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Abstract

Sampling in discrete spaces, with critical applications in simulation and opti-
mization, has recently been boosted by significant advances in gradient-based
approaches that exploit modern accelerators like GPUs. However, two key chal-
lenges are hindering further advancement in research on discrete sampling. First,
since there is no consensus on experimental settings and evaluation setups, the
empirical results in different research papers are often not comparable. Second,
implementing samplers and target distributions often requires a nontrivial amount
of effort in terms of calibration and parallelism. To tackle these challenges, we pro-
pose DISCS (DISCrete Sampling), a tailored package and benchmark that supports
unified and efficient experiment implementation and evaluations for discrete sam-
pling in three types of tasks: sampling from classical graphical models and energy
based generative models, and sampling for solving combinatorial optimization.
Throughout the comprehensive evaluations in DISCS, we gained new insights into
scalability, design principles for proposal distributions, and lessons for adaptive
sampling design. DISCS efficiently implements representative discrete samplers in
existing research works as baselines and offers a simple interface that researchers
can conveniently add new discrete samplers and directly compare their performance
with the benchmark result in a calibrated setup.

1 Introduction

Sampling in discrete spaces has been an important problem for decades in physics (Edwards &
Anderson, 1975; Baumgärtner et al., 2012), statistics (Robert & Casella, 2013; Carpenter et al.,
2017), and computer science (LeCun et al., 2006; Wang & Cho, 2019). Since sampling from a target
probability distribution π(x) ∝ exp(−f(x)) defined on a discrete space X is typically intractable,
one usually resorts to Markov chain Monte Carlo (MCMC) methods (Metropolis et al., 1953; Hastings,
1970). However, except for a few algorithms such as Swendsen-Wang for the Ising model (Swendsen
& Wang, 1987) and Hamze-Freitas for hierarchical models (Hamze & de Freitas, 2012), which exploit
the special structure of the underlying problem, sampling in a general discrete space has primarily
relied on Gibbs sampling, which exhibits notoriously poor efficiency in high dimensional spaces.

Recently, a family of locally balanced MCMC samplers for discrete spaces (Zanella, 2020; Grathwohl
et al., 2021; Sun et al., 2021; Zhang et al., 2022), using ratio informed proposal distributions, π(y)

π(x) ,
have significantly improved sampling efficiency by exploiting modern accelerators like GPUs and
TPUs. From the perspective of gradient flow on the Wasserstein manifold of distributions, Gibbs
sampling is simply a coordinate descent algorithm, whereas locally balanced samplers perform
as full gradient descent (Sun et al., 2022a). Despite the advances in locally balanced samplers, a
quantitative benchmark is still missing. As a result, the empirical results in different research papers
may not be comparable. One important reason is that there is no consensus on the experimental
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setting. Particularly, the initialization of energy based generative models, random seeds used in
graphical models, and the protocol of hyper-parameter tuning all have a significant impact on samplers
performance. Under this circumstance, there is a critical need for a unified benchmark to advance the
research in discrete sampling.

There are two key challenges that seriously hinder the appearance of such a benchmark. First, a
sampler may perform well in one target distribution while poorly in another one. To thoroughly
examine the performance of a sampler, a qualified benchmark needs to collect a set of representative
distributions that covers the potential applications of discrete samplers. Second, the evaluation of
discrete samplers is complicated. Although the commonly used metric Effective Sample Size (ESS)
(Vehtari et al., 2021) can effectively reflect the efficiency of a sampler in Monte Carlo integration
or Bayesian inference, it is not very informative in scenarios when the sampler guides the search in
combinatorial optimization problems or performs as a decoder in deep generative models.

To address the two challenges, we propose DISCS, a tailored benchmark for discrete sampling.
In particular, DISCS consists of three groups of tasks: sampling from classical graphical models,
sampling for solving combinatorial optimization problems, and sampling from deep energy based
models (EBMs). These tasks cover both the topics of simulation and optimization, and also target
distributions, ranging from hand-designed graphical models to learned deep EBMs. For each task,
we collect the representative problems from both synthetic and real-world applications, for example,
graph partitioning for distributed computing and language model for text generation. We carefully
design the evaluation metrics in DISCS. In sampling from classical graphical models tasks, DISCS
uses ESS as a standard. In sampling for solving combinatorial optimization tasks, DISCS runs
simulated annealing (Kirkpatrick et al., 1983) with multiple chains and reports the average of the best
results in each chain. In sampling from energy based generative models, DISCS employs domain
specific scores to measure the sample quality.

DISCS offers a convenient interface for researchers to implement new discrete samplers, without
worrying about parallelism, experiment loop, and evaluation. DISCS can efficiently sweep over
different tasks and experiments configurations in parallel, making it easy to reproduce the benchmark
results of this paper. Also, DISCS implements existing discrete samplers including random walk
Metropolis (Metropolis et al., 1953), block Gibbs, Hamming Ball sampler (Titsias & Yau, 2017),
Locally Balanced (Zanella, 2020), Gibbs with Gradients (Grathwohl et al., 2021), Path Auxiliary
Sampler (Sun et al., 2021), Discrete Metropolis Adjusted Langevin Algorithm (Zhang et al., 2022),
Discrete Langevin Monte Carlo (Sun et al., 2022a), and is actively maintaining to add new samplers.
Researchers can directly compare the results with state-of-the-art methods.

DISCS can also provide insights on the existing open questions in the space of discrete sampling. In
our experiments, we observe an interesting phenomenon that the locally balanced weight function
g(t) =

√
t outperforms g(t) = t

t+1 when Ising model has a temperature higher than the critical
temperature and g(t) = t

t+1 outperforms g(t) =
√
t when the temperature is lower than the critical

temperature. We further observe similar phenomenon in our experiments with more complicated deep
energy generative model where g(t) = t

t+1 outperforms g(t) =
√
t on overparameterized neural

network with low temperature and sharp landscape. There have been numerous studies on how to
select the locally balanced function for a locally balanced sampler (Zanella, 2020; Sansone, 2022),
but the answer still remains open. We hope the observations in this paper can provide some insight
on this question.

We wrap the DISCS package as a JAX library to facilitate the research in discrete sampling. The
library is open sourced at DISCS 1. The dataset used in our benchmark experiments can be accessed
at DISCS DATA 2 The paper is organized as follows:

• In section 2, we provide an overview of related work on different tasks for discrete sampling and
recent advances in discrete samplers.

• In section 3, we formulate the discrete sampling problem.
• In section 4, we introduce the discrete sampling tasks and evaluation metrics in DISCS. We also

present several results with interesting insights and observations.
• In section 5, we discuss the contribution and limitations of DISCS.

1code base found at https://github.com/google-research/discs
2data set found at https://drive.google.com/drive/u/1/folders/1nEppxuUJj8bsV9Prc946LN_

buo30AnDx
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We provide comprehensive results of our benchmark and studies with further details on the experi-
mental setups, evaluation metrics, mathematical formulations, and the data set used in the Appendix
A.

