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Abstract

Softmax policy gradient is a popular algorithm for policy optimization in single-
agent reinforcement learning, particularly since projection is not needed for each
gradient update. However, in multi-agent systems, the lack of central coordination
introduces significant additional difficulties in the convergence analysis. Even for
a stochastic game with identical interest, there can be multiple Nash Equilibria
(NEs), which disables proof techniques that rely on the existence of a unique global
optimum. Moreover, the softmax parameterization introduces non-NE policies with
zero gradient, making it difficult for gradient-based algorithms in seeking NEs. In
this paper, we study the finite time convergence of decentralized softmax gradient
play in a special form of game, Markov Potential Games (MPGs), which includes
the identical interest game as a special case. We investigate both gradient play and
natural gradient play, with and without log-barrier regularization. The established
convergence rates for the unregularized cases contain a trajectory dependent con-
stant that can be arbitrarily large, whereas the log-barrier regularization overcomes
this drawback, with the cost of slightly worse dependence on other factors such
as the action set size. An empirical study on an identical interest matrix game
confirms the theoretical findings.

1 Introduction

Multi-agent systems encounter vast application in real world scenarios, such as network routing
[35, 8], social and economic decision making [36, 30], and robotic swarms [22, 14]. In these problems,
a system consists of a group of agents interacting in a shared environment. Given the recent success
of reinforcement learning (RL), increasing attention has been drawn to the possibility of applying RL
algorithms, such as policy gradient, to multi-agent systems. However, the theoretical foundations for
multi-agent reinforcement learning (MARL) remain limited. Unlike single-agent RL, the actions of
other agents affect the dynamics and the decision making outcome for each individual in the system,
raising additional theoretical challenges when analyzing joint performance.

The stochastic game (SG) is a classical multi-agent model that has received extensive attention in
recent MARL studies. In a stochastic game, the environment is represented by a state space that
evolves based on the joint actions of agents. Each agent in a stochastic game tries to maximize its own
total reward by making decisions independently, based on state information shared between agents.
The stochastic game model was first introduced in [31], with a series of followup works proposing
NE-seeking algorithms, particularly in the RL setting (e.g. [21, 5, 32, 6, 17, 38] and citations therein).
Given recent progress in the underlying theory of RL, many recent works have investigated finite
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time iteration and sample complexity for learning NE or other general equilibria notions, such as
correlated and coarse correlated equilibria (e.g. [33]).

There are different types of SGs, some with attributes that merit special attention; for example,
two-player zero sum games [4, 9], which are widely used to model two player competitive games
such as GO. In this paper, we will focus on another type of SG, the Markov potential game (MPG) [23,
27, 39, 18], which includes the identical interest game as a special case. The structure of a MPG
enables efficient learning through the use of gradient-based algorithms such as gradient play. Recent
work [39, 18] has focused on the iteration and sample complexity of finding a NE in an MPG under
the direct policy parameterization, which is not practical in most real world scenarios, given the
cost of projecting back to the probability simplex on every iteration. This drawback has motivated
consideration of the softmax parameterization, which bypasses the projection step in the gradient
update, and is perhaps the most popular approach to parameterizing policies in practice. [11] have
studied natural gradient play for MPG under softmax parameterization, but only address asymptotic
behavior and leave finite time complexity open.

From the perspective of analysis and practical performance, the extension from the direct to the
softmax parameterization in policies is nontrivial. Even in the single agent case, as shown by [2, 24],
there are policies in the softmax parameterization that have near-zero gradient and yet are far from
being globally optimal, which creates difficulty for a gradient-based algorithm to escape suboptimal
points. A similar issue exists for MPGs: due to the more complex interaction between agents, there is
even a greater set of policies that obtain small gradient norm but are far from a NE. Based on our
analysis and numerical results, even for natural gradient play—which is known to enjoy dimension
free convergence in single agent learning [2]—we find in the multiagent setting that it can still
become stuck in these undesirable regions. Such evidence suggests that preconditioning according
to the Fisher information matrix [29, 3] is not sufficient to ensure fast convergence in multi-agent
learning. A stronger form of regularization is required, which motivates the introduction of log-barrier
regularization to avoid undesirable regions of policy space.

Algorithm Single-agent MDP Multi-agent MPG

Gradient play, O
(
|A|M2

(1−γ)4ε2

)
O
(

(φmax−φmin)
∑n
i=1 |Ai|M

2

(1−γ)4ε2

)
direct parameterization [2] [39, 18]

Gradient play, O
(

M2

(1−γ)3c2ε

)
O
(
nmaxi |Ai|(φmax−φmin)M

2

(1−γ)4c2ε2

)∗
softmax parameterization [24]

Natural gradient play, O
(

1
(1−γ)2ε

)
O
(
n(φmax−φmin)

2M
(1−γ)3cε2

)∗
softmax parameterization [2]

Gradient play + log-barrier reg., O
(
|A|2M2

(1−γ)4ε2

)
O
(
nmax |Ai|2(φmax−φmin)M

2

(1−γ)4ε2

)
softmax parameterization [2]

Natural gradient play + log-barrier reg., Unknown O
(
nmaxi |Ai|(φmax−φmin)M

2

(1−γ)4ε2

)
softmax parameterization

Table 1: Summary of known convergence rate results for gradient based methods in Markov decision processes
(MDPs) and MPGs respectively. The new results proved in this paper for MPGs are displayed in bold font.
Complexity bounds with ‘*’ depend on an additional assumption on the MPG (See Theorem 4 and 5). The
definitions of variables M and c appearing in some bounds can be found in (5) and (11). Note that the definition
of M is slightly different from the “distribution mismatch coefficient” D∞ defined in [2] (see more details in
descriptions that follows Assumption 1). To make the complexity results more comparable, we slightly modify
and re-derive the results in [2, 24, 39, 18].

Our contribution: In this paper, we provide finite time iteration complexity results for gradient
play and natural gradient play under the softmax parameterization, considering both unregularized
and log-barrier regularized dynamics. We summarize the convergence rates and compare them to
existing results for the direct parameterization and to the corresponding single agent cases in Table 1.
These findings suggest that regularization is crucial for obtaining fast convergence to a NE under the
softmax parameterization in a MPG. In Table 1, the results for the two unregularized algorithms in
the multi-agent case rely on the assumption that the set of stationary policies is isolated (which is
also assumed in [11] when establishing the asymptotical convergence for natural policy gradient),
and the corresponding complexity bounds contain an initialization dependent factor c. By contrast,
the log-barrier regularized algorithms overcome both drawbacks, but as a tradeoff, their bounds
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incur a slightly worse dependence on |Ai| and M . We observe numerically that the log-barrier
regularized algorithms are indeed more robust against becoming trapped near undesirable non-NE
stationary points. To the best of our knowledge, the finite-time iteration complexity results are the
first such results for MPGs under the softmax parameterization. Though the analysis for the gradient
play follows their single-agent counterparts [2, 24], the results for natural gradient play are highly
non-trivial, requiring very different analysis tools which have their own merits to the literature (see
Remark 2 and Remark 3 for more details on the technical novelty in the analysis). Our results also
convey the following two messages. First, finding the NE of a multi-agent MPG is harder than
finding the global optimum for the single-agent case, because multi-agent learning suffers greater
risk of becoming trapped near undesirable stationary points. This is reflected in the dependence of
the complexity bounds on ε in Table 1. Second, natural gradient play outperforms gradient play
counterparts, suggesting that natural gradient play captures useful information about the geometry of
the parameter space that accelerates the learning process.

2 Problem settings

We consider an infinite time horizon n-agent stochastic game (SG, [31]) M = (N,S,A =A1×
. . .×An, P, r = (r1,. . . ,rn), γ, ρ) which is specified by an agent set N = {1, 2, . . . , n}, a finite
state space S, a finite action space Ai for each agent i ∈ N , a transition model P (such that
P (s′|s, a) = P (s′|s, a1, . . . , an) is the probability of transitioning into state s′ upon taking action
a := (a1, . . . , an) in state s where ai ∈ Ai is action of agent i), a reward function ri : S×A → [0, 1]
for each agent i, a discount factor γ ∈ [0, 1), and an initial state distribution ρ over S . We use s(t) ∈ S
to denote the state at time step t, and a(t) = (a1(t), . . . , an(t)) ∈ A to denote the total action.

A stochastic policy π : S → ∆(A) (where ∆(A) is the probability simplex over A) specifies a
strategy, where agents choose their actions jointly based on the current state in a stochastic fashion; i.e.
Pr(a(t)|s(t)) = π(a(t)|s(t)). A decentralized stochastic policy is a special subclass of stochastic
policies with π = π1 × . . . × πn, such that πi : S → ∆(Ai), where πi is agent i’s own local
policy. For decentralized stochastic policies, each agent takes its action based on the current state s
independently of other agents’ action choices; i.e.,

Pr(a(t)|s(t))=π(a(t)|s(t))=
∏n
i=1 πi(ai(t)|s(t)).

For notation simplicity, we define πI(aI |s):=
∏
i∈Iπi(ai|s), where I ⊆ N is an index set. Further,

we use the notation −i to denote the index set N\{i}. In this paper we focus on tabular softmax
parameterization for a policy, where policy πθ = (πθ1 , . . . , πθn) is parameterized by a set of
parameters θ = (θ1, . . . , θn), with θi = {θs,ai}s∈S,ai∈Ai , and where

πθi(ai|s) =
exp (θs,ai)∑
a′i

exp (θs,a′i)
. (1)

We denote agent i’s total reward starting from initial states s(0) ∼ ρ as: Ji(θ) :=
Es(0)∼ρ

[∑∞
t=0 γ

tri(s(t), a(t))
∣∣ πθ, s(0) = s

]
. Agent i’s objective is to maximize its own total re-

ward Ji. A Nash equilibrium (NE) is often used to characterize the equilibrium (a joint policy) where
no agent has a unilateral incentive to deviate from it.

Definition 1. (Nash equilibrium) A policy θ∗ = (θ∗1 , . . . , θ
∗
n) is called a (Markov perfect) Nash

equilibrium (NE) if
Ji(θ

∗
i , θ
∗
−i) ≥ Ji(θ′i, θ∗−i), ∀θ′i, i ∈ N (2)

Further, we define the ‘NE-gap’ of a policy θ to be:

NE-gapi(θ) := supθ′i Ji(θ
′
i, θ−i)− Ji(θi, θ−i); NE-gap(θ) := maxi NE-gapi(θ).

A policy θ is an ε-Nash equilibrium if: NE-gap(θ) ≤ ε.

We define the value function with respect to stage cost ri as:

V θi (s) := E
[∑∞

t=0 γ
tri(s(t), a(t))

∣∣ πθ, s(0) = s
]
.

We define agent i’s Q-function and advantage function Qθi , A
θ
i : S ×A → R,

Qθi (s, a) :=E
[∑∞

t=0 γ
tri(s(t), a(t))

∣∣ πθ, s(0)=s, a(0)= a
]
, Aθi (s, a) :=Qθi (s, a)− V θi (s).
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We further define agent i’s ‘averaged’ Q-function Qθi : S × Ai → R and ‘averaged’ advantage-
function Aθi : S ×Ai → R as:

Qθi (s, ai) :=
∑
a−i

πθ−i(a−i|s)Qθi (s, ai, a−i), Aθi (s, ai) :=
∑
a−i

πθ−i(a−i|s)Aθi (s, ai, a−i).

Finally, define the discounted state visitation distribution dθ of a policy πθ given an initial state
distribution ρ as:

dθ(s) := Es(0)∼ρ(1− γ)
∑∞
t=0 γ

tPrθ(s(t) = s|s(0)), (3)

where Prθ(s(t) = s|s(0)) is the state visitation probability that s(t) = s when executing πθ starting
at state s(0). From the policy gradient theorem [34], we have that (proof given in Appendix 9):

∂Ji(θ)

∂θs,ai
=

1

1− γ
dθ(s)πθi(ai|s)Aθi (s, ai). (4)

For the remainder of the paper, we make the following assumptions on the stochastic games we study.
Assumption 1. The stochastic gameM satisfies: infθ mins∈S dθ(s) > 0.

Assumption 1 requires that every state is visited with positive probability for any policy, which is
a standard assumption for convergence proofs in the RL literature (e.g. [2, 24]). We will use M to
denote the following quantity

M := supθ maxs
1

dθ(s) . (5)

Note that M can be viewed as a measure of exploration sufficiency in the stochastic game, which
is slightly different from the “distributional mismatch coefficient” introduced in [2] defined by
supθ,θ′ maxs

dθ′ (s)
dθ(s) ; however, both can be upper bounded by maxs

1
(1−γ)ρ(s) .

We primarily focus on the following subclass of stochastic games in this paper:
Definition 2. A stochastic game is called a Markov potential game (MPG, [37, 23, 39, 18, 26]) if
there exists a potential function φ : S ×A1 × · · · × An → R such that for any agent i and any pair
of policy parameters (θ′i, θ−i), (θi, θ−i) :

E

[
∞∑
t=0

γtri(s(t), a(t))
∣∣π=(θ′i, θ−i), s(0)=s

]
−E

[
∞∑
t=0

γtri(s(t), a(t))
∣∣π=(θi, θ−i), s(0)=s

]

=E

[
∞∑
t=0

γtφ(s(t), a(t))
∣∣π=(θ′i, θ−i), s(0)=s

]
−E

[
∞∑
t=0

γtφ(s(t), a(t))
∣∣π=(θi, θ−i), s(0)=s

]
, ∀ s. (6)

Without loss of generality, we assume that φmin ≤ φ(s, a) ≤ φmax for all (s, a). The definition of
MPG is a generalization of the notion potential game in the one-shot setting [28]. Note that identical
reward game where agents share a same reward function naturally satisfies the above condition and
serves as one important special case of MPG. For non-identical reward settings, [23, 12] found that
continuous MPGs can model applications such as the great fish war [19], the stochastic lake game
[10], medium access control [23] etc. For tablular MPGs, [39, 18] also discuss necessary/sufficient
conditions that implies a MPG, as well as its application and counterexamples.

Given a MPG, we define the total potential function Φ as:

Φ(θ) := Es(0)∼ρ
[∑∞

t=0 γ
tφ(s(t), a(t))

∣∣ πθ, s(0) = s
]
.

Given the property in (6), it is straightforward to verify that the NE condition (2) is equivalent to
Φ(θ∗i , θ

∗
−i) ≥ Φ(θ′i, θ

∗
−i),∀θ′i, i ∈ N and that for the policy gradient, ∂Ji(θ)∂θs,ai

= ∂Φ(θ)
∂θs,ai

for all i, s, ai.

