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Abstract. Learning the structure of a gene regulatory network from
time-series gene expression data is a significant challenge. Most approaches
proposed in the literature to date attempt to predict the regulators of
each target gene individually, but fail to share regulatory information
between related genes. In this paper, we propose a new globally regular-
ized risk minimization approach to address this problem. Our approach
first clusters genes according to their time-series expression profiles—
identifying related groups of genes. Given a clustering, we then develop
a simple technique that exploits the assumption that genes with simi-
lar expression patterns are likely to be co-regulated by encouraging the
genes in the same group to share common regulators. Our experiments
on both synthetic and real gene expression data suggest that our new
approach is more effective at identifying important transcription factor
based regulatory mechanisms than the standard independent approach
and a prototype based approach.

1 Introduction

Genes and their products do not work independently in the cell. Rather, they
are jointly regulated in a coordinated fashion, both internally and externally, to
achieve proper cell function. One of the key mechanisms of gene regulation takes
place at the mRNA transcription level. With the emergence of high-throughput
microarray techniques, the mRNA expression levels of thousands of genes can be
measured simultaneously. Using computational techniques to learn gene regula-
tory networks from high-throughput time-series gene expression data has been
an active area of research in recent years. The goal of such research is to discover
the causal control relationships between genes, which would offer a fundamental
understanding of how biological processes are coordinated in the cell.

A variety of computational approaches have been proposed in the literature
to model gene regulatory networks from expression data. Many approaches have
been based on the use of linear models to express dependence between time
series profiles. For example, D’Haeseleer et al. [1] studied a straightforward lin-
ear model for this purpose; Chen et al. [2] and De Jong et al. [3] investigated
linear differential equations for gene regulatory network modeling. All of these
approaches suffer from risks of over-fitting, however, since they fit a number of
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parameters that is proportional to the size of the data itself. To counter the risk
of over-fitting, other linear approaches have taken advantage of sparseness of the
regulatory relationship between genes; that is, that any one gene is regulated
by a small subset of the other genes. De Hoon et al. [4] have proposed to use
“Akaike’s Information Criterion” (AIC) to determine the nonzero coefficients in
the linear system. Similarly, Li & Yang [5] used “L1 regularization” to conduct
feature selection on the linear parent set.

Another popular approach to learning gene regulatory network structure is
to exploit various forms of (dynamic) Bayesian network structure learning meth-
ods. A Bayesian network is a graphical representation of the causal relationships
underlying a set of variables that provides a sound probabilistic framework for
representing and inferring probabilistic relationships. Dynamic Bayesian net-
works are a natural extension of Bayesian networks to modeling time-series data.
Learning the structure of a Bayesian network from data generally requires one of
two approaches to be followed: a score-based approach—where a heuristic search
is performed through the space of causal network structures to identify the most
likely structure explaining the data—and a constraint-based approach—where
conditional independence tests are used to determine whether a direct causal
relationship should be postulated between two variables. Many variants of these
techniques have been applied to gene regulatory network learning, including
search-based approaches [6–8], information-theoretic approaches [9], parameter-
tying based approaches [10], and conventional dynamic Bayesian network learn-
ing approaches [11, 12].

Although these previous techniques have achieved some promising results,
the fundamental limitation of the amount of data available relative to the large
number of parameters estimated (e.g. distinct parameters used to predict the ex-
pression level of each gene given other genes) severely constrains their effective-
ness. This difficulty is inherent to the task: orders of magnitude more expression
data would be required for naive estimation approaches devoid of background
knowledge and biologically relevant assumptions to succeed on this problem.

