ablation

Figure 25: Synthetic Classification, Adam, Pooling Ablation. Student training trajectories with a trained
teacher. Left is training accuracy, right is testing accuracy. From top to bottom: same architecture as
training, narrower architecture but deeper, wide architecture but shallower.

42

Published in Transactions on Machine Learning Research (06/2023)

L.6 Training Curves from Synthetic NN Transfer Gym

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

NN Training Gym

0 50 100 150 200
Number of Gradient Steps

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

NN Training Gym, Test

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

NN Training Gym, Narrow

0 50 100 150 200
Number of Gradient Steps

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

NN Training Gym, Test, Narrow

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

NN Training Gym, Wide

0 50 100 150 200
Number of Gradient Steps

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

NN Training Gym, Test, Wide

Figure 26: Transfer Gym Experiment using Adam as the base optimizer. Student training trajectories with
a trained teacher. Left is training accuracy, right is testing accuracy. From top to bottom: same architecture
as training, narrower architecture but deeper, wide architecture but shallower.

43

Published in Transactions on Machine Learning Research (06/2023)

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y
NN Training Gym, Mnist

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, Test, Mnist

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, MnistCNN

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, Test, MnistCNN

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, Fashion

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y
NN Training Gym, Test, Fashion

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, FashionCNN

0 50 100 150 200
Number of Gradient Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

NN Training Gym, Test, FashionCNN

0 50 100 150 200
Number of Gradient Steps

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

NN Training Gym, Cifar

0 50 100 150 200
Number of Gradient Steps

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

NN Training Gym, Test, Cifar

Figure 27: Transfer Gym Experiment using Adam as the base optimizer. Student training trajectories with
a trained teacher. Left is training accuracy, right is testing accuracy. From top to bottom: Transfer to
MNIST, Transfer to MNIST and CNN, transfer to Fashion MNIST, transfer to Fashion MNIST and CNN,
transfer to CIFAR and CNN.

44

Published in Transactions on Machine Learning Research (06/2023)

50 100 150 200
Number of Gradient Steps

0.00
0.02
0.04
0.06
0.08
0.10
0.12

S
te

ps
iz

e
NN Training Gym

50 100 150 200
Number of Gradient Steps

0.00
0.02
0.04
0.06
0.08
0.10
0.12

S
te

ps
iz

e

NN Training Gym, Narrow

50 100 150 200
Number of Gradient Steps

0.00
0.01
0.02
0.03
0.04
0.05

S
te

ps
iz

e

NN Training Gym, Wide

50 100 150 200
Number of Gradient Steps

0.00

0.05

0.10

0.15

S
te

ps
iz

e

NN Training Gym, Cifar

50 100 150 200
Number of Gradient Steps

0.000

0.005

0.010

0.015

0.020

S
te

ps
iz

e

NN Training Gym, Mnist

50 100 150 200
Number of Gradient Steps

?0.01
0.00
0.01
0.02
0.03
0.04
0.05

S
te

ps
iz

e
NN Training Gym, MnistCNN

50 100 150 200
Number of Gradient Steps

0.00

0.02

0.04

0.06

S
te

ps
iz

e

NN Training Gym, Fashion

50 100 150 200
Number of Gradient Steps

0.00
0.02
0.04
0.06
0.08

S
te

ps
iz

e

NN Training Gym, FashionCNN

Figure 28: Transfer Gym Experiment using Adam as the base optimizer. Stepsizes selected by a trained
teacher.

45

Published in Transactions on Machine Learning Research (06/2023)

L.7 Additional Experiment: Accuracy-Based Reward

Figure 29: Hard Synthetic Classification expeirment using Adam as the base optimizer. Instead of time-
to-threshold, the reward is just the accuracy at that time step. There is no termination. Student training
trajectories with a trained teacher. Left is training accuracy, right is testing accuracy. From top to bottom:
same architecture as training, narrower architecture but deeper, wide architecture but shallower.

46

	Introduction
	Sequential Decision Making for Meta-learning
	Related Work
	Reinforcement Teaching
	Components of the Learning Process
	States of Reinforcement Teaching
	Parametric-behavior Embedder

	Rewards of Reinforcement Teaching
	Reward Shaping with Learning Progress

	Actions of Reinforcement Teaching

	Experiments
	Curriculum Learning For Reinforcement Learning Students
	Step-size Adaptation for Supervised Learning Students

	Discussion
	Acknowledgements
	Code for Experiments
	Teacher's Action Space
	More Details on Reward Functions
	Non-Markov Learning Settings
	Learning From Outputs Alone in Stationary Problems
	Parametric-behavior Embedder As Approximating A Markov State Representation
	Efficiently Learning to Reinforcement Teach
	Connecting Reinforcement Teaching to Gradient-Based Meta-Learning
	Environment and Baseline Specification
	Environments for RL experiments
	Supervised Learning

	Hyperparameters for Experiments
	Reinforcement Learning Experiments
	Supervised Learning Experiments

	Additional RL Experimental Results
	Additional Supervised Learning Experimental Results
	Training Curves with Base SGD Optimizer After Meta-Training
	Training Curves with Base Adam Optimizer After Meta-Training
	Training Curves from Ministate Size Ablation
	Training Curves from Reward Ablation
	Training Curves from Pooling Ablation
	Training Curves from Synthetic NN Transfer Gym
	Additional Experiment: Accuracy-Based Reward