Remark 1 (Differences between MPG and single-agent/centralized MDP). Because of the exis-
tence of the total potential function Φ, it is natural to ask whether MPG renders the multi-agent policy
gradient similar to single agent policy gradient and thus results and analysis tools developed for single
agent policy gradient in e.g., [2, 24] would be easily extended to the multiagent case. Unfortunately,
this is not the case. To illustrate how it differs from single-agent/centralized case, we can focus on the
special type of MPGs where every agent has the same reward function, namely the identical interest
case. In the single agent/centralized case, there is a unique global optimal solution which corresponds
to the convergent stationary policy. However, in the multiagent case, even if the rewards are identical,
because the policy is decentralized, i.e., agents taking independent policies π := π1 × . . . × πn,
we loose the connection between stationary policies and optimal policies. As we shown later, the
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convergent stationary policies are Nash equilibria, which are unfortunately non-unique even for the
identical interest case. Moreover, a key condition that is used in establishing the convergence rate,
Łojasiewicz condition (Lemma 1), is also much weaker for the multiagent case compared to single
agent [24]: the left hand side is the Nash gap maxi,θ∗i Φ(θ∗i , θ−i)− Φ(θ) instead of the optimality
gap maxθ∗ Φ(θ∗) − Φ(θ)). Note that zero Nash gap does not imply zero optimality gap, as there
exists many NEs of different values. These differences disable many proof technique used for single
agent case and make the analysis harder and lead to different performance results, as demonstrated in
the rest of the paper.

3 Relationship between first order stationary point and Nash equilibrium

Before studying convergence performance of gradient play algorithms, it is important to first under-
stand the relationship between the stationary points and the NEs. Unfortunately, equivalence cannot
be established in this setting. Standard optimization theory guarantees that all NEs are stationary
points, but unfortunately not vice versa. Under softmax parameterization, there exist non-NE sta-
tionary points. For example, from the gradient formulation (4), it can be shown that any non-NE
deterministic policies are also stationary points. However, the notion of NE and stationarity are
indeed closely related. This section aims to characterize some differences between NE and non-NE
stationary points. This differentiation of the NE and non-NE stationary points is established by the
non-uniform Łojasiewicz condition (also known as gradient domination) for stochastic games.

Lemma 1. (Non-uniform Łojasiewicz inequality; proof given in Appendix 11) Define

M(θ) := maxs
1

dθ(s) , c(θ) := mins
∑
a∗i∈argmaxai Q

θ
i (s,ai)

πθi(a
∗
i |s). (7)

Then we have that

NE-gapi(θ) ≤
√
|Ai|M(θ)

c(θ)
‖∇θiJi(θ)‖2.

The Łojasiewicz condition (gradient domination) implies that the NE-gap of a policy can be bounded

by the norm of its gradient, whereas the term ‘non-uniform’ refers to the factor
√
|Ai|M(θ)

c(θ) , which
cannot be bounded uniformly for all θ. The counterpart of Lemma 1 for a single-agent MDP
was first introduced in [24, Lemma 8]. One major difference between Lemma 1 and [24, Lemma
8] is how c(θ) is defined. In [24], c(θ) := mins πθ(a

∗(s)|s), where a∗(s) is the optimal action
on state s (i.e., a∗ = argmaxaQ

∗(s, a)), whereas in MPG, because there’s no globally defined
Q∗, the a∗i in (7) is chosen as the greedy optimal action of the current averaged Q-function (i.e.,
a∗i ∈ argmaxai Q

θ
i (s, ai)).

Note that because c(θ) on the denominator can be zero for certain policies (e.g. one can verify that
any non-NE deterministic policy have c(θ) = 0), which implies that a θ with gradient norm close to
zero is not necessarily near a NE. Given this observation, we could differentiate the non-NE stationary
points with NEs by whether c(θ∗) equals to zero, which is formally stated in the following lemma:

Lemma 2. (Proof given in Appendix 11) Suppose θ∗ is a stationary point, i.e. ‖∇Φ(θ∗)‖ = 0, then
θ∗ is a NE if and only if c(θ∗) = 1, θ∗ is not a NE if and only if c(θ∗) = 0.

4 Unregularized gradient play

We first investigate the convergence to NE for gradient and natural gradient play, respectively. Under
the softmax parameterization, the two schemes are given by

Gradient Play: θ
(t+1)
i = θ

(t)
i +η∇θiJi(θ

(t)
i ) (8)

Natural Gradient Play: θ
(t+1)
i = θ

(t)
i +ηFi(θ

(t))†∇θiJi(θ
(t)
i ) (9)

where † denotes the Moore-Penrose inverse and Fi(θ) is the Fisher information matrix for πθi :

Fi(θ) := Es∼dθ(·)Eai∼πθi (·|s)
[
∇θi log πθi(ai|s)∇θi log πθ(ai|s)>

]
.
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For notational simplicity, we abbreviate the variables dθ(t) , Aθ
(t)

i and Aθ(t)i as d(t), A(t)
i and A(t)

i

respectively; and denote πθ(t)(a|s) and π
θ
(t)
i

(ai|s) as π(t)(a|s) and π(t)
i (ai|s) respectively. For

the softmax parameterization, we can establish the equivalence of natural gradient play and soft
Q-learning [13], formally stated in the following lemma.

Lemma 3. (Proof given in Appendix 10) Natural gradient play is equivalent to

π
(t+1)
i (ai|s) ∝ π(t)

i (ai|s) exp
(
ηA

(t)
i (s, ai)

/
(1− γ)

)
(10)

Asymptotic convergence to Nash Equilibrium. As stated in Section 3, there exist stationary
points that are not NEs. It is not immediately obvious why running gradient methods can avoid
converging to these points, thus before studying convergence rate to NE, it is necessary to first
examine whether asymptotic convergence holds. Moreover, the asymptotic convergence result is used
to establish the finite time convergence rate results later (see the subsection 4.1).

Theorem 4. (Proof given in Appendix 12) Suppose Assumption 1 holds and that the stationary policies
are isolated, gradient play (8) with η ≤ (1−γ)3

6n guarantees that limt→+∞ θ(t) = θ(∞), where θ(∞)

is a NE. The same argument also holds for natural gradient play (10) with η ≤ (1−γ)2

2n(φmax−φmin) .

The proof of Theorem 4 resembles the technique used in [2] for the single agent case, where the
additional assumption on the isolated stationary policies is introduced due to some specific technical
difficulties encountered in multi-agent learning (see more discussion in Appendix 12, which is also
introduced in [11] for establishing the asymptotic convergence of NPG. We believe it is a conservative
condition for ensuring the asymptotic convergence. It remains an interesting open question to establish
convergence without this assumption.

4.1 Finite time convergence rate

This section considers finite time convergence rate for gradient play and natural gradient play.
Corresponding results for the single-agent setting can be found in [24] (for gradient play) and
[2, 16, 25] (for natural gradient play). Some aspects of these analyses can be carried over to the multi-
agent MPG setting; however, as will be discussed later, there are several fundamental differences that
make the multi-agent case more challenging.

Our convergence results rely on the observation from Section 3 and the asymptotic convergence to
NE. Combining Theorem 4 and Lemma 2, we know that c(θ(t)) asymptotically converges to 1 for
(natural) gradient play, and since c(θ(t)) > 0 for any softmax policy (because πθi(ai|s) > 0),

c := inft c(θ
(t)) > 0. (11)

We are now ready to give formal convergence rates for gradient and natural gradient play respectively.

Theorem 5. (Gradient play and natural gradient play; proof given in 13) Suppose Assumption 1
holds and that the stationary policies are isolated, gradient play (8) with η = (1−γ)3

6n will guarantee
that for all T , ∑T−1

t=0 NE-gap(θ(t))2

T
. O

(
nmaxi |Ai|(φmax − φmin)M2

(1− γ)4c2T

)
, (12)

Natural gradient play (10) with η = (1−γ)2

2n(φmax−φmin) will guarantee that for all T ,∑T−1
t=0 NE-gap(θ(t))2

T
. O

(
n(φmax − φmin)2M

(1− γ)3cT

)
. (13)

Here O(·) hides constant factors, M and c are defined as in (5) and (11), respectively.

Remark 2 (Proof sketch and novelty). The proof for gradient play is relatively straightforward
from the non-uniform Łojasiewicz inequality and standard non-convex optimization results, which
we refer readers to the appendix for more details. However, the proof for natural gradient play is
more involved and existing analysis on NPG cannot be generalized to this setting. For single-agent
MDP, the analysis on NPG leverages the unique existence of optimal value function V ∗ so that
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similar analysis for mirror-descent can also carry over to NPG analysis, and thus obtain dimension
free convergence. However, in the multi-agent setting, there’s no well-defined V ∗ as NEs can be
non-unique with different potential values, thus, we need to further deploy additional structures of
the total potential function Φ. Our analysis rely on the sufficient ascent lemma (Lemma 20) that
lower bounds the ascent amount Φ(θ(t+1))− Φ(θ(t)) for each natural gradient step (we would like
to further note that this sufficient ascent lemma cannot be trivially obtained by the smoothness of
Φ). Then, we further lower bound the ascent amount in terms of NE-gap (Lemma 21). Lastly, the
theorem follows by conducting standard telescoping techniques.

Discussion on 1
c : The complexity results in Theorem 5 both depend on 1

c . However, this term can
become arbitrarily large. In fact, [20] show that c can be exponentially small in terms of the number
of states |S| for a general finite MDP, even under uniform initialization, hence convergence can be
very slow. This conclusion is also confirmed by numerical evidence. As pointed out by [24], even for
single agent settings, policy gradient can get stuck at regions with small gradient yet far from being
global optimal. Similar or even worse phenomena can be observed for multi-agent MPG, as shown
in Figure 1(a)-(c): even for a single state game (|S| = 1) with uniform initialization, unregularized
gradient based algorithms can still enter regions with a relatively large NE-gap while the gradient
norm and c(θ) are close to zero.

More comparison with learning for single-agent MDP: For gradient play, we have established
an iteration complexity of O

(
nmaxi |Ai|(φmax−φmin)M2

(1−γ)4c2ε2

)
to find an ε-NE, whereas [24] show a

complexity of O
(

(φmax−φmin)M2

(1−γ)4c2ε

)
to reach an ε-global optimum for policy gradient in a single

agent MDP. The dependence on 1
ε is better in the single agent case because of the existence of a

global optimal policy π∗ and optimal total reward V ∗, which justify the definition of optimality gap
δt = V (θ(t))− V ∗. This, combined with the non-uniform Łojasiewicz condition which bounds δt
by the gradient norm, allows one to use techniques from convex smooth analysis to show that δt is
on the scale of 1

t . By contrast, for multi-agent learning, there can be multiple NEs with different
values, hence δt is ill-defined. Further, note that the NE-gap is different from the optimality gap,
hence gradient ascent no longer guarantees monotonic decreasing of NE-gap (Figure 1(a)), and we
can only exploit non-convex optimization techniques that yield O( 1

ε2 ) complexities.

For the same reason, the rate of convergence we obtain for natural gradient play is
O
(
n(φmax−φmin)2M

(1−γ)3cε2

)
, which is worse than the dimension free convergence rate of O

(
1

(1−γ)2ε

)
given in [2] for single-agent MDPs. (A better exponential convergence rate for natural PG has also
been proved in [16, 25] with the exponential factor being problem dependent.) Nevertheless, the
dependence on 1

c , 1
1−γ and M is better than gradient play, suggesting that the preconditioning of

natural gradient play at least partially captures the geometry of the parameter space. We also note that
the quadratic dependence on (φmax − φmin) might be a proof artifact. It remains an open question
whether this can be reduced to a linear dependence.

5 Gradient play with log-barrier regularization

The previous section has shown that, for unregularized objectives, the convergence rate for gradient
based algorithms depends on a factor 1

c that can be arbitrarily large for bad initializations. This
motivates us to investigate regularization, in hopes of removing the dependence on 1

c . For this
purpose, we consider log-barrier regularization:

J̃i(θ) = Ji(θ) + λ
∑
s,ai

log πθi(ai|s).

Define:

Φ̃(θ) = Φ(θ) + λ

n∑
i=1

∑
s,ai

log πθi(ai|s). (14)

It is not hard to verify that the gradient with respect to Ji is:

∂J̃i(θ)

∂θs,ai
=
∂Φ̃(θ)

∂θs,ai
=

1

1− γ
dθ(s)πθi(ai|s)Aθi (s, ai) + λ− λ|Ai|πθi(ai|s).

7



Discussion on the choice of the regularizer: Before analyzing the resulting algorithm we first
discuss the motivation for this regularizer. First, note that for each agent, the additional regularizer
only depends on an agent’s own local policy, which is desirable for multiagent RL. As an alternative,
one might impose regularization by choosing

Φ̃(θ) = Φ(θ) + λEs∼dθ(·)
∑n
i=1

∑
ai

log πθi(ai|s);

i.e., so that the regularization weight imposed on a state s depends on the state visitation probability
dθ(s). However, in this case the gradient of the i-th agent ∇θiΦ̃(θ) will not only depend on its own
policy parameter θi, but also on other parameters of the other agents’ policies θ−i. Thus, running
gradient based algorithms with such a regularization scheme can no longer be executed in a fully
decentralized manner using local policy information. Therefore, we prefer regularization (14) which
does not depend on dθ(s). Secondly, we adopt the log-barrier instead of entropy regularization
due to technical rather than practical considerations. Although entropy regularization achieves fast
exponential convergence in single agent learning [7, 24], for multi-agent learning, we haven’t been
able to obtain results as strong as the log-barrier regularization. Intuitively, the log-barrier regularized
gradient field repels the trajectory from regions with small πi(ai|s) values (where the geometry
becomes close to singular) more strongly, which enables us to obtain our current analysis. However,
we emphasize that our result does not imply that log-barrier is better than entropy regularization in
practice. It remains future work to determine whether entropy regularization, or other methods such
as trust region based methods, can achieve the same, or even better convergence rates.

5.1 Gradient play

We first consider gradient play algorithm, i.e.,

θ
(t+1)
i = θ

(t)
i + η∇θi J̃i(θ(t)). (15)

Fortunately, similar analysis from [2] for single-agent MDP can be generalized to MPG with slight
modifications. Here we only state the result and defer the proof to Appendix 14.1.