One common shortcoming in the current literature, whether using linear mod-
eling or using Bayesian network structure learning, is that nearly all proposed
approaches attempt to determine the regulation structure for each target gene
independently. Yet it is well known that genes that share the same expression
pattern are likely to be involved in the same regulatory process, and therefore
share the same (or at least a similar) set of regulators [13]. The main ques-
tion we investigate is how to exploit biologically significant knowledge about
co-regulation to improve the inference of the underlying gene regulatory net-
work from expression data. Although a few previous investigators, such as van
Someren et al. (2000), have proposed to group genes with similar expression
profiles in a single prototypical ”gene”, and then model the relations between
prototypical genes instead of modeling the genes individually, this is a some-
what oversimplified approach that ultimately ignores the individual differences
between genes in the same group, and puts a particular high requirement on the
clustering step.
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In this paper, we propose a novel approach for predicting the regulators for
a given group of genes with similar mRNA expression patterns, by minimizing
a globally shared regularized prediction risk that encourages similar genes to
share regulators. The models we learn, however, are otherwise standard linear
models. The novelty of the approach is to first cluster the genes based on their
time series expression profiles, and then minimize a loss determined on a set of
global indicator variables associated with the common set of possible regulatory
variables. We evaluate the performance of our approach on both synthetic data
and the cell cycle time-series gene expression data of [14]. Our synthetic results
show that our approach is able to learn the correct structure far more effec-
tively than the typical approach that does not take into account co-regulation
knowledge. Our results on the Cho et al. (1998) cell cycle data suggests our
approach can identify the important transcription factors in the cell cycle genes
more accurately by exploiting the co-regulation knowledge.

2 Method

The core of our method is based on using linear regression models to infer the
expression level of each target gene from the expression levels of a set of poten-
tial regulator genes. However, even though linear prediction provides a simple
and elegant foundation for modeling time series expression data, it cannot be
applied naively. At least three significant issues need to be addressed before rea-
sonable results can be achieved. First, time lags exist in the regulatory pathways
controlling gene expression. These time lags vary between pathways and remain
generally unknown a priori [12]. Second, the number of parameters required by
a simple linear model (one parameter for each target-regulator combination) is
far too many to be estimated reliably from available time series gene expression
data. Some sort of effective feature selection mechanism must be employed [5].
Third, genes that serve related or synchronized functions tend to share common
regulatory mechanisms. That is, related genes tend to share common regulators,
and this knowledge must be exploited somehow to improve the quality of the
regulation networks that are inferred. Failure to take into account any of these
issues causes the linear prediction (or any other) approach to perform poorly.

We take into account all three of the above issues and modify the linear
prediction approach to infer gene regulatory networks from time series expres-
sion data. The first two issues have been handled in varying ways in existing
research—although we propose particularly simple and elegant ways to handle
them in this paper. The third issue comprises the main observation we make,
and motivates our use of a novel form of global risk minimization that is able to
share regulatory information between similar genes while simultaneously allow-
ing individual differences.

2.1 Linear Modeling

First, to establish the basic linear prediction approach consider an n× t matrix
Y of time series gene expression data, where each column corresponds to the
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expression levels of a single gene measured over a series of n time points; hence, Y
stores the expression profiles for t genes. For each gene, we would like to identify
which other genes measured in Y are likely to be regulators. The fundamental
hypothesis is that the expression levels of a regulator gene should be predictive
of the expression levels for a regulated target gene, possibly subject to time lag
and the presence of co-regulators or absence of inhibitors.1

A straightforward linear prediction approach proceeds as follows. Assume for
a target expression profile yj given by an n × 1 column vector from Y , we have
a set of candidate regulator profiles stored in an n × k matrix Xj consisting of
k distinct columns selected from Y . (We will discuss below how such a set of
candidate profiles might be inferred for a given target yj .) The quality of this
set of candidate regulators can be assessed by how well their expression levels
predict the expression levels of the target, which can be determined by solving
for the combination weights of the regulator profiles that best reconstruct the
target profile

min
wj

‖Xjwj − yj‖
2

2
. (1)

Here the k × 1 vector of combination weights wj describes how the expression
levels of the regulator genes in Xj interact to best explain the target expression
levels yj , and the quality of the fit can be assessed by the residual error in (1).

2.2 Coping with Time Lags via Time Shifting

Unfortunately, the naive linear modeling approach (1) suffers from the three
major drawbacks mentioned above. The first problem is that it does not account
for any time lag between the expression of a regulating gene and the expression
of its downstream target. In fact, the naive approach (1) implicitly assumes
that regulation occurs instantaneously, and therefore performs quite poorly at
identifying any regulatory relationship that exhibits delayed effects. To cope
with this shortcoming, we modify the approach to first take into account any
potential time lag between the expression of a regulator and its downstream
target. In particular, for each candidate regulator measured in Xj , given by an
n× 1 vector xij , we first compute an optimal shift back in time that best aligns
xij individually with the target yj

s∗ij = arg min
s∈{0,1,2,3}

‖xij(1, ..., n − s) − yj(s + 1, ..., n)‖2

2
. (2)