2 Related Work

Discrete sampling has been widely used to study the physical picture of spin glasses (Hukushima &
Nemoto, 1996; Katzgraber et al., 2001), solve combinatorial optimization via simulated annealing
(Kirkpatrick et al., 1983), and for training or decoding deep energy based generative models (Wang
& Cho, 2019; Du et al., 2020; Dai et al., 2020b). However, these tasks primarily depend on Gibbs
sampling, which could be very slow in high dimensional space.

Since the seminal work Zanella (2020), the recent years have witnessed significant progresses for
discrete sampling in both theory and practice. Zanella (2020) introduces the locally balanced proposal
q(x, y) ∝ g(π(y)π(x) ), where y ∈ N(X) restricted within a small neighborhood of x and g(·) : R+ →
R+ satisfying g(a) = ag( 1a ), and prove it is asymptotically optimal. In the following works, PAS
(Sun et al., 2021) and DMALA (Zhang et al., 2022) generalize locally balanced proposal to large
neighborhoods by introducing an auxiliary path and mimicking the diffusion process, respectively.
Inspired by these locally balanced samplers, Sun et al. (2022a) generalize the Langevin dynamics
in continuous space to discrete Langevin dynamics (DLD) in discrete space as a continuous time
Markov chain d

dhP(X
t+h = y|Xt = x) = g(π(y)π(x) ), and show that previous locally balanced

samplers are simulations of DLD with different discretization strategies. In the view of Wasserstein
gradient flow, the Gibbs sampling can be seen as coordinate descent and DLD gives a full gradient
descent. Hence, locally balanced samplers induced from DLD provide a principled framework
to utilize modern accelerators like GPUs and TPUs to accelerate discrete sampling. Besides the
discretization of DLD, another crucial part to design a locally balanced sampler is estimating the
probability ratio π(y)

π(x) . Grathwohl et al. (2021) proposes to used gradient approximation π(y)
π(x) ≈

exp(−⟨∇f(x), y − x⟩) and obtains good performance on various classical models and deep energy
based models. When the Hessian is available, Rhodes & Gutmann (2022); Sun et al. (2023a) use
second order approximation via Gaussian integral trick (Hubbard, 1959) to further improve the
sampling efficiency on skewed target distributions. When the gradient is not available, Xiang et al.
(2023) use zero order approximation via Newton’s series.

Besides designing the sampler, Sun et al. (2022b) proves that when tuning path length in PAS (Sun
et al., 2021), the optimal efficiency is obtained when the average acceptance rate is 0.574, and
design an adaptive tuning algorithm for PAS. Sansone (2022) learn locally balanced weight function
for locally balanced proposal, but how to select the weight function in a principled manner is still
unclear.

3 Formulation for Sampling in Discrete Space

The sampling in discrete space can be formulated as the following problem: in a finite discrete space
X , we have an energy function f(·) : X → R. We consider a target distribution

π(x) =
exp(−βf(x))

Z
, Z =

∑
z∈X

exp(−βf(z)), (1)

where β is the inverse temperature. When the normalizer Z is intractable, people usually resort to
Markov chain Monte Carlo (MCMC) to sample from the target distribution π. Metropolis-Hastings
(M-H) (Metropolis et al., 1953; Hastings, 1970) is a commonly used general purpose MCMC
algorithm. Specifically, given a current state x(t), the M-H algorithm proposes a candidate state y
from a proposal distribution q(x(t), y). Then, with probability

min
{
1,

π(y)q(y, x(t))

π(x(t))q(x(t), y)

}
, (2)

the proposed state is accepted and x(t+1) = y; otherwise, x(t+1) = x(t). In this way, the detailed
balance condition is satisfied and the M-H sampler generates a Markov chain x(0), x(1), ... that has π
as its stationary distribution.
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4 Benchmark for Sampling in Discrete Space

The recent development of locally balanced samplers that use the ratio π(y)
π(x) to guide the proposal

distribution q(x, ·) has significantly improved the sampling efficiency in discrete space. However,
there is no consensus for many experimental settings. As a result, the empirical results in different
research papers may not be directly comparable. Under this circumstance, we propose DISCS as a
benchmark for general purpose samplers in discrete space. In section 4.1, we introduce implemented
sampling methods as the baselines in DISCS and make some remarks on how we present the results.
DISCS implements both the classical discrete samplers and the recent developed locally balanced
samplers. In the following sections, we introduce the tasks considered in DISCS as follows: sampling
from classical graphical models (section 4.2), sampling for solving combinatorial optimization
problems (section 4.3), and sampling from deep energy based generative models (section 4.4). We
also describe how the discrete samplers are evaluated on these tasks and report several results of them
with some insights. We leave the remaining comprehensive results and experimentation and report
them in detail in Appendix A .

4.1 Baselines

We include both classical discrete samplers and state-of-the-art locally balanced samplers in recent
research papers as baselines in our benchmark. Specifically, DISCS implements

1. random walk Metropolis (RWM) (Metropolis et al., 1953).
2. block Gibbs (BG), where BG-<a> denotes using block Gibbs with block size a.
3. Hamming Ball Sampler (HB) (Titsias & Yau, 2017), where HB-<a>-<b> denotes using block size

a and Hamming ball size b.
4. Gibbs with Gradients (GWG) (Grathwohl et al., 2021), a locally balanced sampler that uses

gradient to approximate the probability ratio. For binary distribution, GWG has a scaling factor L
to determine how many sites to flip per step.

5. Path Auxiliary Sampler (PAS) (Sun et al., 2021), a locally balanced sampler that has a scaling
factor L to determine the path length.

6. Discrete Metropolis Adjusted Langevin Algorithm (DMALA)(Zhang et al., 2022), a locally
balanced sampler that has a scaling factor α to determine the step size.

7. Discrete Langevin Monte Carlo (DLMC) (Sun et al., 2022a), a locally balanced sampler that has
a scaling factor τ to determine the simulation time of DLD. DLMC has multiple choices for its
numerical solver to approximate the transition matrix. DISCS considers the two versions used
in the original paper, DLMC that uses an interpolation, and DLMCf that uses Euler’s forward
method.

Note that in the depicted plots in this paper, each of the previously described samplers is represented
with a distinct and unique color of its own. We present samplers RWM, BG, HB, GWG, PAS,
DMALA, DLMC, DLMCf as the colors green, yellow, blue, red, brown, purple, pink and grey.

Remark: weight function DISCS offers a range of locally balanced functions, including g(t) =
√
t,

g(t) = t
t+1 , g(t) = 1 ∧ t, and g(t) = 1 ∨ t. All the locally balanced samplers have the flexibility to

select from these locally balanced functions. g(t) =
√
t and g(t) = t

t+1 are the two most commonly
used weight functions which we also rely on for our experiments. We use <sampler>-<func> to refer
to the type of the weight function for the locally balanced sampler. In cases that the weight function
is not reported, we use

√
t by default.

