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Abstract— We demonstrate that a simple hidden Markov
model can achieve state of the art performance in unsupervised
part-of-speech tagging, by improving aspects of standard Baum-
Welch (EM) estimation. One improvement uses word similarities
to smooth the lexical tag � word probability estimates, which
avoids over-fitting the lexical model. Another improvement con-
strains the model to preserve a specified marginal distribution
over the hidden tags, which avoids over-fitting the tag � tag
transition model. Although using more contextual information
than an HMM remains desirable, improving basic estimation still
leads to significant improvements and remains a prerequisite for
training more complex models.

I. INTRODUCTION

A recent trend in statistical language learning research is
to develop models that consider greater context when infer-
ring latent linguistic variables such as part-of-speech tags,
parsing dependencies, modifier attachments and constituents.
This emphasis is exemplified by recent work on maximum
entropy methods [1], [2], conditional random fields [3], and
large margin methods [4], which often consider longer-range
features than local words or n-grams. Even in the specific case
of part-of-speech tagging, there exists a similar trend toward
using greater context [5].

However, in this paper we present an alternative viewpoint
by considering only simple models that use limited context.
Our goal is to focus on the parameter estimation problem and
show that simple ideas can still lead to significant improve-
ments in training accuracy—ultimately leading to performance
that competes with that of more complex models.

Although building complex models that capture wider lin-
guistic structure is a legitimate goal of statistical language
learning, ensuring the accuracy of these models becomes more
difficult with increasing complexity. With a greater number
of parameters, the computational challenges associated with
training become more difficult, while the risks of over-fitting
the training data simultaneously increase. Our hope is that
improvements in basic estimation for simple models can be
transferred to more complex settings.

In this paper, we focus on unsupervised language learning.
Unsupervised learning is clearly important in statistical natural
language research as it eliminates the need for extensive man-
ual annotation. However, unsupervised learning is significantly
harder than supervised learning, especially on language data
where so many linguistic variables remain latent. The dangers

of poor estimation are exaggerated and even self-reinforcing
in this case, since unsupervised learners typically attempt to
bootstrap from inferred values of hidden variables, which
themselves are based on earlier, weaker estimates.

To address the issue of improving estimation in unsuper-
vised learning, we investigate two simple ideas for improving
the quality of hidden Markov model (HMM) training for unsu-
pervised part-of-speech tagging. The first idea we present is to
add a constraint that appropriate marginal tag probabilities be
preserved. The second idea is to smooth the lexical parameters
using word similarities. Each idea on its own achieves state
of the art performance for unsupervised tagging.

Before presenting our results in more detail, we briefly
review work on unsupervised part-of-speech tagging, introduce
the HMM approach we use, and highlight the key shortcom-
ings of the standard (EM) training procedure for this problem.

II. UNSUPERVISED PART-OF-SPEECH TAGGING

Automated part-of-speech tagging has been extensively in-
vestigated for more than a decade. However, most research
has focused on supervised tagging where the availability of
manually tagged data is assumed. Nevertheless, research on
supervised tagging remains active, motivated in part by recent
developments in maximum entropy estimation [1], conditional
random fields [3], and large margin methods [4]. By compar-
ison, work on unsupervised part-of-speech tagging has been
less prevalent. A notable exception is the recent work [6], [7]
which demonstrates renewed interest in unsupervised tagging.

Most research on unsupervised part-of-speech tagging was
performed in the early 1990’s. Consistently, the dominant
approaches have been based on HMMs [8], [9], [10], [11],
[12], with the notable exception of the transformation-based
learning approach of [13]. Previous work has primarily fo-
cused on extending HMMs to incorporate more context [6],
[8], [9], although some work has also considered techniques
for improving parameter estimation quality [6], [7], [8], [10],
[11], [12]. Our focus in this paper is on improving estimation
quality rather than extending the model. In fact, we will simply
consider a standard HMM, which is a simpler model than
generally considered in previous work.

