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Abstract

We study the effect of baselines in on-policy stochastic policy gradient optimization,
and close the gap between the theory and practice of policy optimization methods.
Our first contribution is to show that the state value baseline allows on-policy
stochastic natural policy gradient (NPG) to converge to a globally optimal policy at
an O(1/t) rate, which was not previously known. The analysis relies on two novel
findings: the expected progress of the NPG update satisfies a stochastic version of
the non-uniform Łojasiewicz (NŁ) inequality, and with probability 1 the state value
baseline prevents the optimal action’s probability from vanishing, thus ensuring
sufficient exploration. Importantly, these results provide a new understanding of
the role of baselines in stochastic policy gradient: by showing that the variance of
natural policy gradient estimates remains unbounded with or without a baseline,
we find that variance reduction cannot explain their utility in this setting. Instead,
the analysis reveals that the primary effect of the value baseline is to reduce the
aggressiveness of the updates rather than their variance. That is, we demonstrate
that a finite variance is not necessary for almost sure convergence of stochastic
NPG, while controlling update aggressiveness is both necessary and sufficient.
Additional experimental results verify these theoretical findings.

1 Introduction

The policy gradient (PG) [29] is a key concept in reinforcement learning (RL), lying at the foundation
of policy-based and actor-critic methods, and responsible for some of the most prominent practical
achievements in RL [27, 28, 11]. However, progress in the theoretical understanding of PG methods
is recent, and a number of the techniques used in practice still lack rigorous support, particularly in
the online stochastic regime where an action is sampled from the current policy at each iteration. We
study stochastic policy optimization in more detail to close this gap between theory and practice.

In stochastic policy optimization, the two most common techniques for improving the basic algorithm
are to include on-policy importance sampling and subtract a baseline. Including on-policy IS provides
unbiased gradient estimates, but introduces high variance when an action’s sampling probability is
close to 0. Meanwhile, subtracting a baseline remains a heuristic [26] that has strong empirical but
limited theoretical support. One possible benefit of a baseline is that it provides variance reduction
[10], which has motivated work on designing alternative baselines that further reduce variance
[30, 4, 20, 31]. However, other work [7] has shown that variance reduction is not necessarily aligned
with policy learning quality. To date, it has remained unclear how a baseline impacts the quality of
the ultimate solution found by policy gradient optimization. We resolve this question in this work.
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Recent progress in the theory of deterministic PG has shown that, given exact gradients, softmax
policy gradient is able to converge to a globally optimal policy at a O(1/t) rate [24]. Unfortunately,
despite this guarantee, the constants in this rate can be extremely large [19] due to initialization
sensitivity and poor performance at escaping sub-optimal plateaus [23]. Therefore, in the exact
gradient setting, several techniques have been considered for mitigating the weaknesses of softmax
PG, leading to better constants [2] or even exponentially faster rates of O(e−c·t) for c > 0. Such
improvements include adding entropy regularization [24, 6], normalizing the gradients [22], or
applying natural policy gradient (NPG) [6, 14, 21].

However, in the on-policy stochastic optimization case, recent studies [21, 7] show that naively apply-
ing the above techniques, such as normalization or NPG, leads to unexpectedly worse performance
than stochastic PG. That is, techniques that accelerate convergence in the exact policy gradient setting
become unsound in the stochastic gradient setting, by inducing a non-zero probability of failure (i.e.,
failing to converge to a globally optimal solution) [21]. Such failures occur even when stochastic
PG can still converge to a global optimum in probability. Previous work has indicated that one key
reason behind the failure of these acceleration strategies arises from their “over-committal behaviour”
in the stochastic setting, which occurs independently of the variance of the gradient estimates [7].
That is, baseline techniques with higher variance can still better avoid over-committal behaviour (i.e.,
premature convergence) and ultimately achieve better policy optimization [7].

To resolve this issue, we develop a deeper understanding of the role of baselines in stochastic policy
optimization based on the following contributions. First, we establish a new result that combining
on-policy IS with a value function baseline and natural policy gradient (NPG) can achieve almost
sure convergence to a globally optimal policy at a O(1/t) rate. This result is based on two novel
findings: (i) At any iteration t, the conditional expected progress of the algorithm’s next iterate
obeys a stochastic non-uniform Łojasiewicz (NŁ) inequality. (ii) The use of the state value baseline
(with appropriate learning rate control) almost surely prevents the probability of the optimal action
from vanishing. These findings show that a key role of the value baseline is to automatically
ensure “sufficient exploration” during on-policy stochastic optimization. Next, we provide a detailed
understanding of how baselines modulate the circular interaction between stochastic action sampling
and updating. Although a baseline has no effect on exact gradients, it can play a major role in
stochastic gradients. In this respect, we first show that the PG estimator variance is unbounded with or
without a baseline, hence variance reduction cannot be the primary effect. Instead, our analysis reveals
that the key role the baseline plays in ensuring global convergence is to reduce the aggressiveness
of updates. That is, finite variance of the gradient estimates is not necessary for ensuring global
convergence, while properly controlling update aggressiveness is both necessary and sufficient.