Remark: scaling Since the scaling of the proposal distribution in RWM, PAS, DMALA, and
DLMC are tunable, we consider two versions: one with adaptive tuning and another with binary
search tuning to ensure fair comparison. Sun et al. (2022b, 2023b) propose an adaptive tuning
algorithm for PAS and DLMC when the target distribution is factorized. In practice, we find that
they also apply well to other locally balanced samplers and for more general target distributions.
Hence, in this paper, we use the adaptive tuning algorithm by default to tune the scaling for locally
balanced samplers. In the several exceptions where the adaptive algorithm does not apply, we will
use <sampler-name>-noA to indicate the results from binary search tuning.
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4.2 Sampling from Classical Graphical Models

This section covers the classical graphical models frequently employed in physics and statistics,
including Bernoulli Models, Ising Models (Ising, 1924), and Factorial Hidden Markov Models
(Ghahramani & Jordan, 1995). The graphical models have large configuration flexibility, for example,
the number of discrete variables, the number of categories for each discrete variable, and the
temperature of the model. The performances of different samplers can heavily depend on these
configurations. DISCS provides tools to automatically sweep over hundreds of configurations with
one click. Following the common practice in Monte Carlo integration or Bayesian inference, DISCS
uses the Effective Sample Size (ESS) to evaluate the efficiency of each sampler and reports the
ESS normalized by the number of calling energy functions and by the running time. Below, we
present several Ising Model results as illustrative examples. We report more results and details of
our experiments and ESS calculation in the Appendix A.1, A.6.1. More specifically, we report the
performance results of different samplers on Bernoulli Model 7, Categorical Model 8, Ising Model
9, Potts Model 10 and FHMM 11. We study the effect of number of discrete variables (sample
dimension), the number of categories for each discrete variable, weight function for locally balanced
samplers, and the temperature of the models (smoothness/sharpness).

The Ising Model is defined on a 2D grid, where the state space X = {−1, 1}p×p represents the spins
on all nodes. For each state x ∈ X , the energy function is defined as:

f(x) = −
∑
i,j

Jijxixj −
∑
i

hixi (3)

where Jij is the internal interaction and the hi is the external field. In the main text, we report the
results using the configuration from Zanella (2020). Specifically, Jij = 0.5, hi = µi + σi, where
σi ∼ Uniform(−1.5, 1.5) and µi = 0.5 if node i is located in a circle has the same center as the 2D
grid and radius p

2
√
2

, else −0.5. We consider the target distribution π(x) ∝ exp(−βf(x)), where β

is the inverse temperature. Using DISCS, one can easily investigate the influence of the number of
discrete variables (sample dimension). In Figure 1, one can see that the classical samplers, RWM,
BG, HB, have a significant decrease in ESS when the model dimension increases, while the locally
balanced samplers are less affected as the ratio information π(y)

π(x) effectively guides the proposal
distribution. The overall trends basically follows the prediction from Sun et al. (2022b) that the ESS
is O(d−1) for RWM and O(d−

1
3 ) for PAS.
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Figure 1: Results of Ising model with different dimensions.

Through DISCS, researchers can easily define various experiments, configure tasks, evaluate sampler
performance and gain invalubale insights on open questions. As an example, we experiment with
sampling from Ising Models with a range of temperatures and sample dimensions. In Figure 2, we
experiment with sampling from Ising Models with inverse temperatures from 0.1607 to 0.7607 for
both sample dimension of 50× 50 and 100× 100. We consider Ising Model without external field:
hi ≡ 0 and Jij ≡ 1 as we know the critical temperature for this configuration is 2

log(1+
√
2)

. This
gives us the critical point for inverse temperature as β = 0.4407. From the results in Figure 2, we
can see that

• The Ising model is harder to sample from when the inverse temperature β is closer to the critical
point, which is consistent with the theory in statistical physics.
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• When the inverse temperature β is lower than the critical point, using weight function g(t) =
√
t

gives larger ESS; When the inverse temperature is larger than the critical point, using weight
function g(t) = t

t+1 consistently obtains larger ESS.

The second observation implies that one should use ratio function t
t+1 for target distributions with a

sharp landscapes. We will revisit this conclusion in Table 2. We report more results on the effect of
sample dimension in Appendix (7, 8, 9, 10).
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Figure 2: Performance of locally balanced samplers with different types of weight functions v.s
temperature on: (left) 50× 50 Ising model, (right) 100× 100 Ising model.

The categorical version of Ising model is Potts model, where each site of a state xi has values in a
symmetry group, instead of {−1, 1}. For simplicity, we denote the symmetry group as a set of one
hot vectors C = {e1, ..., ec} with hi ∈ RC , Jij ∈ RC×C . In this way, the energy function becomes:

f(x) = −
∑
i,j

x⊤
i Jijxj −

∑
i

⟨hi, xi⟩ (4)

In Figure 3, one can see the sampling efficiency is very robust with respect to the number of categories,
with the exception of the classical HB and BG samplers, which demonstrate a decline in their sampling
performance. The result for BG-2 on Potts model with 256 categories is omitted as it takes over 100
hours. We report more results on the effect of number of categories in Appendix (8, 10 ,11).
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Figure 3: Results of Potts models with different number of categories.

4.3 Sampling for Solving Combinatorial Optimiazation

Combinatorial optimization is a core challenge in domains like logistics, supply chain management,
and hardware design, and has been a fundamental problem of study in computer science for decades.
Combining with simulated annealing Kirkpatrick et al. (1983), the discrete sampling algorithm is
a powerful tool to solve combinatorial optimization problems (Sun et al., 2023b). In expectation,
a sampler with a faster mixing rate can find better solutions. Hence, the second type of task is
sampling for solving combinatorial optimization problems. Currently, DISCS covers four problems:
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Maximum Independent Set (MIS), Max Clique, MaxCut, and Balanced Graph Partition. Without loss
of generality, we consider combinatorial optimization that admits the following form:

min
x∈C={0,1,...,C−1}d

a(x), s.t. b(x) = 0 (5)

For ease of exposition, we assume b(x) ≥ 0,∀x ∈ C, but otherwise do not limit the form of a
and b. To convert the optimization problem to a sampling problem, we first rewrite the constrained
optimization into a penalty form via a penalty coefficient λ, then treat this as an energy function for
an EBM. In particular, the energy function takes the form:

f(x) = a(x) + λ · b(x) (6)

Then, we define the probability of x at inverse temperature β by:

pβ(x) ∝ exp(−βf(x)) (7)

A naive approach to this problem would be directly sampling from pβ→∞(x), but such a distribution
is highly nonsmooth and unsuitable for MCMC methods. Instead, following classical simulated an-
nealing, we define a sequence of distributions parameterized by a sequence of decaying temperatures:

P = [pβ0
(x), pβ1

(x), . . . , pβT
(x)] (8)

where the sequence β0 < β1 < . . . < βT → ∞ converges to a large enough value as T increases.
Below, we present the problem formulation and the energy functions used for MaxCut and MIS
problems. We present several results of the samplers solution for these combinatorial optimization
problems as illustrative examples in the main text and report the remaining results in the Appendix
A.2.