Recently, Banko and Moore [6] made the startling obser-
vation that much of the success of previous unsupervised
taggers was due to the use of artificially reduced lexicons.
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That is, researchers had manipulated lexicons by reducing the
set of possible tags for each word to just those tags that have
sufficiently high conditional probability. Banko and Moore [6]
observe that if the true lexicon were used (consisting of the the
true set of legal tags for each word) instead of the artificially
ablated lexicon (consisting only of high probability tags for
each word), the word tagging error rates of these unsupervised
taggers skyrockets more than five-fold—from about 4.1% error
to 22.8% error.

Unfortunately, as Banko and Moore [6] point out, the
reliance on artificially reduced lexicons eliminates much of
the unsupervised nature of the process, since the conditional
probabilities are obtained from tagged data generally. In fact,
this form of lexicon editing removes linguistic knowledge that
is essentially correct and easily obtainable (from dictionaries),
and replaces it with information that requires tagged data
and/or manual editing to obtain. One goal of this paper is to
show that artificial lexicon restriction might not be ultimately
necessary. In particular, we hope to obtain accurate unsuper-
vised tagging performance using the standard, full lexicon.

Currently, the best unsupervised tagging performance
achieved with the full, unedited lexicon (from the complete
Treebank) is an unimpressive 22.8% word tagging error rate
[6]. Below we will see that a few simple improvements to
the EM training procedure can reduce this error to 9.5%,
while still using the full lexicon. Our new result appears to
be closing in on previous error rates that were only obtained
using artificially reduced lexicons.

To ensure our results are replicable, we follow [6], [5],
[4] and use the Penn Treebank 3 corpus. We use sections
00-18 for training, 19-21 for development, and 22-24 for
testing. Also following Banko and Moore [6] we use the full
lexicon obtained from the full set of tags that occur for each
word in the Treebank (but use no other information about the
conditional probabilities of tags given words). When we use a
reduced lexicon for comparison purposes, we remove the tags
that occur with probability less than 0.1 for each word. Any
other data resources we used we mention explicitly below.

III. UNSUPERVISED HMM TAGGING

Our investigation is based on the standard HMM which
forms the foundation for most work in this area. An HMM
specifies a joint probability distribution over a word and tag
sequence, �����	��

��������������� and �����	��
���������������� , where each
word ��� is assumed to be conditionally independent of the
remaining words and tags given its part-of-speech tag � � ,
and subsequent part-of-speech tags � �� "! are assumed to be
conditionally independent of previous tags � �	#$! given � � .

The parameters of an HMM are given by tag % tag transition
probabilities &('*) �,+-�/.$�� 0
��,��1 .2�"�435�
and tag % word emission probabilities6 )	7 �8+-�:9;�0�,�<1 .2�"�,��� 1

1Note that we assume a special start word =?> and start tag @	> occurs at
the beginning of every sentence, which means we do not require additional
parameters describing the initial tag distribution ACB�@�D�E .

If these parameters are known, then various queries can be
computed efficiently, such as the probability of a joint tag/word
sequence +-�/�F�G�C� �H��I0
 & )	J	KML*)	J 6 )	J	7NJ �
More interestingly, the marginal probabilities of a tag and
adjacent pair of tags, given the word sequence, +-�	�F��1 �G�
and +-�	���:���� 0
O1 �G� , can both be efficiently computed using the
forward-backward algorithm [14]. Importantly, in our case,
tagging can be accomplished by taking an untagged word
sequence � , and then computing the optimal tagging under
the assumed probability model�5PQ�,R�SFTVU-R
WX +-�	�M1 �G�
where the optimal tag sequence can be efficiently recovered
using the Viterbi algorithm.

It is apparent that, as a tagger, the HMM uses limited
context. That is, the tag � P� assigned to word � � depends
directly only on ���/#$
 , ��� and ���� 0
 , and is independent of the
rest of the model given these values. As many researchers
have pointed out, from a linguistic perspective, one would
expect a much larger context to be relevant to determining
the tag of word �Y� [5], [8]. Nevertheless, even for the simple
HMM model which employs limited context, we will see
that if appropriate values can be obtained for the parameters,
the resulting tagger outperforms current unsupervised taggers
(using the full lexicon).