(Note that the shifts only allow time lags forward in time from the expression of
the regulator to the expression of the target.) Repeating this for each candidate
regulator profile in Xj , yields a series of optimal time lags. We can then refor-
mulate the expression matrix Xj for the candidate regulators by applying the

1 To mitigate the effect of measurement errors and outliers in the expression data, we
generally assume the columns of Y have been rescaled to values between 0 and 1,
and thus we are only searching for explanations of relative increases or decreases in
expression level.
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optimal shift to each column, and truncating the columns to a common length
based on the maximum shift, obtaining an (n−smax)×k time-lag aligned matrix
Φj . The target expression profile yj is then also truncated to a corresponding
(n−smax)×1 vector ỹj , where ỹj = yj(smax, ..., n). The quality of the candidate
regulators can then be assessed by the more appropriate aligned reconstruction

min
wj

‖Φjwj − ỹj‖
2

2
. (3)

2.3 Feature Selection via L1 Regularized Risk Minimization

Although the modified linear approach (3) appropriately handles time lags be-
tween regulator and target expression patterns, it still suffers from a major
drawback: the set of candidate regulators for a given gene is usually very large
(e.g. the complete set of remaining genes), while the number of time points sam-
pled in a time series experiment is usually quite small (on the order of 20 to
30). Therefore a large set of combination weights wj need to be inferred from a
limited amount of data. Moreover, only a tiny fraction of the candidate regula-
tors are expected to be true regulators for any given gene, meaning that, ideally,
most of the weights should be set to 0 to indicate non-regulation. The bottom
line is that some sort of effective form of feature selection is required for this
problem. From a large set of candidate regulator expression profiles, most need
to be discarded, and a small number retained to provide a good explanation of
the target expression profile.

It is well known in the machine learning literature [15] that using the L1
norm (rather than the more conventional L2 norm) for regularization is very
effective for feature selection. In this approach, one adds a penalty to the risk
(the reconstruction objective) which encourages small values for wj :

min
wj

‖Φjwj − ỹj‖
2

2
+ α‖wj‖1, (4)

where α is a parameter that trades off the influence of the risk with the reg-
ularizer. Crucially, this regularizer encourages many of the weights to become
exactly zero in the solution. To see why, note that the regularization term is
non-differentiable at zero, but any movement of a weight from zero immediately
creates a derivative of magnitude α encouraging movement back to zero. Thus, if
the magnitude of the derivative of the risk is not greater than α, then the weight
will remain at zero. These intuitions lead to an efficient optimization procedure
known as grafting [16].

2.4 Regulation Sharing via Globally Regularized Risk Minimization

Simply solving the minimization problem in (4) provides no advantage over the
approaches proposed in the literature however, since it does not address the
problem of facing a shortage of data while trying to make inferences about a
large number of genes. To mitigate this problem we propose to share regulatory
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information across sets of target genes. Given the hypothesis that genes with
similar expression patterns are usually co-regulated and involved in the same
functional process, we propose to first cluster the target genes based on their
expression patterns. (This clustering can be performed in many different ways. In
our implementation below we simply used a straightforward K-means method.)
Then, for each cluster, our goal is to identify a set of regulators that is shared
among the entire set of genes in the cluster, while still allowing for differences
among the regulation of individual genes. Achieving this type of information
sharing in the context of regularized linear modeling (4) however, requires some
novel technical developments.

In [17] we recently developed a novel convex Bayesian network structure
learning approach based on introducing a set of auxiliary indicator variables to
control global feature selection. Adapting this idea to the current context, we
propose to use a global regularization scheme on auxiliary selection variables to
help identify the common candidate regulators among a group of target genes
with similar expression profiles. Given that there is much more data available for
sets of similar genes, as opposed to individual genes, we hope that the common
regulators can be more accurately identified.