MaxCut The objective of MaxCut problem is to find a cut on a graph G = (V,E) that partitions
the graph nodes into two complementary sets V = V1 ∪ V2, such that the number of edges in E
between V1 and V2 is as large as possible. MaxCut is an unconstrained problem, which makes its
formulation relatively simple. We can set C = {0, 1} such that xi = 0 represents i ∈ V1 and xi = 1
means xi ∈ V2. Then we can write a(x) = −x⊤Ax, b(x) ≡ 0, where A is the adjacency matrix of
the graph G.

We apply the same simulated annealing temperature scheduling set up for all the samplers and
compare the samplers performances against each other. In the MaxCut problem, we compute the ratio
of our solution against the optimal solution found by Gurobi, running for one hour (Dai et al., 2020a).
The results presented at Figure 4 show the cut ratio throughout the chain generation over the number
of M-H steps and the running time (s). The legends are sorted according to the most optimal solution
each sampler finds. One can see that the PAS leads the results. Also, locally balanced samplers
significantly outperform the traditional samplers, especially when the graph size increases.
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Figure 4: Results for MaxCut on ER graphs. The ratio is computed by dividing the optimal cut
size obtained from running Gurobi for 1 hour. (top) ratio with respect to the number of M-H steps,
(bottom) ratio with respect to running time.
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MIS On a graph G = (V,E), an independent set S ⊂ V means that for any i, j ∈ S, (i, j) /∈ E.
We can set C = {0, 1} such that xi = 0 means i /∈ S and xi = 1 means i ∈ S. Then we can write
a(x) = −

∑
i∈V xi and b(x) =

∑
(i,j)∈E xixj . For the penalty coefficient λ, we follow Sun et al.

(2022c) to select λ = 1.0001 being a value slightly larger than 1. We run all samplers on five groups
of small ER graphs with 700 to 800 nodes, each group has 128 graphs with densities varying 0.05,
0.10, 0.15, 0.20, and 0.25. We also run all samplers on 16 large ER graphs with 9000 to 11000 nodes.
For each configuration, we run 32 chains with the same running time and report the average of the
best results found by each chain in Table 1. One can easily see that PAS obtains the best result.

Table 1: Results for MIS on ER graphs. The set found by the sampling algorithm is not necessarily
an independent set, we report a lower bound: set size - # pair of adjacent nodes in the set.

Sampler ER[700-800] ER[9000-11000]
0.05 0.10 0.15 0.20 0.25 0.15

HB-10-1 100.374 58.750 41.812 32.344 26.469 277.149
BG-2 102.468 60.000 42.820 32.250 27.312 316.170
RWM 97.186 56.249 40.429 31.219 25.594 -555.674

GWG-nA 104.812 62.125 44.383 34.812 28.187 367.310
DMALA 104.750 62.031 44.195 34.375 28.031 357.058

PAS 105.062 62.250 44.570 34.719 28.500 377.123
DLMCf 104.450 62.219 44.078 34.469 28.125 354.121
DLMC 104.844 62.187 44.273 34.500 28.281 355.058

4.4 Sampling from Energy Based Generative Models

The discrete samplers can also play the role of decoder in generative models. In particular, given a
dataset D = {Xi}Ni=1 sampled from the target distribution π, one can train an energy function fθ(·),
such that the energy based model πθ(·) ∝ exp(−fθ(·)) fits the dataset D. DISCS provides multiple
checkpoints for the energy function trained on real-world image or language datasets. Researchers
can easily evaluate their samplers after loading the learned energy function. We provide further
experimental details and mathematical formulations at Appendix A.3.

For the models that are relatively simple, for example, Restricted Boltzmann Machine (RBM) trained
on MNIST (LeCun, 1998) and fashion-MNIST (Xiao et al., 2017b), one can continue using ESS as
the metric. In Figure 5, we evaluate the samplers on RBMs trained on MNIST with 25 and 200 hidden
variables. One can see that DLMC has the best performance. We further report the results of samplers
on categorical RBM trained on fashion-MNIST dataset at Appendix 16. For more complicated deep
energy based models, a sampler may fail to mix within reasonable steps. In this case, ESS is not a
good metric. To address this problem, DISCS provides multiple alternative measurements, including
snapshots and domain specific scores.

Snapshots After loading the checkpoint of energy based generative models, DISCS can generate
snapshots of the sampling chains. For example, in Figure 6, we display the snapshots of sampling on
a deep residual network trained on MNIST data (Sun et al., 2021) and on pretrained language model
BERT 3. One can see that locally balanced samplers generate samples with higher qualities, and
can typically visit multiple modalities in the distribution. We report further results on deep residual
network trained on Omniglot and Caltech dataset at 17.

Domain Specific Scores In many deep generative tasks, the goal is to efficiently sample high-quality
samples, instead of mixing in the learned energy based models. In this scenario, domain specific
scores that directly evaluate the sample qualities are better choices. For example, DISCS provides text
filling task based on pre-trained language models like BERT (Wang & Cho, 2019; Devlin et al., 2018).
Following the settings in prior work (Zhang et al., 2022), we randomly samples 20 sentences from
TBC (Zhu et al., 2015) and WiKiText-103 (Merity et al., 2016) and mask four words in each sentence
(Donahue et al., 2020) resulting in the dataset provided at DISCS DATA. For each masked sentence,
we sample 25 sentences by generating 25 chains with length of 50, following the target probability
distribution provided by BERT, and then selecting the last sample of the chain. As a common practice

3loading the checkpoint from https://huggingface.co/bert-base-uncased.
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Figure 5: Results on RBMs trained on MNIST dataset. (top) RBM with 25 binary hidden variables,
(bottom) RBM with 200 binary hidden variables.

in non-auto-regressive text generation, we select the top-5 sentences with the highest likelihood out
of 25 sentences to avoid low-quality generation (Gu et al., 2017; Zhou et al., 2019).