Our focus is on the estimation problem: how can HMM pa-
rameters be estimated from untagged sentences �[Z 
�\ ���]Z�^ \ �������
while still obtaining an accurate tagger? The classical approach
is simply to use expectation-maximization (EM) to find the
transition and emission parameters _ and ` that locally max-
imize the marginal loglikelihood of the observed dataa�bdc�e Tf+-�	� Z b \ 1 _$��`g�
For HMMs this is often referred to as Baum-Welch training.
Although EM is guaranteed to converge to a local maximum
of this objective [15], the marginal log likelihood for an
HMM tends to have multiple local maxima. Consequently, the
resulting quality of the parameters can have more to do with
initialization than the EM procedure itself. Another weakness
of EM is that it is not informed by any particular linguistic
knowledge. Although the training data provides guidance, and
the model parameters might be linguistically meaningful, there
are basic properties of these parameters that EM cannot readily
discover on its own (which we will observe below), even given
large amounts of unlabeled data.

A. Baseline Experiment

To provide a baseline performance measure, as well as
highlight some of the key difficulties, we first consider the
results of training an HMM using standard Baum-Welch (EM)
estimation. Initialization is crucial. Here we initialize the
tag % tag transition parameters to be uniform over all tags,
and the tag % word emission parameters as uniform over the
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Fig. 1. Tagging error rate versus EM iteration for various HMM training
techniques.

set of all possible words for a given tag (as specified in the
complete lexicon).

Figure 1 shows that the initial model (“Standard”) obtains
a word-tag error rate of 34.1% on the test data, which pro-
gressively improves to 18.7% error after several EM iterations.
(See also Table I.) Surprisingly, this preliminary result already
demonstrates a smaller error than the 22.8% error reported
in [6], even though we are using a simpler HMM model
incorporating less context. However, it is unclear how many
EM iterations were used in [6]. Despite this discrepancy,
the results remain roughly in the same ballpark. Although
18.7% error already appears to be the best known result
for unsupervised part-of-speech taggers trained with the full
lexicon, it is still substantially larger than the 4.1% error
obtained by Banko and Moore [6] using the artificially ablated
lexicon. (For the record, using the ablated lexicon, the standard
HMM initialized and trained as above obtains 6.2% error.)

Rather than resort to lexicon ablation, we can instead
analyze the outcome of HMM training and attempt to identify
improvements to the estimation procedure that might reduce
error while still using the full lexicon.

Recall that there are two separate components of the HMM
being estimated, the transition model and the emission model.
Each component has its own weakness. First, for the learned
transition model, we find that the estimated parameters are
actually quite poor. Figure 2 shows a comparison of the raw
tag frequencies produced by the learned HMM tagger, versus
the true tag frequencies over the complete Treebank. Quite
clearly these two distributions differ significantly. For example,
the LS tag is predicted 72 times more often by the HMM
than its true frequency in the corpus. (LS denotes a list item
label, such as 1, 2, 3, or a, b, c.) Further investigation reveals
that the word ”a” is always tagged as LS by the HMM, as
opposed to the much more likely DT tag (determiner). This
phenomenon was also observed by Banko and Moore [6]. In
effect, the HMM has “learned” that the LS tag denotes another
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Fig. 2. Comparison of marginal tag probability distributions. X-axis means
45 different tags.

form of determiner. Although this is clearly a mistake, the
question is what aspect of EM might prevent such an error for
occurring? For the standard Baum-Welch algorithm it turns
out that the answer is: nothing. Our first idea below addresses
this shortcoming.