Specifically, given a set of target genes Y = {y1, ...,ym}, we would like to
identify a common set of regulators from the set of candidates X = {x1, ...,xl}.
Define a set of indicator variables η = {η1, ..., ηl}

>, corresponding to the candi-
date set X = {x1, ...,xl}, such that each ηi ∈ {0, 1} indicates whether a regula-
tor Xi is selected as an active regulator. Let N = diag(η). Then, we can form
a globally regularized version of the minimization problem (4) by introducing
the selection variables η and adding a new global regularization term on these
variables:

min
η∈{0,1}n

min
w

∑

j

(

‖ΦNwj − ỹj‖
2

2
+ α‖wj‖1

)

+ λu>
η, (5)

where u is a positive weight vector that allows one to incorporate prior knowl-
edge about the importance of each global feature. Although we simply set this
vector to 1 in our later experiments, it will be very useful whenever prior knowl-
edge is available. Note that the global regularization term λu>

η is in fact an
L0 norm regularizer, which will automatically force a sparse solution that se-
lects only a small set of global features for the set of target genes in a cluster.
Nevertheless, the local L1 norm regularizer, α‖wj‖1, will still make individual
choices of regulators for each specific target gene; choosing these regulators from
the globally selected features identified by η. Therefore, if the target genes in a
cluster share some common regulators, the global feature selection process will
be very helpful to pick them out, while the ability to individually model the
regulation of each gene has not been diminished.

2.5 Optimization Procedure

Equation (5) encodes a min-min integer optimization problem. Unfortunately,
integer optimization problems of this form are generally NP-hard. To attempt to
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solve the problem efficiently, we first relax it into an optimization over continuous
variables, by relaxing each ηi ∈ {0, 1} to be continuous ηi ∈ [0, 1]. This leads to
solve the following relaxed min-min optimization:

min
η

min
w

∑

j

(

‖ΦNwj − ỹj‖
2

2
+ α‖wj‖1

)

+ λu>
η

s.t. 0 ≤ η ≤ 1. (6)

In fact, this formulation has relaxed the original L0 norm regularizer over η into
a L1 norm regularizer. In this way we maintain feature selection ability, while
gaining computational efficiency.

In our implementation below, we conduct the optimization in two alternating
steps: minw and minη. Each minw step is simply a minimization of least squares
regression error with L1 norm regularization, which can be implemented as a
quadratic program [18], or by using a fast grafting algorithm [16]. For the minη

step, we use a quasi-Newton BFGS method to perform the optimization [19].

3 Experiments and Results

We conducted experiments on both synthetic and real cell cycle data to evalu-
ate our approach. In particular, we compared our global regularization approach
to the standard independent local predication approach, and a prototype based
linear regression method adapted from [20]. Synthetic experiments are useful
to gauge the potential effectiveness of the approach under controlled conditions
where the ground truth is available. Once the intuitive behavior of the tech-
nique is understood, we then apply the method to inferring the structure of the
regulatory network of the yeast cell cycle.

In our experiments, we assume all transcription regulations work through
activators, instead of inhibitors; that is, we assume the w parameters are non-
negative in the linear regressions. Also, to keep the w parameters from becoming
too small and causing a threshold selection problem, we included the additional
constraint ‖wj‖1 ≥ 1 in the three linear regression algorithms.

3.1 Experiments on Synthetic Data

For the synthetic experiments, we set up a small system to simulate a cell cycle
process controlled by a small number of critical transcription factors (TFs). We
defined 10 TFs that regulated the expression levels of 212 genes in 4 phases of
a synthetic cell cycle. These 10 TFs were divided into 4 regulatory groups, with
3, 2, 3, and 2 TFs in each group respectively. Each group of TFs was associated
with a specific phase of the cell cycle, and regulated the expression of 53 genes, as
well as the TFs in the next phase of the the cycle. In our setting, we assumed that
one gene (including the TFs themselves) can be regulated by either one TF or
a combination of two TFs. We generated the expression data by first simulating
ideal expression levels for the TFs in a selected phase for two complete cell



8

cycles, totaling 16 time steps. Then we generated the expression profiles of the
genes (or TFs) in the next phase by a 2 time step delayed response from the
combination (“and”) of m (m ≤ 2) randomly selected TFs in their previous
phase, plus Gaussian noise. Repeating this procedure for all the phases in the
cycle in turn, we generated synthetic time-series profiles for the entire set of TFs
and genes.

Both our global regularization approach and the prototype based method
require the genes to first be clustered based on their expression profiles. Al-
though the number of clusters used has a minor effect on the performance of
both algorithms, the impact is not significant provided that the cluster number
is not extreme (neither extremely big nor extremely small). For our synthetic
experiments, we simply choose to use 10 as the number of clusters.