We evaluate the generated samples in terms of diversity and quality. For diversity, we use self-BLEU
(Zhu et al., 2018) and the number of unique n-grams (Wang & Cho, 2019) to measure the difference
between the generated sentences. For quality, we measure the BLEU score (Papineni et al., 2002)
between the generated texts and the original dataset, which is the combination of TBC and WikiText-
103. We report the quantitative results in Table 2. We do not have the results for HB and BG as
they are computationally infeasible for this task with 30k+ tokens. In this task, the locally balanced
sampler still outperforms RWM. Also, one can notice that the weight function t

t+1 significantly
outperforms

√
t on diversity metrics and reaches comparable results on the quality. The reason is

that the overparameterized neural network is a low temperature system with sharp landscape. This
phenomenon is consistent with the results in Figure 2. We provide further results for the non-adaptive
cases with binary search fine tuning in Appendix A.3.3.
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Figure 6: Snapshots of energy based generative models: (left) snapshots for every 1k steps on MNIST
ResNet, (right) snapshots for text filling task on BERT in Table 2
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Table 2: Quantative results on text infilling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Methods Self-BLEU (↓)
Unique n-grams (%) (↑)

Corpus BLEU (↑)Self WT103 TBC
n = 2 n = 3 n = 2 n = 3 n = 2 n = 3

RWM 92.41 6.26 9.10 18.97 26.73 19.33 26.67 16.24
GWG

√
t 85.93 11.22 17.14 23.16 35.56 23.58 35.56 16.75

DMALA
√
t 85.88 11.58 17.14 22.07 34.08 23.22 34.15 17.06

PAS
√
t 85.39 11.37 17.60 22.61 35.53 23.65 35.47 16.57

DLMCf
√
t 88.39 9.53 14.06 21.00 31.85 22.27 31.98 16.70

DLMC
√
t 85.28 12.05 17.65 24.03 36.34 24.51 36.27 16.45

GWG t
t+1 81.15 15.47 22.70 25.62 38.91 25.62 38.58 16.68

DMALA t
t+1 80.21 16.36 23.71 25.60 39.39 26.75 39.72 16.53

PAS t
t+1 81.02 15.62 22.65 25.59 39.28 26.08 39.48 16.69

DLMCf t
t+1 80.12 16.25 23.76 25.41 39.31 26.86 39.57 16.73

DLMC t
t+1 84.55 12.62 18.47 24.27 37.28 24.94 37.14 16.69

5 Conclusion

DISCS is a tailored benchmark for discrete sampling. It implements a range of discrete sampling
tasks and state-of-the-art discrete samplers and enables a fair comparison. From the results, we know
that DLMC leads in sampling from classical graphical models, PAS leads in solving combinatorial
optimization problems, DLMCf and DMALA have the best performance on language models. We
believe more efficient discrete samplers can be obtained by designing better discretization of DLD
(Sun et al., 2022a). DISCS is a convenient tool during this process. The researcher can freely set the
configurations for tasks and samplers and DISCS will automatically compile the program and run the
processes in parallel. Besides, we observe that the choice of the locally balanced weight function
should depend on the critical temperature of the target distribution. We believe this observation is
insightful and will lead to a deeper understanding of locally balanced samplers.

Of course, DISCS does not include all existing tasks or samplers in discrete sampling, for example,
the zero order (Xiang et al., 2023) and second order (Sun et al., 2023a) approximation methods. We
will keep iterating DISCS and more features will be added in the future. We wrap DISCS to a JAX
library. Researchers can conveniently implement customer tasks or samplers to accelerate their study
and, in the meanwhile, contribute the code to DISCS for further improvement. We believe DISCS
will be a powerful tool for researchers and facilitate future research in discrete sampling.
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A Experiments Details

A.1 Classical Graphical Models

For all the experiments of classical graphical models, we run 100 chains. The chains run in parallel
on 4 V100 GPUs, with each GPU managing a mini-batch of 25 chains. We report the performance
of all the samplers on Bernoulli Model 7, Categorical Model 8, Ising Model 9, Potts Model 10 and
FHMM 11. We study the effect of number of discrete variables (sample dimension), the number
of categories for each discrete variable, weight function for locally balanced samplers, and the
smoothness/sharpness of different models. Note that the result for BG-2 on Potts 10 and Categorical 8
model with 256 categories are omitted as it takes over 100 hours. The chain length is set as 1 million
steps when studying the effect of the number of categories and sample dimension. In the other cases,
we use 100k steps as the chain length. For each experiment, as we sample the chains, each sample
from each chain at each step is mapped to a lower dimension of 1. The samples are mapped on the
same arbitrary sample which we randomly initialize in the beginning of the experiment. We calculate
ESS on the mapped samples after the burn-in phase i.e. after the generation of half of the chain. We
explain more details on ESS computation in section A.6.1. The average and standard deviation of
ESS is computed over all the chains and is reported over the running time and number of energy
evaluation of each sampler.

In the following sections, we provide the energy function we used for each of the classical graphical
models.

A.1.1 Factorized Models

Factorized models are the simplest distributions in a discrete space, where each site is independent
from the others. Consider the category set of one hot vectors C = {e1, ..., eC} and the state space
X = CN . We have |C| = C is the number of category and N is the number of variables. The energy
function of a factorized model is:

f(x) =

N∑
n=1

⟨xn, θ
n⟩ (9)

where θd ∈ RC . We denote the target distribution as Bernoulli model when C = 2 and Categorical
model when C > 2. We report the results on Bernoulli models and Categorical models in Figure 7
and 8, respectively.

A.1.2 Ising Models

The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical mechanics.
It consists of binary random variables arranged in a lattice graph G = (V,E) and allows a node to
interact with its neighbors. The Potts model (Potts, 1952) is a generalization of the Ising model where
the random variables are categorical. The energy function for Ising model and Potts model can be
described as:

f(x) = −
N∑

n=1

⟨xn, θn⟩ −
∑

(i,j)∈E

Jij(xi, xj) (10)

where we set θd ∈ Rn, and Jij(xi, yj) = 1{xi=yj}. For Ising model, we use θn ∼ Uniform(−2, 1)
for the outer part of the lattice graph, and θn ∼ Uniform(−1, 2) for the inner part of the lattice graph.
We report the results on Ising model and Potts model in Figure 9, 10.

A.1.3 Factorial Hidden Markov Model (FHMM)

FHMM (Ghahramani & Jordan, 1995) uses latent variables to characterize time series data. In
particular, it assumes the continuous data y ∈ RL is generated by hidden state x ∈ CL×K . The
probability function is:

p(x) = p(x1)

L∏
l=2

p(xt|xt−1), p(y|x) =
L∏

l=1

N (yt;

K∑
k=1

⟨Wk, xl,k⟩+ b;σ2) (11)
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In particular, for binary model, we consider P(x1 = 0) = 0.9,P(xt = xt−1|xt−1) = 0.8, σ = 2.0.
We use L = 200,K = 50 for high temperature setting and L = 1000,K = 10 in low temperature
setting. For categorical model, we use p(x1|x1 ̸= 0) and p(xt|xt−1, xt ̸= xt−1) as uniform
distribution and we use L = 200, K = 10 with category number C = 4, 8. We report the results in
Figure 11.

A.2 Combinatorial Optimization

Table 3: Synthetic data statistics.