The remainder of the paper is organized as follows. Section 2 provides the main results that establish
the almost sure O(1/t) convergence rate of stochastic NPG with on-policy IS and state value baseline
to a globally optimal policy. Section 3 then develops the new understanding of the role of the baseline
by going beyond standard variance reduction arguments. Section 4 provides some simulations to
verify the results, and Section 5 concludes the paper with a brief discussion.

2 On-policy Stochastic Natural Policy Gradient

We first consider a one-state Markov Decision Process (MDP) defined by a finite action space
[K] := {1, 2, . . . ,K} where the true mean reward vector is r ∈ [0, 1]K . The policy optimization
problem is to maximize the expected reward,

max
θ:[K]→R

E
a∼πθ(·)

[r(a)], (1)

where the policy πθ is parameterized by θ using the standard softmax parameterization,

πθ(a) =
exp{θ(a)}∑

a′∈[K] exp{θ(a′)}
, for all a ∈ [K]. (2)

Our focus in this paper is on on-policy optimization, where at each iteration t ≥ 1 the current policy
πθt is used to sample one action and perform one update.

For the sampled action at, a noisy reward observation xt(at) ∈ R is drawn from an unknown
distribution with expected value r(at). We make the following assumption that the observed reward
xt(a) is sampled from a bounded distribution: xt(a) ∈ [−Rmax, Rmax] with probability one.
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Assumption 1 (Bounded sampled reward). For each action a ∈ [K], the true mean reward r(a) is
the expectation of a bounded reward distribution, i.e.,

r(a) =

∫ Rmax

−Rmax

x · Pa(x)µ(dx) (3)

where µ is a finite measure over [−Rmax, Rmax], and Pa(x) ≥ 0 is the probability density function
with respect to µ, and Rmax > 0 is the reward range. We let Ra denote the reward distribution for
action a defined by the density Pa and base measure µ.

Then, given a sampled reward observation xt(a) ∼ Ra, an unbiased estimate of the expected reward
vector r can be formed by on-policy importance sampling (IS).
Definition 1 (On-policy importance sampling (IS)). At iteration t, sample one action at ∼ πθt(·)
and observe one reward sample xt(at) ∼ Rat . Let xt(a) = 0 for all a 6= at. Then the IS reward
estimate is constructed as r̂t(a) = I{a=at}

πθt (a) · xt(a) for all a ∈ [K].

If the true mean reward r(at) is observed for sampled actions at, we have the simplified IS estimator.
Definition 2 (Simplified on-policy importance sampling (IS)). At iteration t, sample one action
at ∼ πθt(·). The IS reward estimate is then constructed as r̂t(a) = I{at=a}

πθt (a) · r(a) for all a ∈ [K].

Definition 2 will be used for illustrating ideas and new understandings of baselines in Section 3, while
the main results in Section 2 are based on Definition 1.

2.1 Failure Without a Baseline

First, to establish context, we review an existing negative result for the representative algorithm,
natural policy gradient (NPG) [13], which for the softmax parameterization is defined as follows.
Update 1 (NPG with on-policy stochastic gradient). θt+1 ← θt + η · r̂t, where πθ(a) is by Eq. (2).

It is known that NPG behaves problematically with on-policy IS, even if the true mean reward r(at) is
observed. In particular, NPG converges to a sub-optimal deterministic policy with a constant positive
probability in this case, as shown by [7, 21].
Proposition 1 (Theorem 3 of [21]). Using Update 1, where r̂t is from Definition 2, and r ∈ (0, 1]K ,
we have, with positive probability,

∑
a6=a∗ πθt(a)→ 1 as t→∞.

Essentially Proposition 1 asserts that Update 1 is too aggressive: if sub-optimal actions are sampled t
times successively, their probabilities will become exponentially close to 1; i.e., 1−

∑
a6=a∗ πθt(a) ∈

O(e−c·t). It follows that
∏∞
t=1

∑
a 6=a∗ πθt(a) > 0; that is, the on-policy sampling process at ∼

πθt(·) has a non-zero probability of sampling sub-optimal actions forever, which implies that there is
a positive probability that πθt fails to converge to an optimal deterministic policy.

2.2 Global Convergence with a Value Baseline

Despite the above failure, we now prove that subtracting a value baseline rectifies the problem for
NPG. Consider the modified update that includes a baseline.

Update 2 (NPG, on-policy stochastic gradient with value baseline). θt+1 ← θt + η ·
(
r̂t− b̂t

)
, where

πθ(a) is by Eq. (2), b̂t(a) =
(

I{at=a}
πθt (a) − 1

)
· bt for all a ∈ [K], and bt := π>θtr.

Since softmax(θ) = softmax(θ+ c · 1) for all c ∈ R, Update 2 is equivalent to the following update
if r̂t is by Definition 1. Given the same πθt , Updates 2 and 3 produce the same next policy πθt+1 .

Update 3. θt+1(a)← θt(a)+η · I{at=a}πθt (a) ·
(
xt(a)− π>θtr

)
, i.e., θt+1(at)← θt(at)+η · xt(at)−π

>
θt
r

πθt (at)
,

and θt+1(a)← θt(a) for all a 6= at.