Theorem 6. Under Assumption 1, for η = (1−γ)3

6n+2λmaxi |Ai|(1−γ)3 , and λ = ε
M maxi |Ai| , let θ(0)

be the uniform random policy, i.e., θ(0) = 0, then running gradient play (15) for T steps, where
T & O

(
nmaxi |Ai|2(φmax−φmin)M2

(1−γ)4ε2

)
will guarantee that min0≤t≤T−1 NE-gap(θ(t)) ≤ ε.

Note that compared to the unregularized case in Theorem 5, it only requires Assumption 1, while the
convergence rate is accelerated by eliminating the dependence on 1

c . However, as a (worthy) tradeoff,
the dependence on the action space size maxi |Ai| now becomes quadratic. The key reason for these
differences is that log-barrier regularization assures that any policy with sufficiently small gradient
norm cannot be close to the boundary of the probability simplex where the non-uniform Łojasiewicz
constant is large.

5.2 Natural gradient play

In the unregularized setting, we have seen that natural gradient play enjoys a better convergence rate
than gradient play, which motivates us to consider whether a similar advantage still holds for the
regularized case. In this section we consider natural gradient play

θ
(t+1)
i = θ

(t)
i + ηFi(θ

(t))†∇θi J̃i(θ
(t)
i ), (16)

which is equivalent to (see the proof in Appendix 10)

π
(t+1)
i (ai|s) ∝ π(t)

i (ai|s) exp

(
η

1− γ
A

(t)
i (s, ai) +

ηλ

d(t)(s)π
(t)
i (ai|s)

− ηλ|Ai|
d(t)(s)

)
. (17)

Theorem 7. (Proof given in Appendix 14.2) Under Assumption 1, for

η = min

{
1

15
(

1
(1−γ)2

+λ|Ai|M
) , 1

4
(

4λmaxi |Ai|M2+ 4M
(1−γ)2

+ 3nM
(1−γ)3

)
}

, the natural gradient play (17)
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a2 =1 a2 =2

a1 =1 -1 0.14
a1 =2 0.16 0.15
a1 =3 0.2 -1

Reward table

(a) (b)

(c) (d)

Figure 1: We consider a two-player identical reward matrix game as shown in the reward table. We run gradient
play and natural gradient play (with and without log-barrier regularization) with initial policies being the
uniform distribution (i.e., π1 = [ 1

3
, 1
3
, 1
3
], π2 = [ 1

2
, 1
2
]). The subfigures (a)-(d) show how the NE-gap(θ(t)),

‖∇θΦ(θ(t))‖2, c(θ(t)) (defined in (7)) and Φ(θ(t)) change with each iteration respectively. In Figure (c), we
zoom in on the log10 c(θ) factor for natural gradient play. In Figure (d), we also zoom out the trajectory for
running gradient play to iteration 2× 104. Here the step sizes were chosen to be η = 5 while the regularization
weight λ was chosen to be λ = 0.003. In consideration of numerical stability issues, we truncate the update step
of natural gradient play with log-barrier regularization by a maximum absolute value of 1 for each entry. For
more numerical results and corresponding analysis see Appendix 8.

will guarantee that
∑T−1
t=0 NE-gap(θ(t))

T ≤ 9(Φ̃(θ(T ))−Φ̃(θ(0)))
ηλT + λmaxi |Ai|M, Further, by setting

λ = ε
2 maxi |Ai|M , θ(0) = 0, for T & O

(
nmaxi |Ai|(φmax−φmin)M2

(1−γ)4ε2

)
, we have

∑T−1
t=0 NE-gap(θ(t))

T ≤ ε.

Remark 3. (Proof sketch and novelty) As also stated for unregularized natural gradient play, there’s
no direct analysis tools we could borrow from literature for the analysis of natural gradient play. Our
analysis depends on two key lemmas. The first is a sufficient ascent lemma on Φ̃(θ(t+1))− Φ̃(θ(t))
for each natural gradient step (Lemma 26). Another key lemma (Lemma 24) states that the algorithm
implicitly ensures that the policies never go near the boundary of the probability simplex, i.e., it can
be uniformly lower-bounded by π(t)

i (ai|s)≥ λ

4
(
λ|Ai|M+ 1

(1−γ)2

) , ∀t. Combining the two lemmas, it

can be concluded that the ascent value Φ̃(θ(t+1)) − Φ̃(θ(t)) can be bounded by NE-gap(θ(t)) plus
a λmaxi |Ai|M bias term (Lemma 27 and 28), thus the proof is finished by standard telescoping
technique and choosing an appropriate λ.

Compared with gradient play, natural gradient play manages to reduce the time complexity by a
maxi |Ai| factor. Further, gradient play only guarantees the minimal NE-gap smaller than ε, while
natural gradient play guarantees the average NE-gap along the trajectory smaller than ε. To the best
of our knowledge, this is the best time complexity bound for the softmax parameterization in a MPG.

6 An Illustrative example

This section aims to gain a better understanding of the four gradient play algorithms, (8), (10),
(15), and (17). To better justify our theoretical results and provide additional insights, we choose a
carefully designed simple two-player game so that our theoretical results can be easily revealed from
the empirical observations. However the four algorithms also works for settings with more agents. 1

Due to space limits, we defer the simulation with more agents in Appendix 8.

The reward table as well as the performance of the four algorithms are shown in Figure 1. Comparing
the log-barrier regularized algorithms to the unregularized counterparts, one can see that the regular-
ized dynamics converge faster but with a bias induced by the regularizer. This finding corroborates

1Code can be found in https://github.com/DianYu420376/NeurIPS2022-softmax-MPG
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the analyses given in Theorem 6 and 7. By contrast, the unregularized dynamics are able to find a
policy with zero NE-gap asymptotically, but tend to get stuck in regions where c(θ(t)) is very close to
zero, as illustrated in Fig 1(a)(b). Specifically unregularized natural gradient play gets stuck around
iteration 100-400 in a region where the gradient norm and c(θ(t)) are both close to zero while the
NE-gap is not. This corroborates the finding in Lemma 1. Similar behavior can be observed for
gradient play if we keep running the algorithm. In comparing the natural gradient play to gradient
play algorithms, natural gradient play generally converges faster, which matches with our complexity
analysis. However, natural gradient play with log-barrier regularization can suffer from numerical
instability due to the 1/π

(t)
i (ai|s) term in the exponential factor. In this case, the stepsize needs to be

chosen carefully. To bypass the numerical instability, we truncate the update step of natural gradient
play with log-barrier regularization by a maximum absolute value of 1 for each entry.

7 Discussions and conclusions

We have established finite time iteration complexity bounds for gradient and natural gradient play
under the softmax parameterization, considering both unregularized and log-barrier regularized
dynamics, in the Markov potential game setting. To our best knowledge, these are the first finite
time global convergence results for softmax gradient play for MPGs. However, our work suffers
from the following limitations: firstly, the paper mainly focuses on MPG settings, which limits
its application to general-sum Markov games; secondly, convergence results for the unregularized
case relies on an extra assumption that the stationary points are isolated; thirdly, for the regularized
case, we consider log-barrier regularization, which is admittedly a stronger regularization compared
with entropy regularization which is more frequently used in practice. Some limitations are due to
technical challenges, some might be caused by the fundamental difficulties of multi-agent learning. It
remains interesting open questions to sharpen the analysis, derive similar or better bounds for other
regularizations, and to develop more fundamental understandings of multi-agent learning.
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8 Numerical Simulations

This section provides more material for the numerical example shown in Section 6. Figure ?? displays
numerical performance for different initialization policies. All four algorithms perform well given a
good initialization, i.e., initial policy close to a stable NE. However for bad initialization that is close
to a non-NE stationary point, log-barrier regularized algorithms can escape bad regions and converge
to NE much faster than unregularized dynamics.

To examine why multi-agent learning suffers more from getting stuck at undesirable stationary points,

we plot out the trajectory for Q(t)
i (ai), π

(t)
i (ai) for both agents in Figure ??. We will mainly focus

our attention on the two plots on the left. Note that for the first few steps, Q(t)
1 (a1 = 2) is much

larger than Q(t)
1 (a1 = 3), thus the natural gradient play scheme (10) will drive π(t)

1 (a1 = 2) close

to 1 and π(t)
1 (a1 = 3) close to 0 very quickly. However, at around iteration 70, Q(t)

1 (a1 = 3)

becomes slightly larger than Q(t)
1 (a1 = 2). Unfortunately, at this stage, most of the probability

is assigned to the suboptimal action a1 = 2 and the optimal action receives π(t)
1 (a1 = 3) close

to zero. Thus it will take more steps to bring π(t)
1 (a1 = 2) from 1 to 0 and π(t)

1 (a1 = 3) from
0 to 1, which reflects as the trajectory being stuck at the non-NE stationary policy with π1(a1 =
3) = 1 in numerical behavior. From this simulation, we may conclude that one important reason
for natural gradient play to get stuck at undesirable stationary points is due to the fact that the

value of averaged Q-functions Q(t)
i ’s for different actions might switch order during the learning

process. In contrast, for single agent bandit learning, the averaged Q-function as well as the Q-
function itself is the same as the reward value of a certain action r(a), and thus will not change
order, which explains why it can achieve dimension free convergence in single agent learning.
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Figure 2: A 3-agent Example Figure 3: An 8-agent Example

Additionally, we would like to re-
mark that the algorithms considered
in this paper also generalizes to set-
tings with more agents, and similar
phenomenon will still be observed.
See Figure 2 and 3 for numerical
simulations on a 3-agent example and an 8-agent example.

Running trajectories for all the four algorithms for one set of initializations takes approximately 2.04
seconds of CPU running time (Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz).

9 Derivation of Gradient and Performance Difference Lemma

Proof. (of Equation 4) According to policy gradient theorem [34]:

∂Ji(θ)

∂θs,ai
=

1

1− γ
∑
s′

∑
a′

dθ(s
′)πθ(a

′|s′)∂ log πθ(a
′|s′)

∂θs,ai
Qθi (s, a)

Since for softmax parameterization:

∂ log πθ(a
′|s′)

∂θs,ai
=
∂ log πθi(a

′
i|s′)

∂θs,ai
= 1{a′i = ai, s

′ = s} − 1{s′ = s}πθi(ai|s)

Thus we have that:

∂Ji(θ)

∂θs,ai
=

1

1− γ
∑
s′

∑
a′

dθ(s
′)πθ(a

′|s′) (1{a′i = ai, s
′ = s} − 1{s′ = s}πθi(ai|s))Qθi (s, a′)

=
1

1−γ
dθ(s)πθi(ai|s)

∑
a′−i

πθ−i(a
′
−i|s)Qθi (s, ai, a′−i)−

1

1−γ
dθ(s)πθi(ai|s)

∑
a′

πθ(a
′|s′)Qθi (s, a′)

=
1

1− γ
dθ(s)πθi(ai|s)Qθi (s, ai, a

′
−i)−

1

1− γ
dθ(s)πθi(ai|s)V θi (s)

=
1

1− γ
dθ(s)πθi(ai|s)Aθi (s, ai)

We also introduce a useful lemma used throughout the proof which is derived from the performance
difference lemma in MDP [15].

Lemma 8. Let θ′ = (θ′i, θ−i),

Ji(θ
′
i, θ−i)− Ji(θi, θ−i) =

1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)A
θ
i (s, ai)

Proof. From performance difference lemma [15]

Ji(θ
′
i, θ−i)− Ji(θi, θ−i) =

1

1− γ
∑
s,a

dθ′(s)πθ′(a|s)Aθi (s, a)

=
1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)
∑
a−i

πθ−i(a−i|s)Aθi (s, ai, a−i)

=
1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)A
θ
i (s, ai).
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10 Derivation of Natural Gradient Play

Lemma 9.

Ea∼πθ(·|s)
[
∇θi,s log πθi(ai|s)∇θi,s log πθi(ai|s)>

]
= diag{πθi,s} − πθi,sπ>θi,s := Fi,s(θi,s),

where diag{·} denotes the diagonal matrix generated by the corresponding vector, and πθi,s ∈ R|Ai|
is the vector that denotes πθi(·|s). Further, Fi,s(θi,s) is a semi-positive definite matrix, where the
eigenvalue 0 has the eigenspace of dimension 1 that is the span of the all one-vector 1.

Proof. Calculating the gradient using chain rule we have

∂ log πθi(ai|s)
∂θa′i,s

= 1{a′i = ai} − πθi(a′i|s).

Let 1ai ∈ R|Ai| denote the vector where the entry corresponds to ai is 1 and other entries are zero.
Then

∇θi,s log πθi(a|s) = 1ai − πθi,s
=⇒ ∇θi,s log πθi(ai|s)∇θi,s log πθi(ai|s)> = diag{1ai} − πθi,s1>ai − 1aiπ

>
θi,s + πθi,sπ

>
θi,s

Taking the expectation Ea∼πθi (·|s) we have

Ea∼πθi (·|s)
[
∇θi,slog πθi(a|s)∇θi,slog πθi(a|s)>

]
= diag{πθi,s}−πθi,sπ>θi,s−πθi,sπ

>
θi,s+πθi,sπ

>
θi,s

= diag{πθi,s} − πθi,sπ>θi,s
Further, for softmax parameterization, πθi(ai|s) > 0, ∀ai. Thus Fi,s(θi,s) is a (non-strict) diagonally
dominant matrix with diagonal entries all being positive and off-diagonal entries all being negative,
in which case the all-one vector 1 is the only eigenvector for eigenvalue 0.

Corollary 10.
Fi(θ) = blkdiag{dθ(s)Fi,s(θi,s)}s∈S ,

where blkdiag{·} denotes the block-diagonal matrix generated by corresponding sub-matrices.

Proof. This is a direct corollary of Lemma 9 , since

∂ log πθi(ai|s)
∂θa′i,s′

= 0, for s′ 6= s,

we have that

Fi(θ) = Es∼dθ(·)Eai∼πθi (·|s)
[
∇θi log πθi(ai|s)∇θi log πθ(ai|s)>

]
= blkdiag{dθ(s)Fi,s(θi,s)}

Lemma 11. For vector g : S ×Ai → R, with
∑
ai
g(s, ai) = 0, ∀s ∈ S, we have that[

Fi(θ)
†g
]
(s,ai)

=
1

dθ(s)πθi(ai|s)
g(s, ai) + c(s),

where c(s) is a function that depend on state s but not on ai.

Proof. Since Fi(θ) is a block diagonal matrix,[
Fi(θ)

†g
]
(s,·) =

1

dθ(s)
Fi,s(θi,s)

†g(s, ·).