Name MIS Max Clique Maxcut

ER-[700-800] ER-[9000-11000] RB ER BA
Max # nodes 800 10,915 475 1,100 1,100
Max # edges 47,885 1,190,799 90,585 91,239 4,384

# Test instances 128 16 500 1,000 1,000

Table 4: Real-world data statistics.
Name MIS Max Clique Maxcut Balanced Graph Partition

SATLIB Twitter Optsicom MNIST VGG ALEXNET RESNET INCEPTION
Max # nodes 1,347 247 125 414 1,325 798 20,586 27,114
Max # edges 5,978 12,174 375 623 2,036 1,198 32,298 40,875

# Test instances 500 196 10 1 1 1 1 1

Here we first provide the experimental details for the combinatorial optimization problems, Maximum
Independent Set (MIS), Max Clique, MaxCut and, Balanced Graph Partition. The statistics of the
synthetic datasets, including the maximum number of nodes/edges in a graph, and the number of test
instances are reported in 3. Additionally the statistics of real-world graphs are in 4. For MaxCut-ba,
all Balanced Graph Partition and MIS graphs, we use 32 as the number of chains and for MaxCut-
optsicom, MaxCut-er, and all Max Clique graphs we use 16. The data used for these experiments
could be found at DISCS DATA.

We run all the experiments on 8 V100 GPUs in parallel. For only MaxCut Optsicom graph, we use 2
V100 GPUs. The test instances are divided evenly between the GPUs and are run in parallel. For each
experiment, we report the average and standard deviation of the best solution found over the number
of test instances along with the end-to-end run time (in seconds) of each in tables. We report the
results for all the samplers and plot their solution as the chain is being generated over M-H step and
the running time. Note that for reporting the standard deviation for the plots, for better visualization,
we clip the found solutions by a minimum of zero (removing the penalty effect of the optimization
objective). However, the tables include the accurate standard deviation of the best solution found
over the instances.

In the following sections, we provide the energy function we use for each of the combinatorial
optimization problems. For a graph G = (V,E) we label the nodes in V from 1 to d. The adjacency
matrix is represented as A. For a weighted graph, we simply let Aij denote the edge weight between
node i and j. For constraint problems, we follow Sun et al. (2022c) to select penalty coefficient λ
as the minimum value of λ such that x∗ := argmin f(x) is achieved at x∗ satisfying the original
constraints. Such a choice of the coefficient guarantees the target distribution converges to the optimal
solution of the original CO problems while keeping the target distribution as smooth as possible.

A.2.1 Maximum Independent Set (MIS)

The MIS has the integer programming formulation as

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xixj = 0, ∀(i, j) ∈ E (12)

We use the corresponding energy function in the following quadratic form:

f(x) := −cTx+ λ
xTAx

2
(13)
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In our experiments c equals to 1 and we use λ = 1.0001. In post processing, we iteratively go through
all nodes xi for i = 1, ..., d. If there exists xj = 1 for (xi, xj) ∈ E, we flip its value xj = 0. After
post processing, the state x is guaranteed to be feasible in the original MIS problem. We provide the
average and standard deviation of the best solutions over all the number of instances along with their
corresponding running time (s) at 5. The plots of the experiments could be found at 12.

Table 5: MIS.
Sampler Graphs ER[700-800] ER[9000-11000] SATLIB

Density 0.05 0.10 0.15 0.20 0.25 0.15

HB-10-1 Size 100.374 ± 2.073 58.750 ± 1.172 41.812 ± 0.864 32.344 ± 0.643 26.469 ± 0.749 277.149 ± 3.206 422.427 ± 14.403
Time(s) 426.185 390.810 684.590 414.067 429.879 15139.425 5381.857

BG-2 Size 102.468 ± 2.015 60.000 ± 0.707 42.820 ± 0.765 32.250 ± 0.500 27.312 ± 0.634 316.170 ± 3.187 422.200 ± 14.390
Time(s) 291.427 290.042 562.986 295.024 288.109 13079.125 3027.204

RWM Size 97.186 ± 1.943 56.249 ± 0.968 40.429 ± 0.777 31.219 ± 0.599 25.594 ± 0.605 -555.674 ± 359.008 420.284 ± 14.263
Time(s) 284.092 293.517 499.577 297.140 281.772 12401.737 2955.729

GWG-nA Size 104.812 ± 1.590 62.125 ± 0.739 44.383 ± 0.830 34.812 ± 0.583 28.187 ± 0.463 367.310 ± 4.383 422.971 ± 14.407
Time(s) 278.885 308.873 737.671 303.435 310.551 24698.296 3540.670

DMALA Size 104.750 ± 1.803 62.031 ± 0.684 44.195 ± 0.781 34.375 ± 0.599 28.031 ± 0.467 357.058 ± 9.622 423.641 ± 14.506
Time(s) 291.271 292.131 714.614 297.848 298.732 24769.380 3465.343

PAS Size 105.062 ± 1.560 62.250 ± 0.790 44.570 ± 0.669 34.719 ± 0.6242 28.500 ± 0.500 377.123 ± 4.498 424.143 ± 14.531
Time(s) 299.004 310.765 759.372 299.569 308.475 25242.166 4826.039

DLMCF Size 104.450 ± 1.561 62.219 ± 0.926 44.078 ± 0.746 34.469 ± 0.558 28.125 ± 0.414 354.121 ± 10.683 423.387 ± 14.441
Time(s) 291.366 301.554 726.287 302.667 300.413 24892.216 3679.425

DLMC Size 104.844 ± 1.769 62.187 ± 0.882 44.273 ± 0.788 34.500 ± 0.707 28.281 ± 0.450 355.058 ± 10.128 423.479 ±14.483
Time(s) 293.235 294.975 725.326 294.688 299.884 24976.312 3523.320

We also conduct experiments to justify the results are robust regarding the choice of the penalty
coefficient. In Figure 13, we use penalty coefficient λ ∈ {1.001, 1.01, 1.1, 2} on ER-[700-800]
graphs with density {0.05, 0.10, 0.15, 0.20, 0.25}. We also use a dashed line to represent the optimal
value obtained by running Gurobi-10 for 1 hour. From the results, we can observe that 1) PAS
consistently obtains the best results, 2) locally balanced samplers have results consistently better than
traditional sampler and Gurobi.

A.2.2 Max Clique

The max clique problem is equivalent to MIS on the dual graph. In our experiments c equals to 1.

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xixj = 0, ∀(i, j) /∈ E (14)

The energy function is

f(x) := −cTx+
λ

2

(
1⊤x · (1⊤x− 1)− xTAx

)
(15)

In our experiments c equals to 1 and we use λ = 1.0001. In post processing, we iteratively go through
all nodes xi for i = 1, ..., d. If there exists xj = 1 for (xi, xj) /∈ E, we flip its value xj = 0. After
post processing, the state x is guaranteed to be feasible in the original Max Clique problem. We
provide the average and the standard deviation of the best solutions over all number of instances
along with their corresponding running time at 6. The plots of the experiments could be found at 14.