Column 5 in Figure 1 shows the expression profiles for the genes and TFs after
their profiles have been clustered into 10 groups. We then learn the regulators
for the genes in each group, using our globally regularized linear regression to
encourage genes in the same group to share parents. We compared the results
of the global approach to both the standard “local” approach of learning the
parent regulators for each gene separately, and the prototype based approach of
forcing all the genes in one group to have the exactly same set of parents. The
comparison algorithms serve as controls at the two opposite extremes. We used
the same L1 regularized method for parent selection in all of the algorithms.
After obtaining the w parameters from each algorithm, all the parents indicated
by w > 10−5 are determined as predicted regulators for the corresponding genes.
For a fair comparison, the regularization parameters (α and λ) were chosen to
yield the highest F-measure values in each case.

Columns 1–3 in Figure 1 show the regulator prediction results for the three
algorithms respectively; comparing them with the true regulation information
in Column 4. The x-axis for each column indicates the candidate TFs from
which a subset is selected as the set of regulators for each gene. The y-axis for
each column indexes the individual target genes. Each row plots the predicted
regulators for each gene based on the corresponding w parameters for that gene,
where white indicates a large value (indicating a regulator), while dark indicates
a value close to 0 (indicating no regulation).

The table in Figure 1 compares the performance of the three algorithms. The
precision score measures true positive predictions (tp) divided by true positives
plus false positive predictions (fp). That is, precision = tp/(tp + fp). Similarly,
recall score is measured in terms of the number of false negative predictions
(fn), and is given by recall = tp/(tp + fn). F-measure is a standard combina-
tion of both precision (p) and recall (r), given by F-measure = 2 p r/(p + r).
The accuracy score measures the proportion of the correct predictions. That
is, accuracy = (tp + tn)/(tp + tn + fp + fn). Here we can see that the global
regularization approach greatly outperforms both the local regularization and
prototype based methods with respect to both accuracy and F-measure. The
local predication method is not able to effectively identify the true regulators
due to the noise in the data and the limited number of time points. The proto-
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Performance Local Prototype Global
comparison regularization method regularization

accuracy (%) 57.6 47.2 73.0
precision (%) 21.4 18.1 30.0
recall (%) 71.5 75.0 63.8
F-measure 33.0 29.2 40.8

Fig. 1. Results on synthetic data. Rows denote target genes in the synthetic experi-
ment. Columns denote candidate regulators (transcription factors). A white cell denotes
a large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear
model, indicating that j is inferred to regulate i. A black cell denotes a small weight
(wij ≤ 10−5), indicating that j is not inferred to regulate i. Column 1: local prediction
output. Column 2: prototype prediction output. Column 3: global prediction output.
Column 4: ground truth regulatory relationships. Column 5: expression level data used
as input.
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type base method also has difficulty identifying correct regulatory relationships,
and tends to choose too many parents for each gene. The reason for this is clear
however. Since the prototype method is forced to choose a single set of regu-
lators for controlling a large set of genes, it naturally chooses the union of the
prospective regulators for each gene, leading to subsequently low precision and
accuracy. Thus, the prototype approach depends heavily on having a more re-
fined and accurate set of clusters from which it can make accurate regulatory
inferences, but an accurate clustering is very hard to achieve in practice. Figure 1
shows, on the other hand, that the global regularization approach can effectively
remove irrelevant candidate TFs by sharing co-regulation information within a
group, while simultaneously reducing the number of spurious regulators being
inferred by allowing individual differences between genes in a given cluster. The
overall result is a much more accurate (albeit far from perfect) recovery of the
underlying regulatory structure.

The main question that remains is whether the higher quality inference on
this synthetic model leads to improved results on real gene expression data,
which we consider next.

3.2 Experiments on Real Data

Gene expression microarray data for the yeast cell cycle typically contains more
than 6000 genes, while only a subset of these genes are cell cycle regulated. It is
known there are 9 important transcription factors (TFs) that regulate the cell
cycle process [21], namely: SWI4, SWI6, MPB1, FKH1, FKH2, NDD1, MCM1,
ACE2 and SWI5. Since a lot of gene regulatory relationships have already been
identified for yeast, this model is commonly used to evaluate learning approaches
that attempt to infer gene regulatory networks from data. Here we use Cho et
al.’s data [14], and focus on the task of identifying the subset of regulators from
the 9 candidate TFs, for each yeast gene that is cell cycle regulated. To clearly
evaluate our approach, we chose a subset of 267 cell cycle regulated genes from
the Cho et al. data [14], while we could obtain confirmed regulatory relationships
from the previous literature [21, 22], or could obtain potential regulation rela-
tionships from existing binding data [21] for 127 genes among them. We rescaled
the expression data to values between 0 and 1, and then clustered the genes
into 15 clusters using K-means. (In the images shown in Figure 2, the genes
are grouped vertically into the clusters. The number of clusters is chosen by
using visual judgment to achieve a smooth clustering effect.) Finally, we tested
our algorithms on each cluster. As in the synthetic experiments, after obtaining
the w parameters from each algorithm, all the parents indicated by w > 10−5