From Lemma 9, since Fi,s only has a one-dimensional eigenspace for eigenvalue 0, and the eigenspace
is the span of the all-one vector 1, we have that

Fi,s(θi,s)
†Fi,s(θi,s) = I − 1

|Ai|
11>.
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Let f(s, ai) := 1
dθ(s)πθi (ai|s)

g(s, ai)

dθ(s) [Fi,s(θi,s)f(s, ·)]ai = dθ(s)

πθi(ai|s)f(s, ai)− πθi(ai|s)
∑
a′i

πθi(a
′
i|s)f(s, a′i)


= g(s, ai)− πθi(ai|s)

∑
a′i

g(s, a′i) = g(s, ai),

i.e.,

dθ(s)Fi,s(θi,s)f(s, ·) = g(s, ·)

=⇒ 1

dθ(s)
Fi,s(θi,s)

†g(s, ·) = Fi,s(θi,s)
†Fi,s(θi,s)f(s, ·)

=

(
I − 1

|Ai|
11>

)
f(s, ·)

= f(s, ·)− c(s)1,

i.e., [
Fi(θ)

†g
]
(s,ai)

= f(s, ai)− c(s),

which completes the proof.

Lemma 12. Scheme (9) and (10) are equivalent. Similarly, (16) and (17) are equivalent.

Proof. It is not hard to check that ∇θiJi(θ),∇θi J̃i(θ) satisfies∑
ai

[∇θiJi(θ)](s,ai) = 0,
∑
ai

[
∇θi J̃i(θ)

]
(s,ai)

= 0,

thus we can apply Lemma 11 and conclude

Fi(θ
(t))†∇θiJi(θ

(t)
i ) =

A
(t)
i (s, ai)

1− γ
+ c(s)

Fi(θ
(t))†∇θi J̃i(θ

(t)
i ) =

A
(t)
i (s, ai)

1− γ
+

λ

d(t)(s)π
(t)
i (ai|s)

− λ|Ai|
d(t)(s)

+ c(s),

which completes the proof.

11 Proof of Lemma 1 and Lemma 2

Lemma 13.

NE-gapi(θ) ≤
1

1− γ
max
s,ai

Aθi (s, ai), NE-gap(θ) ≤ 1

1− γ
max
i

max
s,ai

Aθi (s, ai).

Proof. From performance difference lemma

Ji(θ
′
i, θ−i)− Ji(θi, θ−i) =

1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)A
θ
i (s, ai) (Lemma 8)

≤ 1

1− γ
∑
s

dθ′(s) max
ai

Aθi (s, ai)

≤ 1

1− γ
∑
s

dθ′(s) max
ai

Aθi (s, ai)
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≤ 1

1− γ
max
s,ai

Aθi (s, ai).

Thus we have that

NE-gapi(θ) ≤
1

1− γ
max
s,ai

Aθi (s, ai), NE-gap(θ) ≤ 1

1− γ
max
i

max
s,ai

Aθi (s, ai).

Proof of Lemma 1. From Lemma 13 we have that

NE-gapi(θ) ≤
1

1− γ
max
s,ai

Aθi (s, ai).

Since

max
ai

Aθi (s, ai) ≤
1∑

a∗i∈argmaxai Q
θ
i (s,ai)

πθi(a
∗
i |s)

∑
ai

|πθi(ai|s)Aθi (s, ai)|

≤
√
|Ai|∑

a∗i∈argmaxai Q
θ
i (s,ai)

πθi(a
∗
i |s)

√∑
ai

(
πθi(ai|s)Aθi (s, ai)

)2

=

√
|Ai|∑

a∗i∈argmaxai Q
θ
i (s,ai)

πθi(a
∗
i |s)

1− γ
dθ(s)

√√√√∑
ai

(
1

1− γ
dθ(s)πθi(ai|s)Aθi (s, ai)

)2

≤
(1− γ)M(θ)

√
|Ai|

c(θ)
‖∇θiJi(θ)‖2.

Thus

NE-gapi(θ) ≤
1

1− γ
max
s,ai

Aθi (s, ai)

≤
√
|Ai|M(θ)

c(θ)
‖∇θiJi(θ)‖2

Remark 4. A similar bound to Lemma 1 can be obtained by leveraging equation (259) in [24]

NE-gapi(θ) ≤
√
|S||Ai|D∞
c(θ)

‖∇θiJi(θ)‖2, where D∞ = sup
θ,θ′

max
s

dθ′(s)

dθ(s)
. (18)

Notice that there’s an additional
√
S dependency on the right hand side compared with Lemma 1,

while replacing the term M(θ) by D∞. We remark that there’s no fundamental difference between
these two bounds. There’s no significant difference in the proof techniques and it is hard to tell which
one is better. One can also easily re-derive the set of analysis in the paper using (18), with bounds
that depends on D∞ instead of M and slightly differs in the dependency on S from our current result.

Proof of Lemma 2. Firstly, it is straightforward to see that if c(θ∗) 6= 0, θ∗ is a NE by applying
Lemma 1. So we only need to focus on proving that if θ∗ is a NE, then c(θ∗) = 1.

From performance difference lemma, let θ′ := (θ′i, θ
∗
−i)

Ji(θ
′
i, θ
∗
−i)− Ji(θ∗i , θ∗−i) =

1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)A
θ∗
i (s, ai)

Select a∗i (s) ∈ argmaxai A
θ∗
i (s, ai) and set:

πθ′i(ai|s) = 1{ai = a∗i (s)},

16



then

Ji(θ
′
i, θ
∗
−i)− Ji(θ∗i , θ∗−i) =

1

1− γ
∑
s,ai

dθ′(s)πθ′i(ai|s)A
θ∗
i (s, ai)

=
1

1− γ
∑
s

dθ(s) max
ai

Aθ
∗
i (s, ai) ≥ 0.

Since θ∗ is a NE,
=⇒ maxAθ

∗
i (s, ai) = 0, ∀ s, ∀ i.

Let ∆ := mins min
ai /∈argmaxai A

θ∗
i (s,ai)

|Aθ∗i (s, ai)|. Since
∑
ai
πθ∗i (ai|s)Aθ

∗
i (s, ai) = 0

=⇒ 0 =
∑

ai∈argmaxai A
θ∗
i (s,ai)

πθ∗i (ai|s) max
ai

Aθ
∗
i (s, ai) +

∑
ai /∈argmaxai A

θ∗
i (s,ai)

πθ∗i (ai|s)Aθ
∗
i (s, ai)

≤ −∆
∑

ai /∈argmaxai A
θ∗
i (s,ai)

πθ∗i (ai|s)

=⇒
∑

ai /∈argmaxai A
θ∗
i (s,ai)

πθ∗i (ai|s) = 0

=⇒
∑

ai∈argmaxai A
θ∗
i (s,ai)

πθ∗i (ai|s) = 1

=⇒
∑

ai∈argmaxai Q
θ∗
i (s,ai)

πθ∗i (ai|s) = 1

=⇒ c(θ∗) = 1

12 Proof of Theorem 4

12.0.1 Asymptotic convergence for gradient play

Lemma 14. For η ≤ (1−γ)3

6n , running scheme (8) will guarantee that limt→+∞∇Φ(θ(t)) = 0.

Proof. Since Φ(θ) is β-smooth w.r.t. θ, where β = 6n
(1−γ)3

Φ(θ(t+1))− Φ(θ(t)) ≥
〈
∇Φ(θ(t)), θ(t+1) − θ(t)

〉
− β

2
‖θ(t+1) − θ(t)‖22

≥ η

2
‖∇Φ(θ(t)‖22 ≥ 0

which proves the monotonicity of Φ(θ(t)). Since φ is a bounded function, this gives:

lim
t→+∞

‖∇Φ(θ(t))‖2 = 0.

From Lemma 14 and that the stationary points are isolated, we know that the limit for θ(t) exists, i.e.,
it is valid to define

θ(∞) := lim
t→+∞

θ(t).

We abbreviate the related functions with respect to θ(∞) as follows:

Q
(∞)
i (s, a) := Qθ

(∞)

i (s, a), V
(∞)
i (s) := V θ

(∞)

i (s), A
(∞)
i (s, a) := Q

(∞)
i (s, a)− V (∞)

i (s)

Q
(∞)
i (s, ai) :=

∑
a−i

π
(∞)
−i (a−i|s)Q(∞)(s, ai, a−i), A

(∞)
i (s, ai) :=

∑
a−i

π
(∞)
−i (a−i|s)A(∞)(s, ai, a−i)

17



Since θ(∞) is the limit of θ(t), we have that:

lim
t→+∞

Q
(t)
i (s, ai) = Q

(∞)
i (s, ai), lim

t→+∞
A

(t)
i (s, ai) = A

(∞)
i (s, ai) (19)

Define:

Ii,s0 := {ai|Q(∞)
i (s, ai) = V (∞)(s)} = {ai|A(∞)

i (s, ai) = 0}

Ii,s+ := {ai|Q(∞)
i (s, ai) > V (∞)(s)} = {ai|A(∞)

i (s, ai) > 0}

Ii,s− := {ai|Q(∞)
i (s, ai) < V (∞)(s)} == {ai|A(∞)

i (s, ai) < 0}

Let
∆ := min

i
min

{s,ai|A(∞)
i (s,ai) 6=0}

|A(∞)
i (s, ai)| (20)

From Lemma 13, it is sufficient to show that Ii,s+ = ∅, ∀ i, s.
From the Lemma 14 and the above definitions we have the following corollaries:

Corollary 15. There exists T1, such that ∀t > T1, ∀s ∈ S, ∀i ∈ {1, 2, . . . , n},

A
(t)
i (s, ai) < −

∆

4
, ∀ai ∈ Ii,s−

A
(t)
i (s, ai) >

∆

4
, ∀ai ∈ Ii,s+

|A(t)
i (s, ai)| <

∆

4
, ∀ai ∈ Ii,s0

Proof. This is a direct corollary from (19) and (20).

Corollary 16.

lim
t→+∞

∑
ai∈Ii,s0

π
(t)
i (ai|s) = 1

lim
t→+∞

∑
ai∈Ii,s+ ∪I

i,s
−

π
(t)
i (ai|s) = 0

Proof. This is a direct corollary from Lemma 14,

lim
t→+∞

∇Φ(θ(t)) = 0

=⇒ lim
t→+∞

∂Φ(θ(t))

∂θs,ai
= lim
t→+∞

1

1− γ
d(t)(s)π

(t)
i (ai|s)A(t)

i (s, ai) = 0

=⇒ lim
t→+∞

π
(t)
i (ai|s) lim

t→+∞
A

(t)
i (s, ai) = 0

=⇒ lim
t→+∞

π
(t)
i (ai|s) = 0, ∀ai /∈ Ii,s0

=⇒ lim
t→+∞

∑
ai∈Ii,s+ ∪I

i,s
−

π
(t)
i (ai|s) = 0

=⇒ lim
t→+∞

∑
ai∈Ii,s0

π
(t)
i (ai|s) = 1− lim

t→+∞

∑
ai∈Ii,s+ ∪I

i,s
−

π
(t)
i (ai|s) = 1

Lemma 17. ∀ai ∈ Ii,s+ , θ
(t)
s,ai is bounded from below. ∀ai ∈ Ii,s− , limt→+∞ θ

(t)
s,ai = −∞.
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Proof. The first statement, ∀ai ∈ Ii,s+ , θ
(t)
s,ai is bounded from below, is trivial from Corollary 15. We

only need to prove the second statement. The key observation is that:∑
ai

∂Φ(θ(t))

∂θs,ai
=

1

1− γ
d(t)(s)

∑
ai

π
(t)
i (ai|s)A(t)

i (s, ai) = 0

Thus ∑
ai

θ(t)
s,ai =

∑
ai

θ(0)
s,ai .

From Corollary 16, we have that

lim
t→+∞

∑
ai∈Ii,s+ ∪I

i,s
−

π
(t)
i (ai|s) = 0

=⇒ ∃ ai ∈ Ii,s0 , s.t. lim sup
t→+∞

θ(t)
s,ai = +∞

And since all θ(t)
s,ai sum up to a constant and that ∀ai ∈ Ii,s+ , θ

(t)
s,ai is bounded from below, we have

that:
∃ ai ∈ Ii,s0 ∪ I

i,s
− , s.t. lim inf

t→+∞
θ

(t)
s,ai

= −∞. (21)

From Corollary 15, for ai ∈ Ii,s− , θ(t)
s,ai is monotonically decreasing for t > T1, thus

lim
t→+∞

θ(t)
s,ai := θ(∞)

s,ai ,

where θ(∞)
s,ai is either a constant or −∞. We’ll prove by contradiction. Suppose θ(∞)

s,ai is a constant,
then for any δ > 0 there exists T ′1 ≥ T1 such that ∀ t ≥ T ′1, |θ

(t)
s,ai − θ

(∞)
s,ai | ≤ δ.

Let ai ∈ Ai be defined as in (21), define:

τ(t) :=

{
t+ 1, if θ(t)

s,ai
> θ

(∞)
s,ai − δ

mint′{T ′1 ≤ t′ ≤ t|θ
(τ)
s,ai
≤ θ(∞)

s,ai − δ, ∀t′ ≤ τ ≤ t}, otherwise

We will focus on the set where {t|τ(t) ≤ t}. Since lim inft→+∞ θ
(t)
s,ai

= −∞, there are infinitely
many elements in this set.

For all τ(t) ≤ τ ≤ t, we have that:∣∣∣∣∣∣
∂Φ(θ(τ))
∂θs,ai
∂Φ(θ(τ))
∂θs,ai

∣∣∣∣∣∣ =

∣∣∣∣∣∣π
(τ)
i (ai|s)A(τ)

i (s, ai)

π
(τ)
i (ai|s)A(τ)

i (s, ai)

∣∣∣∣∣∣ = exp (θ(τ)
s,ai − θ

(τ)
s,ai

)

∣∣∣∣∣∣A
(τ)
i (s, ai)

A
(τ)
i (s, ai)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣A
(τ)
i (s, ai)

A
(τ)
i (s, ai)

∣∣∣∣∣∣ ≥ ∆(1− γ)

4

Thus

∂Φ(θ(τ))

∂θs,ai
≤ ∆(1− γ)

4

∂Φ(θ(τ))

∂θs,ai
, τ(t) ≤ τ ≤ t

=⇒1

η
(θ(t+1)
s,ai − θ

(τ(t))
s,ai ) =

t∑
τ(t)

∂Φ(θ(τ))

∂θs,ai
≤ ∆(1− γ)

4

t∑
τ(t)

∂Φ(θ(τ))

∂θs,ai
=

∆(1− γ)

4η
(θ

(t+1)
s,ai

− θ(τ(t))
s,ai

)

(22)

Since:
θ

(τ(t))
s,ai

≥ θ(τ(t)−1)
s,ai

− η 1

(1− γ)2
≥ θ(∞)

s,ai − δ − η
1

(1− γ)2
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is bounded from below, and that θτ(t)
s,ai is also bounded from above by θ(T1)

s,ai , thus taking lim inft→+∞
on both sides of eq (22) will give

lim inf
t→+∞

θ(t+1)
s,ai − θ

(τ(t))
s,ai ≤

∆(1− γ)

4

(
lim inf
t→+∞

θ
(t+1)
s,ai

− θ(∞)
s,ai + δ + η

1

(1− γ)2

)
= −∞

=⇒ lim inf
t→+∞

θ(t)
s,ai = −∞

which contradicts the assumption that θ(∞)
s,ai is a constant, and thus we can conclude that

lim
t→+∞

θ(t)
s,ai = −∞, ∀ai ∈ Ii,s− .