Unfortunately, the variance of this update is not uniformly bounded whenever πθt(a) is close to
0 for at least one action a ∈ [K] (Proposition 3), therefore standard stochastic gradient analysis
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for bounded variance estimators [25, 33, 17, 32] cannot be applied. Instead, we develop two new
techniques to establish global convergence results, both of which rely heavily on using baselines.

Lemma 1 provides the first key technique, which we refer to as the stochastic NŁ inequality.
Lemma 1 (Stochastic non-uniform Łojasiewciz (NŁ)). Suppose Assumption 1 holds. Let r ∈ [0, 1]K ,
a∗ := arg maxa∈[K] r(a), and ∆ := r(a∗)−maxa 6=a∗ r(a). Using Update 2 with on-policy sampling
at ∼ πθt(·) and IS estimator r̂t,

(1) if r̂t is from Definition 2, then with constant learning rate η > 0, we have, for all t ≥ 1,

π>θt+1
r − π>θtr ≥ 0, almost surely (a.s.), and (4)

Et[π>θt+1
r]− π>θtr ≥

η

1 + η
· πθt(a∗) ·

(
r(a∗)− π>θtr

)2
, (5)

where Et[·] is on randomness from on-policy sampling at ∼ πθt(·).

(2) if r̂t is from Definition 1, then with learning rate,

η =
πθt(at) ·

∣∣r(at)− π>θtr∣∣
8 ·R2

max

, (6)

we have, for all t ≥ 1,

Et[π>θt+1
r]− π>θtr ≥

1

16 ·R2
max

·
K∑
i=1

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 (7)

≥ 1

16 ·R2
max

· ∆

K − 1
· πθt(a∗)2 ·

(
r(a∗)− π>θtr

)2
, (8)

where Et[·] is on on-policy sampling at ∼ πθt(·) and reward sampling xt(at) ∼ Rat .
Remark 1. We have η ∈ O(1/t) in Eq. (6) after knowing the convergence rate later.

We refer to πθt(a
∗)2 in Eq. (8) the stochastic NŁ coefficient. Lemma 1 is a stochastic generalization

of the NŁ inequality, which has been widely used in proving global convergence of softmax PG
variants [24, 23, 22, 21, 34]. It is stochastic since Eq. (7) contains an expectation. It is non-uniform
because Eq. (8) depends on θt, which cannot be uniformly lower bounded away from 0 across the
entire domain of θ ∈ RK (that is, one can always find θ such that πθ(a∗) is arbitrarily close to 0).

The key idea of Lemma 1 is as follows. If r̂t is from Definition 2, then by algebra we have,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) ·

[
exp

{
η · r(i)−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

r(i)−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

. (9)

Since (ec·y − 1) · y ≥ 0 for all y ∈ R and c > 0, Eq. (9) is non-negative (letting y := r(i) − π>θtr
and c := η/πθt (i)). However, this is not true if r̂t is from Definition 1, where we have,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) ·
∫ Rmax

−Rmax

[
exp

{
η ·

x−π>θtr
πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>
θt
r

πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx). (10)

Note that (ec·y
′ − 1) · y < 0 if y′ · y < 0 and c > 0 (letting y′ := x− π>θtr, y := r(i)− π>θtr, and

c := η/πθt (i)). For a “good” action (r(i) − π>θtr > 0), if unfortunately its sampled reward is “bad”
(x−π>θtr < 0), then the update will make negative progress. Similar things happen for a “bad” action
(r(i) − π>θtr < 0) with “good” sampled reward (x − π>θtr > 0). It is then necessary to use η like
Eq. (6), to control the non-linear sigmoid-like functions in the progress by piecewise linear functions
(Lemma 15) to get non-negative expected progresses. According to Eq. (8), we have,

Et[π>θt+1
r]− π>θtr ≥ 0 , (11)

which implies that Update 2 achieves non-negative progress in expectation. Combining Lemma 1
with Doob’s supermartingale convergence theorem then leads to the following result.
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Corollary 1. The sequence {π>θtr}t≥1 converges with probability one.

Corollary 1 asserts that, the random sequence π>θtr produced by Update 2 asymptotically approaches
some finite value (since π>θ r ∈ [0, 1]), ruling out the possibility of divergence (oscillating forever).
However, this does not necessarily imply that π>θtr → r(a∗) as t→∞. A subtlety arises in bounding
the stochastic NŁ coefficient in Eq. (7) away from 0, which requires a second key technique.
Lemma 2 (Non-vanishing stochastic NŁ coefficient / “automatic exploration”). Using Update 2 with
conditions in Lemma 1 and r̂t from Definition 1, for an arbitrary initialization θ1 ∈ RK , we have,

c := inf
t≥1

πθt(a
∗) > 0, almost surely (a.s.). (12)