A.2.3 MaxCut

We optimize the following problem:

min
x∈{−1,1}d

−
∑

(i,j)∈E

Ai,j

(
1− xixj

2

)
(16)

Note that for simplicity each dimension of x is selected from {−1, 1}. To represent the corresponding
energy function for x ∈ {0, 1}d, we have

f(x) := −
∑

(i,j)∈E

Ai,j

(
1− (2xi − 1)(2xj − 1)

2

)
(17)

In our experiments Aij equals to 1. Since the problem is always feasible, the post processing is an
identity map. We provide the average and standard deviation of the best solutions over all number of
instances along with their corresponding running time at 7. The plots of the experiments could be
found at 15.
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Table 6: Max Clique.

Sampler Results RB TWITTER

HB-10-1 Ratio α 0.850 ± 0.0620 0.966 ± 0.056
Time(s) 1724.893 6.817

BG-2 Ratio α 0.859 ± 0.061 0.995 ± 0.030
Time(s) 1592.808 6.327

RWM Ratio α 0.841 ± 0.0633 0.584 ± 0.484
Time(s) 1683.397 5.664

GWG-nA Ratio α 0.878 ± 0.062 0.999 ± 0.010
Time(s) 2525.801 6.032

DMALA Ratio α 0.876 ± 0.0620 0.999 ± 0.004
Time(s) 2561.617 6.190

PAS Ratio α 0.878 ± 0.0618 0.999 ± 0.011
Time(s) 2542.538 6.160

DLMCF Ratio α 0.871 ± 0.061 0.999 ± 0.011
Time(s) 2532.835 5.988

DLMC Ratio α 0.875 ± 0.062 0.999 ± 0.009
Time(s) 2639.588 6.124

Table 7: Maxcut.
Sampler Results BA ER OPTSICOM

16-20 32-10 64-75 128-150 256-300 512-600 1024-1100 256-300 512-600 1024-1100

HB-10-1 Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.001 1.008±0.005 1.014±0.004 1.020±0.017 1.000±0.001 0.998±0.001 1.000±0.000
Time(s) 742.568 754.613 749.626 783.278 792.338 1143.302 1890.534 331.019 416.002 1488.382 75.347

BG-2 Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.009±0.005 1.014±0.004 1.021±0.018 1.001±0.001 0.999±0.001 1.000±0.000
Time(s) 517.183 538.258 550.082 553.863 531.720 578.991 1157.571 269.116 337.014 1295.219 17.050

RWM Ratio α 0.998±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.999±0.001 1.005±0.005 1.007±0.004 1.019±0.017 0.997±0.002 0.996±0.001 1.000±0.000
Time(s) 534.215 534.615 528.641 558.608 541.302 574.778 1065.852 267.071 333.402 1266.630 58.960

GWG-nA Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.010±0.005 1.017±0.004 1.021±0.017 1.002±0.001 1.001±0.001 1.000±0.000
Time(s) 522.094 531.425 578.917 551.923 545.634 724.721 1427.577 264.202 466.199 1666.021 80.124

DMALA Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.010±0.005 1.018±0.004 1.021±0.017 1.002±0.001 1.002±0.001 1.000±0.000
Time(s) 531.433 538.938 568.224 549.026 544.568 750.909 1490.872 277.855 461.179 1643.135 53.509

PAS Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.010±0.005 1.018±0.004 1.021±0.017 1.002±0.001 1.002±0.001 1.000±0.000
Time(s) 519.842 538.814 550.035 550.578 580.051 940.408 1917.954 278.005 543.607 1689.071 59.213

DLMCF Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.010±0.005 1.018±0.004 1.021±0.017 1.002±0.001 1.001±0.005 1.000±0.000
Time(s) 521.592 526.289 545.877 557.564 533.119 765.719 1510.380 272.841 452.252 1639.539 52.552

DLMC Ratio α 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.010±0.005 1.018±0.004 1.021±0.017 1.002±0.001 1.002±0.001 1.000±0.000
Time(s) 531.003 550.118 543.287 544.611 542.677 765.104 1564.198 271.262 451.080 1642.223 53.368

A.2.4 Balanced Graph Partition

We find the following objective for balanced graph partition gives the best result:

f(x) :=

k∑
s=1

∑
(i,j)∈E

I (xi ̸= xj&&(xi = s||xj = s)) +

k∑
s=1

(
d/k −

d∑
i=1

I(xi = s)

)2

(18)

where k is the number of partitions. Since the problem is always feasible, the post processing is
identity map. We provide the edge cut ratio and balanceness of the best samples over all the chains at
8. Further details on the calculated metrics could be found at A.6.2.

A.3 Energy Based Generative Models

A.3.1 Restricted Boltzmann Machine

The RBM is an unnormalized latent variable model, with a visible random variable v ∈ CN and a
hidden random variable h ∈ {0, 1}M . When v is binary, we call it a binary RBM (binRBM) and
when v is categorical, we call it a categorical RBM (catRBM). The energy function of both binRBM
and catRBM (Tran et al., 2011) can be written as:

f(v) =
∑
h

− N∑
n=1

⟨vn, θn⟩ −
M∑

m=1

βmhm −
∑
d,m

⟨hmθm,d, vn⟩

 (19)

Unlike the previous three models, where the parameters are hand designed, we train binary RBM
on MNIST (LeCun, 1998) and categorical RBM on Fashion-MNIST (Xiao et al., 2017a) using
contrastive divergence Hinton (2002). Across all settings, we have D = 784. For binary models, we
use M = 25 for high temperature setting and M = 200 for low temperature setting. For categorical
models, we use M = 100. We report the results in Figure 16. The experimental setup is similar to
classical graphical models.
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Table 8: Balanced graph partition.

Metric Samplers VGG MNIST-conv ResNet AlexNet Inception-v3

Edge cut ratio ↓

HB-10-1 0.050 0.046 0.050 0.037 0.065
BG-2 0.048 0.045 0.050 0.038 0.069
RWM 0.054 0.046 0.092 0.052 0.117
GWG 0.102 0.046 0.159 0.063 0.164

DMALA 0.084 0.058 0.178 0.063 0.176
DMALA-nA 0.059 0.045 0.048 0.039 0.054

PAS 0.053 0.045 0.047 0.037 0.052
PAS-nA 0.084 0.050 0.138 0.053 0.144
DLMCF 0.086 0.063 0.178 0.053 0.176

DLMCF-nA 0.092 0.069 0.048 0.085 0.052
DLMC 0.105 0.056 0.183 0.097 0.182

DLMC-nA 0.113 0.048 0.082 0.091 0.086

Balanceness ↑

HB-10-1 0.999 0.999 0.999 0.999 0.999
BG-2 0.999 0.997 0.999 0.999 0.999
RWM 0.999 0.998 0.999 0.999 0.999
GWG 0.999 0.997 0.999 0.999 0.999

DMALA 0.999 0.998 0.999 0.999 0.999
DMALA-nA 0.999 0.997 0.999 0.999 0.999

PAS 0.999 0.997 0.999 1.000 0.999
PAS-nA 0.999 0.998 0.999 0.999 0.999
DLMCF 0.999 0.997 0.999 0.999 0.999

DLMCF-nA 0.999 0.995 0.999 0.999 0.999
DLMC 0.999 0.994 0.999 0.999 0.999

DLMC-nA 0.999 0.993 0.999 0.999 0.999

A.3.2 Deep residual network

In this experiment, we train a deep residual network on MNIST, Omniglot and Caltech dataset. The
models checkpoints could be found at DISCS DATA. We use all the samplers to sample from the
trained energy based generative models. We use the chain length of 10k and number of chains of 100.
We randomly selected one chain from the 100 chains and save its sample after each 1k steps, giving
us 10 images per each chain for each sampler 17. We can see that locally balanced samplers are able
to generate higher quality images faster and visit more diverse modalities.