Lemma 18. ∀a+
i ∈ I

i,s
+ , for any a ∈ Ii,s0 , if there exists t ≥ T1 such that π(t)

i (ai|s) ≤ π
(t)
i (a+

i |s),
then for all τ ≥ t, π(τ)

i (ai|s) ≤ π(τ)
i (a+

i |s)

Proof. We will prove by induction. Suppose for a certain τ ≥ t, it holds that π(τ)
i (ai|s) ≤ π(τ)

i (a+
i |s),

then:

∂Φ(θ(τ))

∂θs,a+i
=

1

1− γ
d(τ)(s)π

(τ)
i (a+

i |s)A
(τ)
i (s, a+

i )

≥ 1

1− γ
d(τ)(s)π

(τ)
i (ai|s)A(τ)

i (s, a+
i )

≥ 1

1− γ
d(τ)(s)π

(τ)
i (ai|s)A(τ)

i (s, ai)

=
∂Φ(θ(τ))

∂θs,ai

Since π(τ)
i (ai|s) ≤ π(τ)

i (a+
i |s) =⇒ θ

(τ)
s,ai ≤ θ

(τ)

s,a+i
, we have:

θ
(τ+1)

s,a+i
= θ

(τ)

s,a+i
+ η

∂Φ(θ(τ))

∂θs,a+i
≥ θ(τ)

s,ai + η
∂Φ(θ(τ))

∂θs,ai
= θ(τ+1)

s,ai

Thus π(τ+1)
i (ai|s) ≤ π(τ+1)

i (a+
i |s) also holds, which completes the proof.

Lemma 19. Ii,s+ = ∅.

Proof. We will prove by contradiction. If Ii,s+ 6= ∅, select an arbitrary a+
i ∈ I

i,s
+ and define

Bi,s0 (a+
i ) := {ai ∈ Ii,s0 | π

(t)
i (ai|s) ≤ π(t)

i (a+
i |s),∀t ≥ T1}.

From Lemma 17, we have that for any ai ∈ Ii,s− limt→+∞
π
(t)
i (ai|t)

π
(t)
i (a+i |t)

= 0, thus there exists T2 > T1

such that for any t ≥ T2,
π

(t)
i (ai|t)

π
(t)
i (a+

i |t)
≤ (1− γ)∆

16|Ai|
, ∀ai ∈ Ii,s− .

Additionally, since for any ai ∈ Ii,s0 , limt→+∞A
(t)
i (s, ai) = 0, there exists T3 > T1 such that for

any t ≥ T3,

A
(t)
i (s, ai) ≥

−∆

16|Ai|
, ∀ai ∈ Ii,s0 .

Thus, for t ≥ max{T2, T3}, from the fact that
∑
ai
π

(t)
i (ai|s)A(t)

i (s, ai) = 0, we have:

0 =
∑

ai∈Ii,s0

π
(t)
i (ai|s)A(t)

i (s, ai) +
∑

ai∈Ii,s+

π
(t)
i (ai|s)A(t)

i (s, ai) +
∑

ai∈Ii,s−

π
(t)
i (ai|s)A(t)

i (s, ai)

20



≥
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai) +
∑

ai∈Bi,s0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai)

+ π
(t)
i (a+

i |s)A
(t)
i (s, a+

i ) +
∑

ai∈Ii,s−

π
(t)
i (ai|s)A(t)

i (s, ai)

≥
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai) +
∑

ai∈Bi,s0 (a+i )

π
(t)
i (ai|s)

−∆

16|Ai|

+ π
(t)
i (a+

i |s)A
(t)
i (s, a+

i ) +
∑

ai∈Ii,s−

(1− γ)∆

16|Ai|
π

(t)
i (a+

i |s)A
(t)
i (s, ai)

≥
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai) + |Ai|π(t)
i (ai|s)

−∆

16|Ai|

+ π
(t)
i (a+

i |s)
∆

4
+ |Ai|

(1− γ)∆

16|Ai|
π

(t)
i (a+

i |s)
−1

1− γ

≥
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai) + π
(t)
i (a+

i |s)
∆

8

=⇒
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai) < 0.

Thus for t ≥ max{T2, T3},∑
ai∈Ii,s0 \B

i,s
0 (a+i )

θ(t+1)
s,ai =

∑
ai∈Ii,s0 \B

i,s
0 (a+i )

θ(t)
s,ai + η

1

1− γ
d(t)(s)

∑
ai∈Ii,s0 \B

i,s
0 (a+i )

π
(t)
i (ai|s)A(t)

i (s, ai)

<
∑

ai∈Ii,s0 \B
i,s
0 (a+i )

θ(t)
s,ai ,

which leads to the fact that
∑
ai∈Ii,s0 \B

i,s
0 (a+i ) θ

(t)
s,ai is bounded from above. Further, from Lemma 17,

θ
(t)

s,a+i
is bounded from below, thus the value∑

ai∈Ii,s0 \B
i,s
0 (a+i ) π

(t)
i (ai|s)

π
(t)
i (a+

i |s)

is bounded from above. However from Corollary 16,

lim
t→+∞

∑
ai∈Ii,s0

π
(t)
i (ai|s)

π
(t)
i (a+

i |s)
= +∞.

Thus

lim
t→+∞

∑
ai∈Bi,s0 (a+i ) π

(t)
i (ai|s)

π
(t)
i (a+

i |s)
= +∞,

which contradicts the fact that

π
(t)
i (ai|s) ≤ π(t)

i (a+
i |s), ∀ai ∈ Bi,s0 (a+

i )

and finishes the proof by contradiction.

Lemma 19 directly implies asymptotic convergence for gradient play as state in Theorem 4.
Remark 5. (Discussion on the isolated stationary points assumption) The proof of Theorem 4
resembles the technique used in [2] for the single agent case, which relies heavily on the fact
that the sequence of Q-functions Q(t)(s, a) obtains a limit Q(∞)(s, a). The existence of such a
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limit in the single agent case follows from the monotonicity of the Q-functions. However, gener-
alizing this proof to the multi-agent case requires the assumption that the sequence of averaged

Q-functions Q(t)
i (s, ai) (which can be non-monotonic, see, e.g., Figure ?? in Appendix) has a limit

Q
(∞)
i (s, ai), which is not necessarily true in general. For instance, if the set of stationary policies
SP :=

{
π :πi(ai|s)Aπi (s, ai)=0,∀s∈S, ai∈A, i=1,2,. . .,n

}
is not isolated, one cannot rule out the

possibility that (natural) gradient play will not converge to a fixed point π(∞) (see e.g. [1] for coun-

terexamples). Consequently, Q(t)
i (s, ai) might not converge to a single value. For the above reasons,

we assume the stationary policies are isolated to ensure that π(t) converges to a fixed stationary policy

π(∞) and thus Q(t)
i (s, ai) obtains a limit. We believe that this assumption is a conservative condition

that is sufficient to imply asymptotic convergence. It remains an interesting open question to establish
convergence without this assumption.

12.0.2 Asymptotic convergence for natural gradient play

The asymptotic convergence for natural gradient play is easier to establish compared with gradient
play.

From Lemma 20 and the assumption that φ(s, a) is upper-bounded, we know

lim
t→+∞

∑
ai

π
(t)
i (ai|s) exp

ηA(t)
i (s, ai)

1− γ

 = 1, ∀s, i = 1, 2, . . . , n.

Since

∑
ai

π
(t)
i (ai|s) exp

ηA(t)
i (s, ai)

1− γ

 ≥∑
ai

π
(t)
i (ai|s)

1 +

ηA(t)
i (s, ai)

1− γ

+
1

4

ηA(t)
i (s, ai)

1− γ

2


(ex ≥ 1 + x+
x2

4
for |x| ≤ 1)

= 1 +
η2

4(1− γ)2

∑
ai

π
(t)
i (ai|s)A(t)

i (s, ai)
2

=⇒ lim
t→+∞

∑
ai

π
(t)
i (ai|s)A(t)

i (s, ai)
2 = 0

=⇒ lim
t→+∞

π
(t)
i (ai|s)A(t)

i (s, ai) = 0, ∀s, ai, i = 1, 2, . . . , n

=⇒ lim
t→+∞

‖∇θΦ(θ(t))‖2 = 0

Similar to the proof for gradient play, from the assumption that stationary points are iso-
lated, we can conclude that π(t) converges to some stationary policy π(∞), and we can define

Q
(∞)
i (s, ai), A

(∞)
i (s, ai) accordingly. Asymptotic convergence is equivalent to

Ii,s+ :=
{
ai : A

(∞)
i (s, ai) > 0

}
= ∅, ∀s, i = 1, 2, . . . , n

We prove by contradiction. Suppose there exists a+
i such that A(∞)

i (s, a+
i ) > 0. From

limt→+∞ π
(t)
i (ai|s)A(t)

i (s, ai) = 0, we have that limt→+∞ π
(t)
i (a+

i |s) = 0.

Select a0
i such that limt→+∞ π

(t)
i (a0

i |s) > 0. From limt→+∞ π
(t)
i (ai|s)A(t)

i (s, ai) = 0, we have

that limt→+∞A
(t)
i (s, a0

i ) = 0. Thus there exists ∆ > 0 and T such that for t > T ,

A
(t)
i (s, a+

i ) > ∆, A
(t)
i (s, a0

i ) <
∆

2
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Thus from natural gradient play scheme (10)

π
(t)
i (a+

i |s)
π

(t)
i (a0

i |s)
=
π

(T )
i (a+

i |s)
π

(T )
i (a0

i |s)
exp

(
η

1− γ

t−1∑
τ=T

A
(τ)
i (s, a+

i )−A(τ)
i (s, a0

i )

)
≥ π

(T )
i (a+

i |s)
π

(T )
i (a0

i |s)
,

which contradict the fact that limt→+∞
π
(t)
i (a+i |s)
π
(t)
i (a0i |s)

= 0, and thus completes the proof.

13 Proof of Theorem 5

13.1 Proof of Theorem 5 (Gradient play part)

Proof of Theorem 5, gradient play. From Lemma 29, Φ is β-smooth with β = 6n
(1−γ)3 , we have that:

Φ(θ(t+1))− Φ(θ(t)) ≥
〈
∇Φ(θ(t)), θ(t+1) − θ(t)

〉
− β

2
‖θ(t+1) − θ(t)‖2

= (η − βη2

2
)‖∇Φ(θ(t))‖2

≥ η

2
‖∇Φ(θ(t))‖2

Summing over t we get:

φmax − φmin

1− γ
≥ Φ(θ(T ))− Φ(θ(0)) ≥ η

2

T−1∑
t=0

‖∇Φ(θ(t))‖2

From Theorem 1 we have that

‖∇Φ(θ(t))‖ ≥ c

M
√

maxi |Ai|
NE-gap(θ(t))

Thus

1

T

T−1∑
t=0

NE-gap(θ(t))2 ≤ 2 maxi |Ai|M2(φmax − φmin)

(1− γ)c2ηT

which completes the proof.

13.2 Proof of Theorem 5 (Natural gradient play part)

Lemma 20. For η ≤ (1−γ)2

2n(φmax−φmin) , running scheme (10) will guarantee that

Φ(θ(t+1))− Φ(θ(t)) ≥ 1

η

n∑
i=1

∑
s

d(t+1)(s) logZi,st ,

where Zi,st is defined by

Zi,st :=
∑
ai

π
(t)
i (ai|s) exp

ηA(t)
i,φ(s, ai)

1− γ

.
Proof. From performance difference lemma we have that

Φ(θ(t+1))− Φ(θ(t)) =
1

1− γ
∑
s

d(t+1)(s)
∑
a

(
π(t+1)(a|s)− π(t)(a|s)

)
A

(t)
φ (s, a).

We define

Ã
(t)
i,φ(s, ai) :=

∑
a−i

i−1∏
j=1

π
(t+1)
j (aj |s)

n∏
j=i+1

π
(t)
j (aj |s)A(t)

φ (s, ai, a−i). (23)
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Then

Φ(θ(t+1))− Φ(θ(t)) =
1

1− γ
∑
s

d(t+1)(s)
∑
a

(
π(t+1)(a|s)− π(t)(a|s)

)
A

(t)
φ (s, a)

=
1

1−γ
∑
s

d(t+1)(s)
∑
a

n∑
i=1

 i∏
j=1

π
(t+1)
j (aj |s)

n∏
j=i+1

π
(t)
j (aj |s)−

i−1∏
j=1

π
(t+1)
j (aj |s)

n∏
j=i

π
(t)
j (aj |s))

A(t)
φ (s, a)

=
1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Ã

(t)
i,φ(s, ai)

=
1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
A

(t)
i,φ(s, ai)

+
1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)(

Ã
(t)
i,φ(s, ai)−A(t)

i,φ(s, ai)

)

=
1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

π
(t+1)
i (ai|s)A(t)

i,φ(s, ai)︸ ︷︷ ︸
Part A

+
1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)(

Ã
(t)
i,φ(s, ai)−A(t)

i,φ(s, ai)

)
︸ ︷︷ ︸

Part B

.

From scheme (10),

A
(t)
i,φ(s, ai) =

1− γ
η

(
log

(
π

(t+1)
i (ai|s)
π

(t)
i (ai|s)

)
+ log

(
Zi,st

))
Substitute this into Part A, we have

Part A =
1

η

∑
s

d(t+1)(s)

n∑
i=1

∑
ai

π
(t+1)
i (ai|s)A(t)

i,φ(s, ai)

=
1

η

∑
s

d(t+1)(s)

n∑
i=1

∑
ai

π
(t+1)
i (ai|s)

(
log

(
π

(t+1)
i (ai|s)
π

(t)
i (ai|s)

)
+ log

(
Zi,st

))

=
1

η

∑
s

n∑
i=1

d(t+1)(s)KL(π
(t+1)
i,s ||π(t)

i,s) +
1

η

∑
s

n∑
i=1

d(t+1)(s) log
(
Zi,st

)
.