Lemmas 1 and 2 together guarantee that π>θtr → r(a∗) as t→∞. In fact, using the “variance-like”
expected progress (Eq. (7)), Corollary 1 implies that πθt approaches a “generalized one-hot policy” as
t→∞. Lemma 2 then argues by contradiction that πθt cannot approach a sub-optimal “generalized
one-hot policy” as t→∞, which will imply that the optimal action’s probability must approach 1
and achieve Eq. (12). Proof details in the appendix and intuitions in Section 3 reveal that Update 2
achieves a form of “automatic exploration” by using a baseline, i.e., maintaining πθt(a) decay no
faster than O(1/t), such that every action will be sampled infinitely many times in a long run. Finally,
combining Lemmas 1 and 2, we establish not only asymptotic convergence of NPG to a global
optimum, but also a global convergence rate of O(1/t) in terms of the sub-optimality gap.
Theorem 1 (Almost sure global convergence rate). Using Update 2 with on-policy sampling at ∼
πθt(·), the IS estimator r̂t in Definition 1, η in Eq. (6), and any initialization θ1 ∈ RK , we have,

E[(π∗ − πθt)
>
r] ≤ 16 ·R2

max

∆ · E[c2]
· K − 1

t
, and (13)

lim sup
t≥1

{
∆ · c2

16 ·R2
max

· t

K − 1
· (π∗ − πθt)

>
r

}
<∞, a.s., (14)

where π∗ := arg maxπ∈∆(K) π
>r is the optimal policy, Rmax is the sampled reward range from

Assumption 1, ∆ := r(a∗)−maxa 6=a∗ r(a) is the reward gap of r, and c > 0 is from Lemma 2.

2.3 General MDPs

Next, we generalize these results to finite Markov decision processes (MDPs). Given a finite set X ,
let ∆(X ) denote the set of all probability distributions on X . A finite MDP is defined as a tuple
M := (S,A, r,P, γ), where S and A are finite state and action spaces, respectively. r : S ×A → R
is the expected reward function, P : S × A → ∆(S) is the probability transition function, and
γ ∈ [0, 1) is the discount factor. We also extend Assumption 1 to every (s, a) ∈ S × A and
assume there is a reward distribution Rs,a with expectation r(s, a), uniformly bounded within
[−Rmax, Rmax]. Given a policy π : S → ∆(A), at each time t ≥ 0, an agent is given a state st ∈ S ,
takes an action at ∼ π(·|st), then receives a scalar reward observation x(st, at) ∼ Rst,at and a
next-state st+1 ∼ P(·|st, at). The value function of π at state s is defined as

V π(s) := E
at∼π(·|st),

st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣ s0 = s

]
. (15)

The policy optimization problem for a general MDP is to maximize the expected value of the policy,

max
θ:S×A→R

V πθ (ρ) := max
θ:S×A→R

E
s∼ρ(·)

[V πθ (s)], (16)

where ρ ∈ ∆(S) is an initial state distribution, and πθ(·|s) = softmax(θ(s, ·)),

πθ(a|s) =
exp{θ(s, a)}∑

a′∈A exp{θ(s, a′)}
, for all (s, a) ∈ S ×A. (17)

Given a policy π, its state-action value is defined asQπ(s, a) := r(s, a)+γ ·
∑
s′ P(s′|s, a) · V π(s′),

and its advantage function is defined as Aπ(s, a) := Qπ(s, a) − V π(s), for (s, a) ∈ S × A.
The state distribution of π is defined as dπs0(s) := (1 − γ) ·

∑∞
t=0 γ

t · Pr(st = s|s0, π,P). We

5



also denote dπρ (s) := Es0∼ρ(·)
[
dπs0(s)

]
. Given ρ, there exists an optimal policy π∗ such that

V π
∗
(ρ) = maxπ:S→∆(A) V

π(ρ). We denote V ∗(ρ) := V π
∗
(ρ) for conciseness.

For a general MDP, we assume the initial state distribution µ is “sufficiently exploratory” [2, 24, 18].

Assumption 2 (Sufficient exploration). The initial state distribution satisfies mins µ(s) > 0.

At iteration t, the NPG method uses the current state distribution to sample one state st ∼ d
πθt
µ (·),

then uses on-policy sampling to sample one action at ∼ πθt(·|s). For the sampled state action pair
(st, at) ∈ S ×A, the state-action value Qπθt (st, at) is then used to perform update. The current state
value function V πθt (st) is used as the baseline, as shown in Algorithm 1.

Algorithm 1 NPG, on-policy stochastic natural gradient

Input: Learning rate η > 0.
Output: Policies πθt = softmax(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
while t ≥ 1 do

Sample st ∼ d
πθt
µ (·), and at ∼ πθt(·|st).

θt+1(st, at)← θt(st, at) + η · Q
πθt (st,at)−V

πθt (st)
πθt (at|st)

.
end while

According to the performance difference lemma, we have,

V πθt+1 (µ)− V πθt (µ) =
1

1− γ
·
∑
s

d
πθt+1
µ (s) ·

∑
a

(
πθt+1

(a|s)− πθt(a|s)
)
·Qπθt (s, a), (18)

where the inner summation over actions is similar to
(
πθt+1 − πθt

)>
r in one-state MDPs. This

connection allows us to generalize Lemma 1 to the following result.

Lemma 3 (Stochastic NŁ). Using Algorithm 1 with constant η > 0, we have, for all t ≥ 1,

V πθt+1 (s0)− V πθt (s0) ≥ 0, a.s., ∀s0 ∈ S, and (19)

Et[V πθt+1 (µ)]− V πθt (µ) ≥ η·(1−γ)4·mins µ(s)
1+η ·

∥∥∥dπ∗µµ ∥∥∥−1

∞
· mins πθt (a

∗(s)|s)2

S ·
(
V π
∗
(µ)− V πθt (µ)

)2
. (20)

where Et[·] is on randomness from state sampling st ∼ d
πθt
µ (·), on-policy sampling at ∼ πθt(·|st),

and a∗(s) is the action selected by the optimal policy π∗ under state s.