are determined as predicted regulators for the corresponding genes. For a fair
comparison, the regularization parameters (α and λ) were chosen to yield the
highest F-measure values in each case.

Since the regulatory mechanisms are still not known for a portion of the 267
genes, we therefore can only evaluate the results over the 127 genes for which reg-
ulatory relationships are presumed known. Figure 2 shows the prediction results
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Performance Local Prototype Global
comparison regularization method regularization

accuracy (%) 57.8 55.4 73.9
precision (%) 22.3 21.2 35.7
recall (%) 47.5 48.0 43.4
F-measure 30.4 29.4 39.2

Fig. 2. Results on the subset of the real gene expression data from [14], restricted to
genes where TF-based regulation information is known or can be inferred from other
sources [21, 22]. Rows denote target genes in the synthetic experiment. Columns denote
candidate regulators (transcription factors). A white cell denotes a large weight (wij >

10−5) connecting a TF j to a target gene i in the estimated linear model, indicating that
j is inferred to regulate i. A black cell denotes a small weight (wij ≤ 10−5), indicating
that j is not inferred to regulate i. Column 1: local prediction output. Column 2:
prototype prediction output. Column 3: global prediction output. Column 4: ground
truth regulatory relationships. Column 5: expression level data used as input.



12

on 127 genes for all the three algorithms: locally regularized prediction, proto-
type based prediction, and globally regularized prediction. The images compare
the performance of the three methods on inferring regulators from among the 9
candidate TFs, and shows how they related to the known TF-based regulatory
relationships. These results show that the globally regularized approach can sig-
nificantly improve the quality of both the standard locally regularized approach
and the prototype based approach adapted from [20]. As in the synthetic case,
the globally regularized approach has the ability to share regulatory information
between genes within a cluster, leading to better noise robustness than the local
approach. Here too, the global technique also overcomes the problem of being
overly dependent on clustering quality, like the prototype approach, by allowing
regulation differences with a cluster. For example, in Figure 2, in the group of
genes indexed between 42-58, one can see that a large set of the errors pro-
duced by the standard independent approach (Column 1) have been corrected
by sharing parent information throughout the cluster (Column 3). The global
regularizer correctly recognizes that this set of late-G1 genes is regulated by a
subset of SWI4/SWI6 and MBP1/SWI6. Although some local errors remain in
this region (and elsewhere), clearly the overall quality of the parent prediction
has been improved substantially in the global method. For these genes, the pro-
totype based method (Column 2) recognizes two additional parents, perhaps due
to noise.

Overall, the prediction quality achieved by these methods on this data is still
somewhat limited, but has improved significantly over the past few years, and
in some sense is remarkable given the noise exhibited in the expression profiles
(Column 5).

4 Conclusions

In this paper, we have proposed a new globally regularized risk minimization
objective for learning regulatory networks from gene expression data. Exploiting
the assumption that genes with similar expression patterns are likely to be co-
regulated, our approach first clusters the genes, and then learns the regulatory
relationships by encouraging genes with similar expression patterns to share reg-
ulators. Our experimental results on both synthetic data and real cell cycle data
show that this new approach is more effective at identifying important (tran-
scription factor based) regulatory mechanisms than the standard independent
approach, and a prototype based approach.

Thus far, we have only considered using gene expression data in the learning
process. Further prediction improvements are likely to come from incorporating
further sources of biologically relevant data, such as binding information [21], or
other forms of prior knowledge beyond the co-regulation assumption made here.
These informations can be nicely incorporated into our global risk minimization
approach by using the u parameter vector. Moreover, as an effective feature
selection strategy, it might be useful to extend this approach resolving other
feature selection bioinformatics problems.
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