Further, we have that∣∣∣∣Ã(t)
i,φ(s, ai)−A(t)

i,φ(s, ai)

∣∣∣∣
=

∣∣∣∣∣∣
∑
a−i

i−1∏
j=1

π
(t+1)
j (aj |s)−

i−1∏
j=1

π
(t)
j (aj |s)

 n∏
j=i+1

π
(t)
j (aj |s)A(t)

φ (s, ai, a−i)

∣∣∣∣∣∣
≤ φmax − φmin

1− γ

i−1∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

≤ φmax − φmin

1− γ

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1.
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Thus

|Part B| ≤ 1

1− γ
∑
s

d(t+1)(s)

n∑
i=1

∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣ ∣∣∣∣Ã(t)

i,φ(s, ai)−A(t)
i,φ(s, ai)

∣∣∣∣
≤ φmax − φmin

(1− γ)2

n∑
i=1

∑
s

d(t+1)(s)
∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣ n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

≤ φmax − φmin

(1− γ)2

∑
s

d(t+1)(s)

(
n∑
i=1

‖π(t+1)
i,s − π(t)

i,s‖1

)2

≤ n(φmax − φmin)

(1− γ)2

∑
s

d(t+1)(s)

n∑
i=1

‖π(t+1)
i,s − π(t)

i,s‖
2
1

≤ 2n(φmax − φmin)

(1− γ)2

∑
s

d(t+1)(s)

n∑
i=1

KL(π
(t+1)
i,s ||π(t)

i,s) (Pinsker’s inequality)

Thus, when η ≤ (1−γ)2

2n(φmax−φmin) , we have that

Φ(θ(t+1))− Φ(θ(t)) = Part A + Part B

≥
(

1

η
− 2n(φmax − φmin)

(1− γ)2

)∑
s

n∑
i=1

d(t+1)(s)KL(π
(t+1)
i,s ||π(t)

i,s) +
1

η

∑
s

n∑
i=1

d(t+1)(s) log
(
Zi,st

)
≥ 1

η

∑
s

n∑
i=1

d(t+1)(s) log
(
Zi,st

)
,

which completes the proof.

Lemma 21. For η ≤ (1− γ)2

n∑
i=1

∑
s

d(t+1)(s) logZi,st ≥
cη2

3M
NE-gap(θ(t))2

Proof. From Lemma 13 we have that NE-gap(θ) ≤ 1
1−γ maxi maxs,ai A

θ
i (s, ai). On the other hand,

Zi,st =
∑
ai

π
(t)
i (ai|s) exp

ηA(t)
i (s, ai)

1− γ


=

∑
ai /∈argmaxaiQ

(t)
i (s,ai)

π
(t)
i (ai|s) exp

ηA(t)
i (s, ai)

1− γ

+
∑

ai∈argmaxaiQ
(t)
i (s,ai)

π
(t)
i (ai|s) exp

ηmaxai A
(t)
i (s, ai)

1− γ



≥
∑

ai /∈argmaxaiQ
(t)
i (s,ai)

π
(t)
i (ai|s)

1 +
ηA

(t)
i (s, ai)

1− γ



+
∑

ai∈argmaxaiQ
(t)
i (s,ai)

π
(t)
i (ai|s)

1 +
ηmaxai A

(t)
i (s, ai)

1− γ
+

1

2

ηmaxai A
(t)
i (s, ai)

1− γ

2


=
∑
ai

π
(t)
i (ai|s) +

η

1− γ
∑
ai

π
(t)
i (ai|s)A(t)

i (s, ai) +
1

2

∑
ai∈argmaxaiQ

(t)
i (s,ai)

π
(t)
i (ai|s)

ηmaxai A
(t)
i (s, ai)

1− γ

2
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= 1 +
1

2

∑
ai∈argmaxaiQ

(t)
i (s,ai)

π
(t)
i (ai|s)

ηmaxai A
(t)
i (s, ai)

1− γ

2

≥ 1 +
c

2

ηmaxai A
(t)
i (s, ai)

1− γ

2

.

Thus

log(Zi,st ) ≥ log

1 +
c

2

ηmaxai A
(t)
i (s, ai)

1− γ

2
 .

Because when η ≤ (1− γ)2, we have c
2

(
ηmaxai A

(t)
i (s,ai)

1−γ

)2

≤ 1
2 , and that

log(1 + x) ≥ 2

3
x, for 0 ≤ x ≤ 1

2
,

thus

log(Zi,st ) ≥ log

1 +
c

2

ηmaxai A
(t)
i (s, ai)

1− γ

2


≥ c

3

ηmaxai A
(t)
i (s, ai)

1− γ

2

.

Thus

n∑
i=1

∑
s

d(t+1)(s) logZi,st ≥
c

3

n∑
i=1

∑
s

d(t+1)(s)

ηmaxai A
(t)
i (s, ai)

1− γ

2

≥ cη2

3M(1− γ)2
max
i

max
s

max
ai

A
(t)
i (s, ai)

2

≥ cη2

3M
NE-gap(θ(t))2.

We are now ready to prove the bound for natural gradient play in Theorem 5.

Proof of Theorem 5, natural gradient play. Combining Lemma 20 and 21 we have

Φ(θ(t+1))− Φ(θ(t)) ≥ 1

η

n∑
i=1

∑
s

d(t+1)(s) logZi,st

≥ cη

3M
NE-gap(θ(t))2

Summing over t we have

φmax − φmin

1− γ
≥ Φ(θ(T ))− Φ(θ(0)) ≥ cη

3M

T−1∑
t=0

NE-gap(θ(t))2,

thus ∑T−1
t=0 NE-gap(θ(t))2

T
≤ 3M(φmax − φmin)

(1− γ)cηT
,
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which completes the proof.

14 Proof for log-barrier regularization

14.1 Proof of Theorem 6

We start with the following lemma:

Lemma 22. Suppose θ is such that ‖∇θi J̃i(θ)‖2 ≤ λ, then NE-gapi(θ) ≤ λM |Ai|, where M is
defined as in Assumption 1.

Proof. From ‖∇θi J̃i(θ)‖2 ≤ λ
2 we have that

∂J̃i(θ)

∂θs,ai
=

1

1− γ
dθ(s)πθi(ai|s)Aθi (s, ai) + λ− λ|Ai|πθi(ai|s)

= πθi(ai|s)
(

1

1− γ
dθ(s)Aθi (s, ai)− λ|Ai|

)
+ λ ≤ λ

=⇒ πθi(ai|s)
(

1

1− γ
dθ(s)Aθi (s, ai)− λ|Ai|

)
≤ 0

=⇒ 1

1− γ
dθ(s)Aθi (s, ai)− λ|Ai| ≤ 0

=⇒ Aθi (s, ai) ≤
λ|Ai|(1− γ)

dθ(s)
≤ λ|Ai|(1− γ)M

Thus,

NE-gapi(θ) = sup
θ∗i

Ji(θ
∗
i , θ−i)− Ji(θi, θ−i) =

1

1− γ
∑
s,ai

dθ∗(s)πθ∗i (ai|s)Aθi (s, ai)

≤ 1

1− γ
∑
s,ai

dθ∗(s) max
s,ai

Aθi (s, ai)

≤ 1

1− γ
∑
s,ai

dθ∗(s)λ|Ai|(1− γ)M

≤ λ|Ai|M.

Lemma 22 implies that any policy with gradient norm smaller than λ is also a λM maxi |Ai|-NE.
Thus by properly choosing λ, agents can find a ε-NE by running gradient play.

We now prove Theorem 6.

Proof of Theorem 6. From Lemma 30, Φ̃ is β-smooth with β = 6n
(1−γ)3 + 2λmaxi |Ai|, we have

that:

Φ̃(θ(t+1))− Φ̃(θ(t)) ≥
〈
∇Φ̃(θ(t)), θ(t+1) − θ(t)

〉
− β

2
‖θ(t+1) − θ(t)‖2

= (η − βη2

2
)‖∇Φ(θ(t))‖2

≥ η

2
‖∇Φ(θ(t))‖2

For θ(0) = 0, summing over t we get:

φmax − φmin

1− γ
≥ Φ̃(θ(T ))− Φ̃(θ(0)) ≥ η

2

T−1∑
t=0

‖∇Φ̃(θ(t))‖2
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Thus,

min
0≤t≤T−1

‖∇Φ̃(θ(t))‖ ≤ 2(φmax − φmin)

(1− γ)ηT
.

Thus for

T ≥ 2(φmax − φmin)

(1− γ)ηλ2

=
2 maxi |Ai|2(φmax − φmin)M2

(1− γ)ηε2
,

it can be guaranteed that

min
0≤t≤T−1

‖∇Φ̃(θ(t))‖ ≤ λ =
ε

maxi |Ai|M
.

Then applying Lemma 22 completes the proof.

14.2 Proof of Theorem 7

For notational simplicity, we define the following variables:

f
(t)
i (s, ai) :=

1

1− γ
A

(t)
i (s, ai) +

λ

d(t)(s)π
(t)
i (ai|s)

− λ|Ai|
d(t)(s)

Zi,st :=
∑
ai

π
(t)
i (ai|s) exp

(
ηf (t)(s, ai)

)
∆

(t)
i (s, ai) :=

π
(t+1)
i (ai|s)
π

(t)
i (ai|s)

− 1

Lemma 23. ∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai) = 0∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai) = 0

Zi,st ≥ 1

Proof. From the definition of f (t)
i (s, ai),∆

(t)
i (s, ai),∑

ai

π
(t)
i (ai|s)f (t)

i (s, ai)

=
1

1−γ
∑
ai

π
(t)
i (ai|s)A(t)

i (s, ai)+λ
∑
ai

π
(t)
i (ai|s)

1

d(t)(s)π(t)(ai|s)
− λ|Ai|
d(t)(s)

∑
ai

π
(t)
i (ai|s)

=
1

d(t)(s)
(λ|Ai| − λ|Ai|) = 0

∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai) =
∑
ai

π
(t)
i (ai|s)

(
π

(t+1)
i (ai|s)
π

(t)
i (ai|s)

− 1

)
=
∑
ai

π
(t+1)
i (ai|s)−

∑
ai

π
(t)
i (ai|s) = 1− 1 = 0

Using the fact that ex ≥ 1 + x,

Zi,st =
∑
ai

π
(t)
i (ai|s) exp

(
ηf (t)(s, ai)

)
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≥
∑
ai

π
(t)
i (ai|s)

(
1 + ηf (t)(s, ai)

)
≥
∑
ai

π
(t)
i (ai|s) + η

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai) ≥ 1.

Lemma 24. For η ≤ 1

15
(

1
(1−γ)2

+λ|Ai|M
) , θ(0) = 0, running scheme (17) will guarantee that

π
(t)
i (ai|s) ≥

λ

4
(
λ|Ai|M + 1

(1−γ)2

) .

Proof. We will prove by induction. For θ0 = 0 apparently π(0) satisfies the lower bound. Suppose
that

π
(t)
i (ai|s) ≥

λ

4
(
λ|Ai|M + 1

(1−γ)2

) ,
then from the definition of f (t)

i (s, a) we have that

− 1

(1− γ)2
− λ|Ai|M ≤ f (t)

i (s, ai) ≤ 5

(
1

(1− γ)2
+ λ|Ai|M

)
Thus

− 1

15
≤ ηf (t)

i (s, ai) ≤
1

3
,

which leads to the fact that

Zi,st =
∑
ai

π
(t)
i (ai|s) exp

(
ηf

(t)
i (s, ai)

)
≤
∑
ai

π
(t)
i (ai|s)

(
1 +

(
ηf

(t)
i (s, ai)

)
+
(
ηf

(t)
i (s, ai)

)2
)

(24)

(ex ≤ 1 + x+ x2, for− 1

15
≤ x ≤ 1

3
)

= 1 +
∑
ai

π
(t)
i (ai|s)

(
ηf

(t)
i (s, ai)

)2

(25)

≤ 1 +
1

32
=

10

9
.

Thus we have that

π
(t+1)
i (ai|s)
π

(t)
i (ai|s)

=
exp

(
ηf

(t)
i (s, ai)

)
Zi,st

≥ 1 + ηf (t)(s, ai)

Zi,st
≥

1− 1
15

10
9

=
21

25
.

Thus, for ai such that π(t)
i (ai|s) ≥ λ

3
(
λ|Ai|M+ 1

(1−γ)2

) , we have

π
(t+1)
i (ai|s) ≥

21

25

λ

3
(
λ|Ai|M + 1

(1−γ)2

) ≥ λ

4
(
λ|Ai|M + 1

(1−γ)2

) .
On the other hand, for ai such that π(t)

i (ai|s) < λ

3
(
λ|Ai|M+ 1

(1−γ)2

) , we have

f
(t)
i (s, ai) ≥ −

1

(1− γ)2
− λ|Ai|M + 3

(
1

(1− γ)2
+ λ|Ai|M

)
= 2

(
1

(1− γ)2
+ λ|Ai|M

)
,
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From inequality (25) we have that

Zi,t ≤ 1 + η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

≤ 1 + 25η2

(
1

(1− γ)2
+ λ|Ai|M

)2

≤ 1 +
5

3
η

(
1

(1− γ)2
+ λ|Ai|M

)
Thus

π
(t+1)
i (ai|s)
π

(t)
i (ai|s)

=
exp

(
ηf

(t)
i (s, ai)

)
Zi,st

≥
1 +

(
ηf

(t)
i (s, ai)

)
Zi,st

≥
1 + 2η

(
1

(1−γ)2 + λ|Ai|M
)

1 + 5
3η
(

1
(1−γ)2 + λ|Ai|M

) ≥ 1,

then according to the induction assumption, we have

π
(t+1)
i (ai|s) ≥

λ

4
(
λ|Ai|M + 1

(1−γ)2

) ,
which completes the proof of the lemma.