Next, similar to Lemma 2, we can develop a set of contradictions that establish the following result.

Lemma 4 (Non-vanishing stochastic NŁ coefficient / “automatic exploration”). Using Algorithm 1
with the conditions in Lemma 3, with arbitrary initialization θ1 ∈ RS×A, we have,

c := inf
t≥1,s∈S

πθt(a
∗(s)|s) > 0, a.s. (21)

By combining Lemmas 3 and 4, we obtain the following result that generalizes Theorem 1.

Theorem 2 (Almost sure global convergence rate). Using Algorithm 1 with any initialization θ1 ∈
RK , under the same assumptions as Lemmas 3, there exists a C > 0 such that for all t ≥ 1,

E[V ∗(µ)− V πθt (µ)] ≤ 1 + η

η · (1− γ)4 ·mins µ(s)
·
∥∥∥∥dπ∗µµ

∥∥∥∥
∞
· S

E[c2]
· 1
t
, and (22)

lim sup
t≥1

{
η · (1− γ)4 ·mins µ(s)

1 + η
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
· c

2 · t
S
· (V ∗(µ)− V πθt (µ))

}
<∞, a.s., (23)

where π∗ is the global optimal policy, S is the state number, mins µ(s) > 0 by Assumption 2, and
c := inft≥1,s∈S πθt(a

∗(s)|s) > 0 is from Lemma 4.
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3 Understanding Baselines in On-policy Stochastic Policy Optimization

Section 2 shows that using a value function baseline in on-policy stochastic NPG can ensure con-
vergence to a globally optimal policy. However, the mechanism behind this finding requires further
elucidation. Preliminary studies [7, 21] have observed that subtracting a baseline can reduce the
committal behavior of PG-based estimators, suggesting that this effect might be more important
than variance reduction. A mathematical characterization of “committal behavior” is from using the
following concept of “committal rate” [21].
Definition 3 (Committal Rate, Definition 2 of [21]). Fix r ∈ (0, 1]K and θ1 ∈ RK . Consider a
policy optimization algorithm A. Let action a be the sampled action forever after initialization and
let θt be produced by A on the first t observations. The committal rate of algorithm A on action a
(given r and θ1) is,

κ(A, a) = sup

{
α ≥ 0 : lim sup

t→∞
tα · [1− πθt(a)] <∞

}
. (24)

The larger the committal rate κ is, the more aggressive one update is. In this section, we provide a
new, deeper understanding of how a baseline improves the convergence behaviour of a stochastic PG
based method using Definition 3. However, [21] only studied the deterministic reward setting i.e., r̂t
is from Definition 2. We follow the same settings in this section.

3.1 Baselines Do Not Control Update Variance in NPG

We begin from the well known result that value baselines have no effect on exact policy gradients.
Proposition 2 (Unbiasedness of NPG). For NPG with and without a state value baseline, corre-
sponding to Updates 1 and 2 respectively, we have Eat∼πθt (·) [r̂t] = Eat∼πθt (·) [r̂t − b̂t] = r.

According to Proposition 2, Updates 1 and 2 become identical if the exact policy gradient is available,
hence both enjoy an O(e−c·t) convergence rate to a global optimum (c > 0) [14, 21]. Therefore, a
state value baseline can only have an effect if the policy gradient has to be estimated from a stochastic
sample. However, we find that the variance of the NPG updates remains unbounded in the stochastic
setting, regardless of whether a state value baseline is used.
Proposition 3 (Unboundedness of NPG). For NPG without a baseline, Update 1, we have
Eat∼πθt (·) ‖r̂t‖

2
2 =

∑
a∈[K]

r(a)2

πθt (a) . For NPG with a state value baseline, Update 2, we have

Eat∼πθt (·) ‖r̂t − b̂t‖
2
2 =

∑
a∈[K]

(r(a)−π>θtr)
2

πθt (a) −K · (π>θtr)
2 + 2 · (π>θtr) · (r

>1).

According to Proposition 3, whenever πθt nears a one-hot probability distribution over [K] (which

it must converge to), there exists at least one action a ∈ [K] such that both r(a)2

πθt (a) and
(r(a)−π>θtr)

2

πθt (a)

become unbounded, implying an unbounded scale for both Updates 1 and 2. Yet we know from
Proposition 1 that not using a baseline fails with positive probability, while from Theorem 1 subtract-
ing a state value baseline ensures almost sure convergence to a global optimum. The fact that the
variance of both updates is unbounded suggests that it is difficult to draw conclusions on the effect
of the baseline from a variance reduction perspective alone. An alternative analysis is required to
explain the fundamental difference between Updates 1 and 2.

3.2 Coupled Sampling and Updating

Figure 1: Coupled on-policy
sampling and updating [21,
Figure 2].