A.3.3 Text Infilling

The experimental set up is explained in detail at 4.4. Here we additionally provide the performance
of the locally balanced samplers in their non adaptive condition observed at 9. The data used for this
experiment could be found at DISCS DATA.

A.4 DISCS Code

The source code is open source at DISCS with extensive documentation.

A.5 Data-Set

The data used in this paper is available at DISCS DATA. Under the data set folder, you can find:

• Restricted Boltzmann Machine (RBM) checkpoints, more specifically two binary RBM
checkpoints trained on MNIST dataset, one with 25 hidden dimensions and other with
200. Two categorical RBM checkpoints, trained on Fashion-MNIST data set with 4 and 8
categories. 16

• Deep residual network checkpoints, more specifically three checkpoints trained on MNIST,
Omniglot and Caltech dataset.

• Graphs data used for combinatorial optimization experiments found at sco directory.

• Text infilling data used for text infilling task experimentation.

17

https://drive.google.com/drive/u/1/folders/1nEppxuUJj8bsV9Prc946LN_buo30AnDx
https://drive.google.com/drive/u/1/folders/1nEppxuUJj8bsV9Prc946LN_buo30AnDx
https://github.com/google-research/discs
https://drive.google.com/drive/u/1/folders/1nEppxuUJj8bsV9Prc946LN_buo30AnDx


Table 9: Quantative results on text infilling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Methods Self-BLEU (↓)
Unique n-grams (%) (↑)

Corpus BLEU (↑)Self WT103 TBC
n = 2 n = 3 n = 2 n = 3 n = 2 n = 3

RWM 92.41 6.26 9.10 18.97 26.73 19.33 26.67 16.24
GWG

√
t 85.93 11.22 17.14 23.16 35.56 23.58 35.56 16.75

GWG t
t+1 81.15 15.47 22.70 25.62 38.91 25.62 38.58 16.68

DMALA-nA
√
t 83.99 13.26 19.52 24.33 36.40 25.30 36.40 16.37

DMALA-nA t
t+1 80.44 15.86 23.58 25.79 39.88 26.57 40.20 16.64

DMALA
√
t 85.88 11.58 17.14 22.07 34.08 23.22 34.15 17.06

DMALA t
t+1 80.21 16.36 23.71 25.60 39.39 26.75 39.72 16.53

PAS
√
t 85.39 11.37 17.60 22.61 35.53 23.65 35.47 16.57

PAS t
t+1 81.02 15.62 22.65 25.59 39.28 26.08 39.48 16.69

DLMCf-nA
√
t 91.57 7.25 10.42 19.53 28.31 20.13 28.18 16.56

DLMCf-nA t
t+1 81.66 15.31 21.78 26.39 39.56 27.60 39.69 16.31

DLMCf
√
t 88.39 9.53 14.06 21.00 31.85 22.27 31.98 16.70

DLMCf t
t+1 80.12 16.25 23.76 25.41 39.31 26.86 39.57 16.73

DLMC-nA
√
t 83.74 12.74 19.64 24.27 37.27 24.94 37.34 16.73

DLMC-nA t
t+1 82.26 14.18 21.41 25.51 39.10 26.18 39.29 16.55

DLMC
√
t 85.28 12.05 17.65 24.03 36.34 24.51 36.27 16.45

DLMC t
t+1 84.55 12.62 18.47 24.27 37.28 24.94 37.14 16.69

A.6 Metrics and Evaluation Methods

Depending on the task we are solving, we use different metrics and evaluation methods to measure
the quality of the generated samples. Below we explain in detail the process of evaluation for different
tasks in the benchmark. Additionally, referring to an example provided in 4.4, DISCS is structured
in a way that researchers can easily plug in new evaluation methods and define their own domain
specific scores. For further code implementation details, you can refer to DISCS-Evaluator

A.6.1 Classical Graphical Models

For each of the experiments of classical graphical models, we run multiple chains in parallel. We
rely on Effective Sample Size (ESS) to measure the efficiency of different samplers. We compute
the ESS using tfp.substrates.jax.mcmc.effective_sample_size from Python TensorFlow library on the
second half of the chain after the burn-in phase. The average and the standard deviation of the ESS is
computed and reported over the chains.

A.6.2 Combinatorial Optimization

For the combinatorial optimization problems, for each of the test instances, we run multiple chains in
parallel. Throughout the chain generation, we keep track of the best solution over all the chains for
each of the instances. We report the average and standard deviation of the best solutions found over
the test instances for each problem.

For balanced graph partition problem, we additionally store the sample resulting in the best solution
of the optimization problem and do further post processing on it. Let n be the number of nodes and
the g number of disjoint sets. For each of the instances, we load the corresponding graph and the best
solution and compute the edge cut ratio as the ratio of the cut to the total number of edges and the
balanceness as one minus the MSE of a number of nodes in every partition and balances partition
n/g.

A.6.3 Energy Based Generative Models

For the text infilling task, we evaluate the generated text from two perspectives, diversity, and quality.
For diversity, we use self-BLEU (Zhu et al., 2018) and the number of unique n-grams (Wang &
Cho, 2019) to measure the difference between the generated sentences. For quality, we measure the
BLEU score (Papineni et al., 2002) between the generated texts and the original dataset, which is

18

https://github.com/google-research/discs/tree/main/discs/evaluators


the combination of TBC and WikiText-103. We rely on Natural Language Toolkit (NLTK) Python
library, more specifically nltk.translate.bleu_score and nltk.util.ngrams to compute the metrics above.

To gain insights into the performance and the quality of the generated samples we also rely on visual
representation 17. As the chains are generated, the samples are saved as images at different time
intervals. The images could provide insights on the performance of the sampler in terms of the quality
and diversity of generated samples.
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Figure 7: Results of Bernoulli Models
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Figure 8: Results of Categorical model
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Figure 9: Results of Ising model
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Figure 10: Results of Potts model
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Figure 11: Results of FHMMs
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Figure 12: Solving progress on MIS
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Figure 13: Reuslts on MIS: effect of penalty coefficient. The dashed line represents the best result
obtained by running Gurobi for 1 hour.
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Figure 14: Solving progress on Max Clique
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Figure 15: Solving progress on MaxCut
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Figure 16: Results of RBMs
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Figure 17: Resnet EBM trained on different data set with snapshots for every 1k sampling steps
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