Corollary 25. Under the condition of Lemma 24, running (17) will guarantee that

− 1

15
≤ ηf (t)

i (s, ai) ≤
1

3
, Zi,st ≤

10

9
, −1

5
≤ ∆

(t)
i (s, ai) ≤

1

2
,

Proof. The first two inequalities are proved in the proof of Lemma 24, we only need to show
− 1

5 ≤ ∆
(t)
i (s, ai) ≤ 1

2 . In the proof of Lemma 24, we have already shown that

π
(t+1)
i (ai|s)
π

(t)
i (ai|s)

=
exp

(
ηf

(t)
i (s, ai)

)
Zi,st

≥ 1 + ηf (t)(s, ai)

Zi,st
≥

1− 1
15

10
9

=
21

25
≥ 4

5
,

thus
∆

(t)
i (s, ai) ≥

4

5
− 1 = −1

5
.

On the other hand,

π
(t+1)
i (ai|s)
π

(t)
i (ai|s)

=
exp

(
ηf

(t)
i (s, ai)

)
Zi,st

≤ exp
(
ηf

(t)
i (s, ai)

)
≤ exp (

1

3
) ≤ 3

2
,

thus
∆

(t)
i (s, ai) ≤

3

2
− 1 =

1

2
,

which completes the proof of the corollary.

Lemma 26.

Φ̃(θ(t+1))−Φ̃(θ(t))≥
(

1

2η
−4λmax

i
|Ai|M2− 4M

(1−γ)2
− 3nM

(1−γ)3

) n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2

Proof. Let θ̃i,(t) be defined as:

θ̃i,(t) :=
(
θ

(t)
1 , . . . , θ

(t)
i−1, θ

(t+1)
i , . . . , θ(t+1)

n

)
.

Then we have that

Φ(θ(t+1))− Φ(θ(t)) =

n∑
i=1

Φ(θ̃i,(t))− Φ(θ̃i+1,(t))
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=

n∑
i=1

Ji(θ̃
i,(t))− Ji(θ̃i+1,(t))

=
1

1− γ

n∑
i=1

∑
s

dθ̃i,(t)(s)
∑
ai

π
(t+1)
i (ai|s)Aθ̃

i+1,(t)

i (s, ai) (Lemma 8)

=
1

1− γ

n∑
i=1

∑
s

dθ̃i,(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Qθ̃

i+1,(t)

i (s, ai).

Thus

Φ̃(θ(t+1))− Φ̃(θ(t)) = Φ(θ(t+1))− Φ(θ(t)) + λ
∑
i

∑
s,ai

log

(
π

(t+1)
i (ai|s)
π

(t)
i (ai|s)

)

=
1

1−γ

n∑
i=1

∑
s

dθ̃i,(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Qθ̃

i+1,(t)

i (s, ai)+λ
∑
i

∑
s,ai

log
(

1+∆(t)(s, ai)
)

=
1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Q

(t)
i (s, ai)

+
1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)(

Qθ̃
i+1,(t)

i (s, ai)−Q(t)
i (s, ai)

)
+

1

1− γ

n∑
i=1

∑
s

(
dθ̃i,(t)(s)− d

(t)(s)
)∑

ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Qθ̃

i+1,(t)

i (s, ai)

+ λ
∑
i

∑
s,ai

log
(

1 + ∆(t)(s, ai)
)

=
1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Q

(t)
i (s, ai) + λ∆

(t)
i (s, ai)︸ ︷︷ ︸

Part A

+ λ
∑
i

∑
s,ai

log
(

1 + ∆(t)(s, ai)
)
−∆

(t)
i (s, ai)︸ ︷︷ ︸

Part B

+
1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)(

Qθ̃
i+1,(t)

i (s, ai)−Q(t)
i (s, ai)

)
︸ ︷︷ ︸

Part C

+
1

1− γ

n∑
i=1

∑
s

(
dθ̃i,(t)(s)− d

(t)(s)
)∑

ai

(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)
Qθ̃

i+1,(t)

i (s, ai)︸ ︷︷ ︸
Part D

.

We will now bound each part separately. We first get a lower bound for part A:

Part A =

n∑
i=1

∑
s,ai

d(t)(s)

[(
π

(t+1)
i (ai|s)− π(t)

i (ai|s)
)( 1

1− γ
A

(t)
i (s, ai)

)
+

λ

d(t)(s)
∆

(t)
i (s, ai)

]

=

n∑
i=1

∑
s,ai

d(t)(s)

[
π

(t)
i (ai|s)∆(t)

i (s, ai)

(
1

1− γ
A

(t)
i (s, ai)

)
+

λ

d(t)(s)
∆

(t)
i (s, ai)

]

=

n∑
i=1

∑
s,ai

d(t)(s)

[
π

(t)
i (ai|s)∆(t)

i (s, ai)

(
1

1− γ
A

(t)
i (s, ai)−

λ|Ai|
d(t)(s)

)
+

λ

d(t)(s)
∆

(t)
i (s, ai)

]
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=

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)

(
1

1− γ
A

(t)
i (s, ai) +

λ

d(t)(s)π
(t)
i (ai|s)

− λ|Ai|
d(t)(s)

)

=

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)f
(t)
i (s, ai)

=

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
1

η

(
log

(
π

(t+1)
i (ai|s)
π

(t)
i (ai|s)

)
+ log(Zi,st )

)

=
1

η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai) log
(

1 + ∆
(t)
i (s, ai)

)
+

1

η

n∑
i=1

∑
s

d(t)(s) log(Zi,st )
∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai)

=
1

η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai) log
(

1 + ∆
(t)
i (s, ai)

)
=

1

η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)

∣∣∣∆(t)
i (s, ai)

∣∣∣ ∣∣∣log
(

1 + ∆
(t)
i (s, ai)

)∣∣∣
From the boundedness of ∆

(t)
i (s, ai) in Corollary 25, we have that∣∣∣log

(
1 + ∆

(t)
i (s, ai)

)∣∣∣ ≥ 1

2

∣∣∣∆(t)
i (s, ai)

∣∣∣
Substitute this into the above inequalities, we get

Part A ≥ 1

2η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2

Now we will give a lower bound for part B. Similarly, from the boundedness of ∆
(t)
i (s, ai) in

Corollary 25, we have that

log
(

1 + ∆
(t)
i (s, ai)

)
−∆

(t)
i (s, ai) ≥ −∆

(t)
i (s, ai)

2.

Thus

Part B = λ
∑
i

∑
s,ai

log
(

1 + ∆(t)(s, ai)
)
−∆

(t)
i (s, ai) ≥ −λ

∑
i

∑
s,ai

∆
(t)
i (s, ai)

2.

Additionally, using Lemma 24,

Part B ≥ −λ
∑
i

∑
s,ai

∆
(t)
i (s, ai)

2

≥ −4

(
λmax

i
|Ai|M +

1

(1− γ)2

)∑
i

∑
s,ai

π
(t)
i (ai|s)∆(t)

i (s, ai)
2

≥ −4M

(
λmax

i
|Ai|M +

1

(1− γ)2

)∑
i

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2.

We will now move on to bound the absolute value of Part C.

|Part C| ≤ 1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣ ∣∣∣Qθ̃i+1,(t)

i (s, ai)−Q(t)
i (s, ai)

∣∣∣ .
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Since∣∣∣Qθ̃i+1,(t)

i (s, ai)−Q(t)
i (s, ai)

∣∣∣ ≤∑
a−i

π
θ̃
i+1,(t)
−i

(a−i|s)
∣∣∣Qθ̃i+1,(t)

(s, ai, a−i)−Q(t)(s, ai, a−i)
∣∣∣

+
∑
a−i

∣∣∣πθ̃i+1,(t)
−i

(a−i|s)− π(t)
−i(a−i|s)

∣∣∣ ∣∣∣Q(t)(s, ai)
∣∣∣

≤ max
a

∣∣∣Qθ̃i+1,(t)

(s, a)−Q(t)(s, a)
∣∣∣+

1

1− γ

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1.

From Lemma 32,

max
a

∣∣∣Qθ̃i+1,(t)

(s, a)−Q(t)(s, a)
∣∣∣ ≤ 1

(1− γ)2
max
s
‖π

θ̃
i+1,(t)
s

− π
θ
(t)
s
‖1

≤ 1

(1− γ)2
max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

Thus we have that∣∣∣Qθ̃i+1,(t)

i (s, ai)−Q(t)
i (s, ai)

∣∣∣ ≤ max
a

∣∣∣Qθ̃i+1,(t)

(s, a)−Q(t)(s, a)
∣∣∣+

1

1− γ

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

≤ 2

(1− γ)2
max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1.

Thus

|Part C| ≤ 1

1− γ

n∑
i=1

∑
s

d(t)(s)
∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣ 2

(1− γ)2
max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

≤ 2

(1− γ)3

max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

 · n∑
i=1

∑
s

d(t)(s)
∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣

≤ 2

(1− γ)3

max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

 ·∑
s

d(t)(s)

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

≤ 2

(1− γ)3

max
s

n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

2

From Cauchy-Schwarz inequality, n∑
j=1

‖π(t+1)
j,s − π(t)

j,s‖1

2

=

 n∑
j=1

∑
aj

π
(t)
i (aj |s)

∣∣∣∆(t)
j (s, aj)

∣∣∣
2

≤

 n∑
j=1

∑
aj

π
(t)
i (aj |s)

 n∑
j=1

∑
aj

π
(t)
j (aj |s)∆(t)

j (s, aj)
2


= n

n∑
j=1

∑
aj

π
(t)
j (aj |s)∆(t)

j (s, aj)
2

Thus

|Part C| ≤ 2n

(1− γ)3

n∑
i=1

∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai)
2
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≤ 2nM

(1− γ)3

n∑
i=1

∑
ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2

Lastly, we will bound the absolute value of Part D.

|Part D| =

∣∣∣∣∣ 1

1− γ

n∑
i=1

∑
s

(
dθ̃i,(t)(s)− d

(t)(s)
)∑

ai

(
π(t+1)(ai|s)− π(t)

i (ai|s)
)
Qθ̃

i+1,(t)

i (s, ai)

∣∣∣∣∣
≤ 1

(1− γ)2

n∑
i=1

∑
s

∣∣∣dθ̃i,(t)(s)− d(t)(s)
∣∣∣∑
ai

∣∣∣π(t+1)(ai|s)− π(t)
i (ai|s)

∣∣∣
≤ 1

(1− γ)2

n∑
i=1

max
s
‖π(t+1)

i,s − π(t)
i,s‖1

∑
s

∣∣∣dθ̃i,(t)(s)− d(t)(s)
∣∣∣ .

From Corollary 34∑
s

∣∣∣dθ̃i,(t)(s)− d(t)(s)
∣∣∣ ≤ 1

1− γ
max
s

∥∥∥πθ̃i,(t)(a|s)− π(t)(a|s)
∥∥∥

1

≤ 1

1− γ
max
s

n∑
i=1

‖π(t+1)
i,s − π(t)

i,s‖1.

Thus

|Part D| ≤ 1

(1− γ)2

n∑
i=1

max
s
‖π(t+1)

i,s − π(t)
i,s‖1

∑
s

∣∣∣dθ̃i,(t)(s)− d(t)(s)
∣∣∣

≤ 1

(1− γ)3

(
n∑
i=1

max
s
‖π(t+1)

i,s − π(t)
i,s‖1

)(
max
s

n∑
i=1

‖π(t+1)
i,s − π(t)

i,s‖1

)

≤ 1

(1− γ)3

(
n∑
i=1

max
s
‖π(t+1)

i,s − π(t)
i,s‖1

)2

From Cauchy-Schwarz inequality(
n∑
i=1

max
s
‖π(t+1)

i,s − π(t)
i,s‖1

)2

≤ n
n∑
i=1

max
s

(∑
ai

∣∣∣π(t+1)
i (ai|s)− π(t)

i (ai|s)
∣∣∣)2

= n

n∑
i=1

max
s

(∑
ai

π
(t)
i (ai|s)

∣∣∣∆(t)
i (ai|s)

∣∣∣)2

≤ n
n∑
i=1

max
s

(∑
ai

π
(t)
i (ai|s)

)(∑
ai

π
(t)
i (ai|s)∆(t)

i (ai|s)2

)

≤ n
n∑
i=1

max
s

∑
ai

π
(t)
i (ai|s)∆(t)

i (ai|s)2

≤ n
n∑
i=1

∑
s,ai

π
(t)
i (ai|s)∆(t)

i (ai|s)2.

Thus

|Part D| ≤ n

(1− γ)3

n∑
i=1

∑
s,ai

π
(t)
i (ai|s)∆(t)

i (ai|s)2
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≤ nM

(1− γ)3

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (ai|s)2,

Combining the bounds on Part A,B,C,D we get

Φ̃(θ(t+1))− Φ̃(θ(t)) = Part A + Part B + Part C + Part D

≥
(

1

2η
− 4λmax

i
|Ai|M2 − 4M

(1− γ)2
− 3nM

(1− γ)3

) n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2,

which completes the proof.

Lemma 27. Under the condition as in Lemma 24,
n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2 ≥ η2

9

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

Proof. Recall from the definition of ∆
(t)
i (s, ai):

∆
(t)
i (s, ai) =

exp
(
ηf

(t)
i (s, ai)

)
Zi,st

− 1.

Thus∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai)
2 =

1(
Zi,st

)2

∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)

)
− Zi,st

)2

=
1(

Zi,st

)2

[∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)

)
−1
)2

− 2
∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)

)
−1
)(

Zi,st −1
)

+
∑
ai

π
(t)
i (ai|s)

(
Zi,st − 1

)2
]

=
1(

Zi,st

)2

[∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)

)
−1
)2

−
(
Zi,st − 1

)2
]

Since |ex − 1| ≥ |x|2 for x ≥ −1, we have that∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)− 1

))2

≥
∑
ai

π
(t)
i (ai|s)

(η
2
f

(t)
i (s, ai)

)2

≥ η2

4

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

Additionally, as is proved in Lemma 24,

Zi,st =
∑
ai

π
(t)
i (ai|s) exp

(
ηf (t)(s, ai)

)
≤
∑
ai

π
(t)
i (ai|s)

(
1 +

(
ηf (t)(s, ai)

)
+
(
ηf (t)(s, ai)

)2
)

≤ 1 + η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2.
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Thus∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai)
2 =

1(
Zi,st

)2

[∑
ai

π
(t)
i (ai|s)

(
exp

(
ηf

(t)
i (s, ai)

)
−1
)2

−
(
Zi,st − 1

)2
]

≥ 1(
Zi,st

)2

η2

4

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2 −

(
η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)2


=
1(

Zi,st

)2

(
η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)(
1

4
− η2

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)
.

From Corollary 25

− 1

15
≤ ηf (t)

i (s, ai) ≤
1

3

=⇒ η2
∑
ai

π
(t)
i (s, ai)f

(t)
i (s, ai)

2 ≤ 1

9
.