In on-policy stochastic policy optimization, sampling and updating
are coupled as shown in Figure 1. At iteration t, the data collected
depends on the current policy, since on-policy sampling is used
at ∼ πθt(·), while the policy is updated from the observations col-
lected based on at. This coupling introduces complexity in the
optimization process as well as in the analysis. However, this cou-
pling is also fundamental to understanding the circular interaction
created by any on-policy stochastic optimization method. That is,
on-policy stochastic optimization faces an exploration-exploitation
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dilemma: a learning algorithm can improve the policy and increase
the probability of choosing actions that yield higher rewards (ex-
ploitation), but it must not do so too aggressively lest it fail to identify
possibly higher-reward actions (exploration). Striking a proper bal-
ance between exploration and exploitation is key to achieving good
convergence properties. Different levels of update aggression create different circular effects between
sampling and updating, which is central to determining almost sure convergence to a global optimum.

3.3 The “Vicious Circle” of Being Too Aggressive

First we illustrate a negative effect, the “vicious circle” of being too aggressive.

Lemma 5 (Bad sampling). Let πθt(a) ∈ (0, 1) be the probability of sampling action a using online
sampling at ∼ πθt(·), for all t ≥ 1. If 1− πθt(a) ∈ O(1/t1+ε), where ε > 0, then

∏∞
t=1 πθt(a) > 0.

Note that Lemma 5 characterizes sampling behaviour under general conditions that do not otherwise
depend on specific updates. However, according to Lemma 5, if an action’s probability approaches 1
strictly faster than O(1/t), by whatever means, it becomes possible to not sample any other action
forever, which creates a “lack of exploration” phenomenon as it is known in RL. In particular,
on-policy stochastic NPG without a baseline can produce such a sequence of {πθt(a)}t≥1.

Lemma 6 (NPG aggressiveness). Fix sampling at = a for all t ≥ 1, using Update 1 with constant
learning rate η > 0, where r̂t is from Definition 2, we have 1 − πθt(a) ∈ O(e−c·t) for all t ≥ 1,
where c > 0.

According to Definition 3, we have κ(NPG, a) = ∞, meaning that NPG without baseline is very
aggressive. Note that Lemma 6 only characterizes the aggressiveness of Update 1 with the sampling
fixed to be at = a for all t ≥ 1. Lemmas 5 and 6 together describe the “vicious circle” between
sampling and updating that can be created by overly aggressive updates. First, in on-policy sampling,
there will always be a non-zero probability of “bad luck”; that is, with positive probability a set of
sub-optimal actions can be sequentially sampled for multiple steps. Second, an overly aggressive
update will only exaggerate the weakness of the sampling procedure by increasing the sampled
sub-optimal actions’ probabilities rapidly (Lemma 6). Third, this exaggeration can worsen data
collection for subsequent updating by further increasing the prevalence of sub-optimal actions.
Such a vicious circular interaction between sampling and updating can happen repeatedly, and its
self-reinforcing nature can create a non-zero probability that the cycle occurs forever (Lemma 5),
resulting in convergence to a sub-optimal deterministic policy (a stationary point for both sampling
and updating).

3.4 The “Virtuous Circle” of Not Being Too Aggressive

Next, we demonstrate a positive effect, the “virtuous circle” of not being too aggressive.

Lemma 7 (Good sampling). Let πθt(a) ∈ (0, 1) and at ∼ πθt(·), for all t ≥ 1. If
∑∞
t=1 (1− πθt(a))

=∞ (e.g., 1− πθt(a) ∈ Ω(1/t)), then
∏∞
t=1 πθt(a) = 0.

As in Lemma 5, Lemma 7 only characterizes the effect of sampling behaviour under general conditions
that do not otherwise depend on specific updates. Here we see that if an action’s probability approaches
1 no faster than O(1/t), it is no longer possible to avoid sampling any other action forever; that is,
sufficiently slow modification of the sampling probabilities forces persistent exploration such that
every action is sampled within some finite time with probability 1. In particular, subtracting a value
baseline in on-policy stochastic NPG produces such a sequence {πθt(a)}t≥1.

Lemma 8 (Value baselines reduce NPG aggressiveness). Fix sampling at = a for all t ≥ 1. Then
using Update 2 with a constant learning rate η > 0 and r̂t from Definition 2 obtains 1− πθt(a) ∈
Ω(1/t) for all t ≥ 1.

According to Definition 3, with value baselines, we have κ(NPG, a) = 1, meaning that the aggres-
siveness of NPG update is reduced. As in Lemma 6, Lemma 8 only characterizes the conservativeness
of Update 2 with fixed sampling of at = a for all t ≥ 1. Lemmas 7 and 8 now describe a “virtuous
circle” between sampling and updating that is created by using not too aggressive updates. First,
even in a worst case situation (e.g., an adversarial initialization), where a sub-optimal action has a
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dominant probability πθt(a) ≈ 1, under on-policy sampling all actions will eventually be sampled.
Second, conservative updating will mitigate the effect of the extreme sampler by not increasing
the sub-optimal action’s probability too rapidly (Lemma 8). Third, sustained diversity in sampling
will eventually draw a better action than the current dominating sub-optimal action (Lemma 7).
Finally, once better actions are sampled, the update will improve subsequent sampling by decreasing
the probability of the dominating sub-optimal action. In particular, this is achieved by increasing
value baselines to be larger than the dominating sub-optimal action’s true mean reward, such that
the dominating sub-optimal action will start losing probabilities. This virtuous circular interaction
between sampling and updating ensures sufficient exploration, which prevents the iteration from
converging to a sub-optimal deterministic policy.