The second component of the estimated HMM, the lexical
tag % word probabilities, are also quite poor. For example, the
two prepositions “from” and “at” have very similar behavior
under the true distribution (e.g. +-� “from” 1 IN �h�jik� iOlOlMm
and +-� “at” 1 IN �n�oi�� i�lMpOq ) and yet the parameter estimates
produced by EM are widely separated in this case (e.g.r+-� “from” 1 IN �s�ti���u�lMqOq versus

r+-� “at” 1 IN �v�wi�� i�uOu5m ). A
key weakness of EM is that it incorporates no form of
“parameter tying” over the word emission parameters. That
is, the distinct word emission parameters,

6 )	7 L
and

6 )	7Nx
, are

treated independently by the optimization while it maximizes
likelihood. However, this does not directly enforce the fact
that many words play similar syntactic roles and should
therefore have similar parameter values. EM can only exert
parameter tying indirectly through the likelihood objective, but
this constraint turns out to be too weak, as most words occur
rarely. Consequently, EM tends to over-fit the lexical model
and learn distinct parameter values for similar words.

This problem has been recognized in past research [8] and
has been addressed by clustering rare words into equivalence
classes. However, similar words rarely behave identically, and
a simple clustering approach can actually over-smooth the
estimates. As an alternative, we propose to use a natural form
of word similarity to smooth these estimates more effectively.
This is the second idea we consider below.

Note that extending the HMM approach to incorporate more
context is desirable from a modeling perspective. However,
adding complexity to the HMM does not make the estimation
problems any easier. Indeed, the estimation challenges only
become exacerbated.
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TABLE I
A COMPARISON OF ACCURACY AND ERROR PERCENTAGES OF VARIOUS

HMM MODELS, USING THE FULL AND REDUCED LEXICONS.

Method full lexicon reduced lexicon
accu. error accu. error

Standard 81.32 18.68 93.80 6.20
Constrained 90.47 9.53 94.07 5.93
Similarity 87.44 12.56 94.06 5.94
Combined 90.03 9.97 94.68 5.32
Weak Const. 85.93 14.07 93.97 6.03

IV. MARGINALLY CONSTRAINED HMMS

To attempt to improve the quality of the estimates, our first
idea is to modify the EM training procedure to improve the
quality of the tag % tag transition model. Here we consider
a very natural constraint: we would like to force the learned
HMM to maintain a specified marginal distribution over the tag
probabilities. That is, assume we are given a target distribution
over the tags, y ) �z+-�/��� . (Initially we just use the probability
of each tag in the complete Treebank; below we show how to
estimate these probabilities without tagged data.) Then given
this target { , we would like to modify the EM algorithm
to ensure that the raw frequency of each tag � matches y ) .
Although this is an obvious and simple idea, we expect it to
improve the quality of the transition model by keeping the
transition parameters _ to reasonable values.2

The standard EM algorithm can be modified to achieve
a specified tag marginal as follows. First, to ensure { is
indeed the marginal tag distribution, we need to ensure that the
transition model, _ , maintains { as its stationary distribution.
To achieve this, the only modification required to EM is to
change the M-step for the parameters in _ —the E-step and
the M-step for the ` parameters remain the same.

Focusing on the transition parameters _ , the M-step is usu-
ally derived by maximizing the relevant part of the expected
complete log likelihood|ab I0


b }a ��I0
 a '*)�~ �������0�suO���F��3������ c�e T & '*) (1)

subject to
a ) & '*) ��u for all 3 (2)

where the weights~ �������"�suO�����F3���������+-�	� Z
b \�/#$
 �83���� Z

b \� �,��1 � Z b \ _(`��
are the marginal probabilities of tag pair 3�� given the observed
sequence ��Z b \ . (These weights are the expected sufficient
statistics computed during the E-step using the forward-
backward algorithm.) To modify this M-step we simply have
to add the constraint thata ' y '�&('*) �vy ) for all � (3)

2We recently discovered that a very similar marginalization constraint was
considered by [9]. However, the actual training procedure was not described.
Merialdo [9] also reports disappointing results on augmenting a supervised
tagger by running EM (and constrained EM) on additional untagged data. In
our case, we appear to obtain much more positive results for unsupervised
learning.