Thus∑
ai

π
(t)
i (ai|s)∆(t)

i (s, ai)
2 1(
Zi,st

)2
(
η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)(
1

4
−η2

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)

≥ 1(
Zi,st

)2

(
η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)(
1

4
− 1

9

)

≥
(

9

10

)2(
1

4
− 1

9

)(
η2
∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2

)

≥ η2

9

∑
ai

π
(t)
i (ai|s)f (t)

i (s, ai)
2,

Thus
n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2 ≥ η2

9

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

which completes the proof.

Lemma 28.

NE-gap(θ(t)) ≤
∑n
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

4λ
+ λmax

i
|Ai|M,

where M = supθ maxs
1

dθ(s) .

Proof. We will now prove the lemma.

d(t)(s)π
(t)
i f

(t)
i (s, ai)

2 = d(t)(s)π
(t)
i (ai|s)

(
1

1− γ
A

(t)
i (s, ai) + λ

1

d(t)(s)π
(t)
i (ai|s)

− λ|Ai|
d(t)(s)

)2

=d(t)(s)π
(t)
i (ai|s)

(
1

1−γ
A

(t)
i (s, ai)−

λ|Ai|
d(t)(s)

)2

+
λ2

d(t)(s)π
(t)
i (ai|s)

+2λ

(
1

1−γ
A

(t)
i (s, ai)−

λ|Ai|
d(t)(s)

)
≥ 4λ

(
1

1− γ
A

(t)
i (s, ai)−

λ|Ai|
d(t)(s)

)
.
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=⇒ 1

1− γ
A

(t)
i (s, ai) ≤

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

4λ
+

λ|Ai|
d(t)(s)

≤
∑
i

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

4λ
+ λmax

i
|Ai|M.

Thus from Lemma 13,

NE-gapi(θ
(t)) ≤ 1

1− γ
max
s,ai

A
(t)
i (s, ai) ≤

∑
i

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

4λ
+ λmax

i
|Ai|M,

which completes the proof.

We are now ready to prove Theorem 7.

Proof of Theorem 7. From Lemma 26 we have that for

η ≤ min

{
1

15
(

1
(1−γ)2

+λ|Ai|M
) , 1

4
(

4λmaxi |Ai|M2+ 4M
(1−γ)2

+ 3nM
(1−γ)3

)
}

,

Φ̃(θ(t+1))− Φ̃(θ(t)) ≥ 1

4η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2.

From Lemma 27,

Φ̃(θ(t+1))− Φ̃(θ(t)) ≥ 1

4η

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)∆(t)

i (s, ai)
2

≥ η

36

n∑
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

Thus by telescoping we have∑T−1
t=0

∑n
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

T
≤

36
(

Φ̃(θ(T ))− Φ̃(θ(0))
)

ηT
.

From Lemma 28,∑T−1
t=0 NE-gap(θ(t))

T
≤ 1

4λ

∑T−1
t=0

∑n
i=1

∑
s,ai

d(t)(s)π
(t)
i (ai|s)f (t)

i (s, ai)
2

T
+ λmax

i
|Ai|M

≤
9
(

Φ̃(θ(T ))− Φ̃(θ(0))
)

ηλT
+ λmax

i
|Ai|M.

Specifically, set λ = ε
2 maxi |Ai|M and θ(0) = 0, then for any

T ≥
18
(

Φ̃(θ(T ))− Φ̃(θ(0))
)

(1− γ)ηλε
=

36 maxi |Ai|(φmax − φmin)M

(1− γ)ηε2

≥ O
(
nmaxi |Ai|(φmax − φmin)M2

(1− γ)4ε2

)
,

we have ∑T−1
t=0 NE-gap(θ(t))

T
≤ ε

2
+
ε

2
= ε,

which completes the proof.
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15 Smoothness Proofs

This section mainly focuses on the smoothness of Φ and Φ̃. We first state the smoothness results in
Lemma 29 and Lemma 30. The auxiliary lemmas used during proof of the above two lemmas are
stated in Lemma 31 and Appendix 16.
Lemma 29 (Smoothness of Φ(θ)).

‖∇θΦ(θ′)−∇θΦ(θ)‖2 ≤
6n

(1− γ)3
‖θ′ − θ‖2

Proof. From Lemma 31 we have that

‖∇θΦ(θ′)−∇θΦ(θ)‖22 =

n∑
i=1

‖∇θiΦ(θ′)−∇θiΦ(θ)‖22

≤
n∑
i=1

‖∇θiΦ(θ′)−∇θiΦ(θ)‖21

≤
n∑
i=1

(
6

(1− γ)3

n∑
i=1

‖θ′i − θi‖2

)2

=
36n

(1− γ)6

(
n∑
i=1

‖θ′i − θi‖2

)2

≤ 36n2

(1− γ)6

n∑
i=1

‖θ′i − θi‖22

=
36n2

(1− γ)6
‖θ′ − θ‖22,

thus
‖∇θΦ(θ′)−∇θΦ(θ)‖2 ≤

6n

(1− γ)3
‖θ′ − θ‖2

Lemma 30 (Smoothness of Φ̃(θ)).∥∥∥∇θΦ̃(θ′)−∇θΦ̃(θ)
∥∥∥

2
≤
(

6n

(1− γ)3
+ 2λmax

i
|Ai|

)
‖θ′ − θ‖2

Proof. Since

∂
∑n
i=1

∑
s,ai

log πθi(ai|s)
∂θs,ai

= 1− |Ai|πθi(ai|s)

we have that∥∥∥∥∥∇θ
(

n∑
i=1

∑
s,ai

log πθ′i(ai|s)−
n∑
i=1

∑
s,ai

log πθi(ai|s)

)∥∥∥∥∥
2

2

=

n∑
i=1

|Ai|2
∑
s

∑
ai

(
πθ′i(ai|s)−πθi(ai|s)

)2
≤

n∑
i=1

|Ai|2
∑
s

‖πθ′i,s−πθi,s‖
2
1

(Corollary 37)
≤ 4

n∑
i=1

|Ai|2
∑
s

‖θ′i,s−θi,s‖22 ≤ 4 max
i
|Ai|2‖θ′−θ‖22

Thus ∥∥∥∇θΦ̃(θ′)−∇θΦ̃(θ)
∥∥∥

2

≤ ‖∇θΦ(θ′)−∇θΦ(θ)‖2 + λ

∥∥∥∥∥∇θ
(

n∑
i=1

∑
s,ai

log πθ′i(ai|s)−
n∑
i=1

∑
s,ai

log πθi(ai|s)

)∥∥∥∥∥
2
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≤
(

6n

(1− γ)3
+ 2λmax

i
|Ai|

)
‖θ′ − θ‖2.

Lemma 31.

‖∇θiΦ(θ′)−∇θiΦ(θ)‖1 ≤
6

(1− γ)3

n∑
i=1

‖θ′i − θi‖2

Proof.

‖∇θiΦ(θ′)−∇θiΦ(θ)‖1 =
1

1− γ
∑
s,ai

∣∣∣dθ′(s)πθ′i(ai|s)Aθ′i (s, ai)− dθ(s)πθi(ai|s)Aθi (s, ai)
∣∣∣

=
1

1−γ
∑
s,ai

∣∣∣∣∣∣dθ′(s)πθ′i(ai|s)
∑
a−i

πθ′−i(a−i|s)A
θ′

i (s, ai, a−i)−dθ(s)πθi(ai|s)
∑
a−i

πθ−i(a−i|s)Aθi (s, ai)

∣∣∣∣∣∣
≤ 1

1− γ
∑
s,a

∣∣∣dθ′(s)πθ′(a|s)Aθ′i (s, a)− dθ(s)πθ(a|s)Aθi (s, a)
∣∣∣

≤ 1

1−γ

(∑
s,a

|dθ′(s)πθ′(a|s)−dθ(s)πθ(a|s)|
∣∣∣Aθ′i (s, a)

∣∣∣+∑
s,a

dθ(s)πθ(a|s)
∣∣∣Aθ′i (s, a)−Aθi (s, a)

∣∣∣)

≤ 1

1− γ

(
1

1− γ
∑
s,a

|dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s)|+ max
s,ai

∣∣∣Aθ′i (s, a)−Aθi (s, a)
∣∣∣)

From Lemma 32 and Corollary 35, we have that

‖∇θiΦ(θ′)−∇θiΦ(θ)‖1 ≤
3

(1− γ)3
max
s
‖πθ′s − πθs‖1

≤ 3

(1− γ)3
max
s

∑
‖πθ′i,s − πθi,s‖1

From Corollary 37 we have that

‖∇θiΦ(θ′)−∇θiΦ(θ)‖1 ≤
3

(1− γ)3
max
s

∑
‖πθ′i,s − πθi,s‖1

≤ 6

(1− γ)3

n∑
i=1

‖θi − θi‖2.

16 Some Useful Lemmas

Lemma 32. ∣∣∣Qθ′(s, a)−Qθ(s, a)
∣∣∣ ≤ 1

(1− γ)2
max
s
‖πθ′s − πθs‖1∣∣∣V θ′(s)− V θ(s)∣∣∣ ≤ 1

(1− γ)2
max
s
‖πθ′s − πθs‖1,

and thus ∣∣∣Aθ′(s, a)−Aθ(s, a)
∣∣∣ ≤ 2

(1− γ)2
max
s
‖πθ′s − πθs‖1

Proof. From performance difference lemma we have that∣∣∣Qθ′(s, a)−Qθ(s, a)
∣∣∣

=

∣∣∣∣∣
+∞∑
t=1

γt
∑
s′

Prθ
′
(s(t) = s′|s(0) = s, a(0) = a)

∑
a′

(πθ′(a
′|s′)− πθ(a′|s′))Qθ(s′, a′)

∣∣∣∣∣
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≤

∣∣∣∣∣
+∞∑
t=1

γt
∑
s′

Prθ
′
(s(t) = s′|s(0) = s, a(0) = a)

∑
a′

|πθ′(a′|s′)− πθ(a′|s′)|
∣∣Qθ(s′, a′)∣∣∣∣∣∣∣

≤

∣∣∣∣∣
+∞∑
t=1

γt max
s′

∑
a′

|πθ′(a′|s′)− πθ(a′|s′)|
1

1− γ

∣∣∣∣∣
=

1

(1− γ)2
max
s

∑
a

|πθ′(a|s)− πθ(a|s)|

=
1

(1− γ)2
max
s
‖πθ′s − πθs‖1

Same argument also holds for
∣∣∣V θ′(s)− V θ(s)∣∣∣, and thus∣∣∣Aθ′(s, a)−Aθ(s, a)

∣∣∣ ≤ ∣∣∣Qθ′(s, a)−Qθ(s, a)
∣∣∣+∣∣∣V θ′(s)− V θ(s)∣∣∣ ≤ 2

(1− γ)2
max
s
‖πθ′s−πθs‖1.

Lemma 33.
1

1− γ
∑
s,a

(dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s)) r(s, a) ≤ 1

(1− γ)2
‖r‖∞max

s
‖πθ′s − πθs‖1,

where ‖r‖∞ = maxs,a |r(s, a)|.

Proof. For any reward function r(s, a), we can define its value function V θ(s) and Qθ(s, a) corre-
spondingly. Using performance difference lemma we have that

1

1− γ
∑
s,a

(dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s)) r(s, a)

=
∑
s

ρ(s)(V θ
′
(s)− V θ(s))

=
1

1− γ
∑
s

dθ′(s)
∑
a

(πθ′(a|s)− πθ(a|s))Qθ(s, a)

≤ 1

(1− γ)2
‖r‖∞

∑
s

dθ′(s)‖πθ′s − πθs‖1

≤ 1

(1− γ)2
‖r‖∞max

s
‖πθ′s − πθs‖1.

We have the following two corollaries for Lemma 33.

Corollary 34.
1

1− γ
∑
s

|dθ′(s)− dθ(s)| ≤
1

(1− γ)2
max
s
‖πθ′s − πθs‖1

Proof.

1

1− γ
∑
s

|dθ′(s)− dθ(s)| = max
−1≤r(s)≤1

1

1− γ
∑
s,a

(dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s))r(s)

≤ 1

(1− γ)2
max
s
‖πθ′s − πθs‖1.

Corollary 35.

1

1− γ
∑
s

|dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s)| ≤
1

(1− γ)2
max
s
‖πθ′s − πθs‖1.
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Proof.

1

1− γ
∑
s

|dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s)|

= max
−1≤r(s,a)≤1

1

1− γ
∑
s,a

(dθ′(s)πθ′(a|s)− dθ(s)πθ(a|s))r(s, a)

≤ 1

(1− γ)2
max
s
‖πθ′s − πθs‖1.

Lemma 36. ∑
ai

(
πθ′i(ai|s)− πθi(ai|s)

)
f(ai) ≤ 2‖f‖∞‖θ′i,s − θi,s‖2

Proof. It suffices to show that∥∥∥∥∥∇θi,s∑
ai

πθi(ai|s)f(ai)

∥∥∥∥∥
2

≤ 2‖f‖∞, ∀θ,

then by Lagrange mean value theorem,∑
ai

(
πθ′i(ai|s)− πθi(ai|s)

)
f(ai)

≤ max
t,θ̄=tθ+(1−t)θ′

∥∥∥∥∥∇θi,s∑
ai

πθ̄i(ai|s)f(ai)

∥∥∥∥∥
2

‖θ′i,s − θi,s‖2 ≤ 2‖f‖∞‖θ′i,s − θi,s‖2.

Since

∂
∑
ai
πθi(ai|s)f(ai)

∂θai,s
= πθi(ai|s)(f(ai)− f̄), where f̄ =

∑
ai

πθi(ai|s)f(ai),

we have∥∥∥∥∥∇θi,s∑
ai

πθi(ai|s)f(ai)

∥∥∥∥∥
2

2

=
∑
ai

πθi(ai|s)2(f(ai)− f̄)2 ≤
∑
ai

πθi(ai|s)2(2‖f‖∞)2 ≤ 4‖f‖2∞,

which completes the proof.

Corollary 37. (of Lemma 36)

‖πθ′i,s − πθi,s‖1 ≤ 2‖θ′i,s − θi,s‖2 ≤ 2‖θ′i − θi‖2

Proof.

‖πθ′i,s − πθi,s‖1 = max
f :‖f‖∞≤1

∑
ai

(
πθ′i(ai|s)− πθi(ai|s)

)
f(ai) ≤ 2‖θ′i,s − θi,s‖2.
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