3.5 How a State Value Baseline Reduces Update Aggressiveness

Based on Lemmas 5 and 7, the boundary between “too aggressive” and “not too aggressive” is
precisely Θ(1/t). We now explain how a state value baseline in NPG will control update aggres-
siveness. First, without a baseline, sampling a sub-optimal action a ∈ [K] for t times makes its
parameter behave as θt(a) ∈ Θ(t), since r(a) ∈ Θ(1). On the other hand, other action parameters
will behave as θt(a′) ∈ Θ(1) if they are only sampled a constant number of times. Under the softmax
parameterization Eq. (2), this will imply that 1 − πθt(a) ∈ O(e−c·t), which is far too aggressive.
Second, using a state value baseline, under repeated sampling the parameter increase for a sub-optimal
action a ∈ [K] will be damped. In particular, whenever the policy is close to deterministic, say
πθt(a) ≈ 1, we also have π>θtr ≈ r(a). Therefore, since

r(a)− π>θtr =
∑
a′ 6=a

πθt(a
′) · (r(a)− r(a′)) ≤ 1− πθt(a), (25)

the closer 1 − πθt(a) is to 0, the smaller r(a) − π>θtr will be. This means even if a is sampled
repeatedly for t times, we obtain θt(a) ∈ O(log t) and 1− πθt(a) ∈ Ω(1/t) (Lemma 8). Thus, the
effect of baseline is to modify the sampling to lie exactly on the boundary of being good enough.
From this argument the key role of the value baseline is to reduce update aggressiveness to achieve
a particular effect on long-term sampling, rather than simply reduce variance. It also shows how
using an appropriately un-aggressive update is both necessary (Lemma 5) and sufficient (Lemma 7)
to achieve almost sure convergence to a global optimum in on-policy stochastic policy optimization.

4 Simulations

We conducted simulations to verify the two main results above: asymptotic convergence toward
globally optimal policy π∗ in Lemma 2, and the O(1/t) convergence rate in Theorem 1.

4.1 Asymptotic Convergence

We first consider a one-state MDP with K = 20 actions and true mean reward vector r ∈ (0, 1)K ,
where the optimal action is a∗ = 1 with true mean reward r(1) ≈ 0.97 and best sub-optimal
action’s true mean reward r(2) ≈ 0.95. The sampled reward is observed with a large noise, e.g.,
x ≈ −2.03 and x ≈ 3.97 with both 0.5 probability for the optimal action, such that r(1) ≈
0.5 · (−2.03) + 0.5 · 3.97. Details about r and the reward distributions can be found in the appendix.

To verify asymptotic convergence to a globally optimal policy in Lemma 2, we consider the iteration
behaviors of Update 2 under an adversarial initialization, where πθ1(2) ≈ 0.88, i.e., a sub-optimal
action starts with a dominating probability. This is the worst case scenario for Lemma 2, where the
optimal action only has a small chance to be sampled, while the sampled reward noise is very large.

As shown in Figure 2a, the expected reward π>θtr quickly approaches and remains stuck around
r(2) ≈ 0.95 initially, as expected. However, after about 8 × 106 iterations, the policy πθt finally
escapes the sub-optimal plateau and approaches the optimal reward r(1) ≈ 0.97. This simulation
result is consistent with Lemma 2, i.e., for an arbitrary initialization, the introduction of a value
baseline eventually makes πθt approach a globally optimal policy within finite time, while additionally
the optimal action’s probability never vanishes, inft≥1 πθt(a

∗) > 0, as shown in Figure 2b.
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(a) π>θtr. (b) πθt(a
∗). (c) log (π∗ − πθt)

> r.

Figure 2: Adversarial initialization (a) and (b); uniform initialization (c).

4.2 Convergence Rate

We run Update 2 with a uniform initialization, i.e., πθ1(a) = 1/K for all a ∈ [K], and calculate
averaged sub-optimality gap (π∗ − πθt)

>
r across 20 independent runs, using deterministic reward

settings where r̂t is from Definition 2. As shown in Figure 2c, where both axes are in log scale,
the slope is approximately −1, indicating that log (π∗ − πθt)

>
r = − log t + C, or equivalently

(π∗ − πθt)
>
r = C ′/t, which is consistent with Theorem 1.

5 Conclusion

This work clarifies some of the longstanding mysteries those have separated the theory and practice
of policy gradient optimization. The major finding is a state value baseline reduces the aggressiveness
of the on-policy stochastic NPG update, which turns out to be necessary and sufficient for achieving
almost sure convergence to a global optimum. The deeper understanding of the circular dependence
between on-policy sampling and updating also dispels a common misconception about variance
reduction, showing that bounded variance estimators are not necessary for achieving global conver-
gence. The main technical innovation is the stochastic NŁ inequality, and the subsequent arguments
that establish global convergence, both of which depend critically on the value baseline.