The objective (1), along with the constraints (2) and (3), spec-
ifies a constrained optimization problem over the parameters_ . The Lagrangian for this problem is given by|ab I0


b }a ��I0
 a '*) ~ ���O���0�suO�����F3������ c�e T &('*)� a '�� '�� u�� a ) & '*)��
� a ),� ) � y ) � a ' y '�&('*) �

where � ' are the Lagrange multipliers for the constraints� ) &('*) ��u , and � ) are the Lagrange multipliers for the
constraints

� ' y '�&('*) ��y ) . Taking derivatives and solving
for a critical point shows that the transition parameters _ are
given by & '*) � � |b I0
 �

b }��I0
 ~ �������0��u������F3������� '�� � ) y ' (4)

To compute the final solution _ for the M-step, one only
needs to find values for � and � such that (2) and (3) are
satisfied when the expression (4) is substituted for

&k'*)
in the

constraints. Unfortunately, this problem does not have a closed
form solution. Nevertheless, it is easy to solve for � and �
using numerical methods. Currently, we use an optimization
library routine (BFGS) which takes less than a second to solve
this problem for each M-step.

A. Results

To determine what benefits, if any, we could achieve by
adding the marginalization constraint, we repeated the previ-
ous experiment using the constrained version of EM. For the
constraint { we supplied the list of 45 true tag probabilities
obtained from the entire Treebank 3 corpus. (We consider
a technique for estimating this distribution without tagged
data below.) Figure 1 and Table I show the results (see
“Constrained”). Here we see that constrained EM, using the
same uniform initialization as before, now reduces the word
tagging error rate to 9.5%—half the error rate achieved by
standard EM (18.7%). We believe that this establishes the best
known unsupervised part-of-speech tagging performance by a
factor of two (based on using the full, unedited lexicon). In
fact, the resulting error rate has dropped to within a factor of
two of the best error rates achieved using an artificially ablated
lexicon. (For the record, the constrained HMM achieves an
error rate of 5.9% using the ablated lexicon.) However, these
positive results depend on having a reasonable tag distribution.

V. SIMILARITY BASED SMOOTHING

The second idea we investigate attempts to improve the
lexical tag % word probabilities. As observed in Section III,
EM tends to over-fit the word emission parameters, since many
of these parameters have few associated observations, and yet
the M-step treats each one as an independent optimization
variable. Specifically, in EM, there is no intrinsic notion of
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similarity between the parameters beyond how they affect the
training objective.

Although one could imagine trying to constrain the M-
step to respect a certain marginal distribution over word
frequencies (analogous to Section IV), our intuition instead is
that parameter smoothing between similar words should have
a more obvious, beneficial effect.

Although there is a significant literature on measuring word
similarity in large text copora [16], [17], [18], we simply adopt
the approach of [18] which appears to work well in many
different scenarios [19], [20]. To measure word similarity, we
first construct a feature vector � 7 for each word � , which
consists of the pointwise mutual information between � and
a “context” � . Each context corresponds to a non-stop word
occurring immediately to the left or right of � (left and right
are two different contexts) where stop-words are skipped.3

Thus, feature vector entries are given by� 7 �/���V� c�e T +-�	� and ���+-�	����+-�/���
for each possible context � .4 To compute these probabilities
we used a collection of auxiliary texts (the complete Acquaint,
Reuters, and Tipster corpora), totaling 15GB of untagged data.
In our experiments, We took the 100,000 most frequent words
as features.

Once the feature vectors have been determined, we compute
the similarity between two words ��
 and � ^ by taking the
cosine of their feature vectors3��*���	� 
 ��� ^ ��� � 7 LC� � 7�x  � 7 L  �  � 7�x  
This is motivated by the fact that if two words share the same
contextual associations with the remainder of the vocabulary
(as measured by the pointwise mutual information) they are
likely to be similar.

We use this similarity measure to smooth the lexical param-
eters

6 )	7 �¡+-�	�<1 ��� by taking similarity weighted averages,
analogous to the approach taken in [16], [17]. Specifically, we
compute smoothed emission probabilities byr6 72) � r+-�/��1 ����+-�	���F¢ r+��/��� , wherer+-�/��1 ���£� � 7$¤¦¥�§ Z 7 \ 3��¨���	��©/������+?ª5�����	��1 �Q©	�«
+?ª5�����	��1 � © �¬� u
¢ # legal tags for word ��© in lexiconr+-�/���¬� a 7 r+-�	��1 ����+-�	���­� (5)

where Z is the normalizer and S(w) is the set of top-50 most
similar words of w (for the reported results in this paper, 0.04
is used as a threshold to determine the word pair is similar or
not).

3We used the 100 most frequent words as stop words.
4To reduce bias toward infrequent words and contexts we adjust the

pointwise mutual information calculation in the same manner as [19].

A. Results

To investigate the benefit of smoothing the emission pa-
rameters, we repeated the initial HMM experiment using the
standard EM algorithm (without the marginalization constraint
of Section IV) to isolate the effects of the two modifications.
In this case, we initialized the emission parameters

6 72)
to6 72) � r6 72) , and initialized the tag transition parameters

& '*)
to3 §�) � r+��/��� for all 3�� .

Figure 1 and Table I show the results of running EM with
similarity smoothed initialization (see “Similarity”). Interest-
ingly, before running any EM iterations (just using the initial
smoothed parameters) the HMM tagger achieves an error rate
of 17.7%, which already surpasses that of the fully trained
standard HMM. After a small number of EM iterations, error
is reduced to 12.6% (and then begins to rise again as over-
fitting begins to occur). Nevertheless, this is a significant (one
third) reduction in error over standard EM, which although not
as dramatic as the marginal tag constraint, remains significant.

VI. COMBINED RESULTS

Given that each of the two proposed improvements appears
to work reasonably well, it is natural to consider combining
them. However, here we obtain the disappointing result that
the combined EM training algorithm, using both the tag
marginalization constraint and similarity smoothed emission
initialization, does not improve on the previous error rates
(Figure 1 and Table I; see “Combined”). In this case, the
combined method obtains an error of 9.97%, which is better
than the similarity result but slightly worse than the original
constrained result. We speculate that the 9.5% error obtained
by constrained EM is sufficiently close to the limit of the
HMM model that further improvement requires more subtle
combinations of the two ideas than those presented here.
An immediate research direction is to incorporate similarity
smoothing throughout the EM training process, rather than
just at initialization.

Nevertheless, we can find an immediately useful applica-
tion of word similarity to the marginally constrained EM
procedure: if the true marginal distribution over tags +-�/���
is not known a priori, it can in fact be estimated using the
approximation

r+-�	��� given in (5). (Note that previously we
used the oracle choice based on the true tag frequencies,
which may not always be readily available.) Repeating the
previous experiment using this weaker estimate of +-�/��� as the
marginal constraint (Figure 1 and Table I; see “Weak Const.”)
we notice some degradation in performance over using the true
marginal—the error rate is now only reduced to 14.1% instead
of 9.5%. However, this remains a significant improvement over
the baseline 18.7%.

VII. CONCLUSION

Contrary to the current trend, we have focused on a very
simple prediction model (the standard HMM) and attempted
to improve basic estimation quality, rather than propose more
complex prediction architectures. Nevertheless, even given the
simplicity of this model, the estimation issues are complex
and non-obvious. For unsupervised part-of-speech tagging
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with HMMs, we presented two improvements, each of which
individually obtains state of the art performance on the full
unedited lexicon.

Although the error rates we achieve are still higher than
those obtained by supervised taggers, the unsupervised error
reductions appear to be significant—suggesting that estima-
tion, in addition to model building, could remain an im-
portant issue for future research. Of course, given progress
on improving estimation quality, one would hope that simi-
lar improvements could also be obtained for more complex
models. Perhaps through a combination of greater context
and improved estimation, the performance of fully automated
unsupervised learning could ultimately be made to challenge
that of supervised taggers.
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