This work leaves open a number of interesting questions. First, the O(1/t) convergence rate contains
an initialization dependent constant in Lemma 2, resulting from plateaus as observed in Figure 2a,
which does not appear in results that use the direct parameterization [8]. Thus the difficulty appears
due to the non-linear softmax transform. Removing or improving this constant would impact practical
performance, so investigating other techniques, such as regularization, optimism or momentum might
be helpful. Second, the results in this paper use the true state values as the baselines. It would be
interesting to consider the effect of estimating the value baseline or using alternative baselines in policy
optimization. Finally, the O(1/t) last iteration convergence rate implies an optimal O(log T ) regret
in stochastic bandit problems [16]. The explanation of the circular dependence between sampling
and updating is specific to on-policy PG optimization, but it is also consistent with the exploration
exploitation dilemma in RL. In other words, this work suggests a completely new approach to the
exploration-exploitation trade-off, achieving provable bounds with ever requiring explicit uncertainty
estimates, nor any concrete instantiation of the principle of optimism under uncertainty.
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A Proofs for One-state MDPs

Lemma 1 (Stochastic non-uniform Łojasiewicz (NŁ)). Suppose Assumption 1 holds. Let r ∈ [0, 1]K ,
a∗ := arg maxa∈[K] r(a) denote the optimal action, and ∆ := r(a∗) − maxa6=a∗ r(a) denote the
reward gap. Using Update 2 with on-policy sampling at ∼ πθt(·) and IS estimator r̂t,

(1) if r̂t is from Definition 2, then with constant learning rate η > 0, we have, for all t ≥ 1,

π>θt+1
r − π>θtr ≥ 0, almost surely (a.s.), and (26)

Et[π>θt+1
r]− π>θtr ≥

η

1 + η
· πθt(a∗) ·

(
r(a∗)− π>θtr

)2
, (27)

where Et[·] is on randomness from on-policy sampling at ∼ πθt(·).

(2) if r̂t is from Definition 1, then with learning rate,

η =
πθt(at) ·

∣∣r(at)− π>θtr∣∣
8 ·R2

max

, (28)

we have, for all t ≥ 1,

Et[π>θt+1
r]− π>θtr ≥

1

16 ·R2
max

·
K∑
i=1

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 (29)

≥ 1

16 ·R2
max

· ∆

K − 1
· πθt(a∗)2 ·

(
r(a∗)− π>θtr

)2
, (30)

where Et[·] is on randomness from on-policy sampling at ∼ πθt(·) and reward sampling x ∼ Rat .

Proof. First part. (1) If r̂t is from Definition 2.

Since the results are concerned with the policies {πθt}t≥1 underlying the parameter {θt}t≥1 and not
the parameter vectors themselves, as noted after Update 2, without loss of generality, in the rest of
the proof we assume that the update over parameter vectors is according to,

θt+1(a)← θt(a) + η · I {at = a}
πθt(a)

·
(
r(a)− π>θtr

)
. (31)
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For all t ≥ 1, for any action i ∈ [K], denote[
π>θt+1

r | at = i
]

(32)

as the the value of π>θt+1
r given the sampled action at = i.

According to Eq. (31) and Definition 2, we have,

[
π>θt+1

r | at = i
]

=
exp

{
θt(i) + η · r(i)−π

>
θt
r

πθt (i)

}
· r(i) +

∑
j 6=i exp{θt(j)} · r(j)

exp
{
θt(i) + η ·

r(i)−π>θtr
πθt (i)

}
+
∑
j 6=i exp{θt(j)}

(33)

=
πθt(i) · exp

{
η · r(i)−π

>
θt
r

πθt (i)

}
· r(i) +

∑
j 6=i πθt(j) · r(j)

πθt(i) · exp
{
η ·

r(i)−π>θtr
πθt (i)

}
+
∑
j 6=i πθt(j)

, (34)

where the last equation is by dividing
∑
a∈[K] exp

{
θt(a)

}
from both the numerator and the denomi-

nator. Therefore, by algebra we have,

[
π>θt+1

r | at = i
]
− π>θtr =

[
πθt(i) · exp

{
η · r(i)−π

>
θt
r

πθt (i)

}
− πθt(i)

]
·
(
r(i)− π>θtr

)
πθt(i) · exp

{
η ·

r(i)−π>θtr
πθt (i)

}
+
∑
j 6=i πθt(j)

(35)

=

[
exp

{
η · r(i)−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

r(i)−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

≥ 0, (36)

where the last inequality is from (ec·y − 1) · y ≥ 0 for all y ∈ R with c := η
πθt (i)

> 0. This proves
Eq. (26), because of i ∈ [K] is arbitrary.

For all t ≥ 1, given current policy πθt , the expected reward of next policy π>θt+1
r is a random variable,

and the randomness is from on-policy sampling at ∼ πθt(·). The expected progress is,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) · Et[π>θt+1
r | at = i]− π>θtr (at ∼ πθt(·)) (37)

=

K∑
i=1

πθt(i) ·
([
π>θt+1

r | at = i
]
− π>θtr

)
(38)

=

K∑
i=1

πθt(i) ·

[
exp

{
η · r(i)−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

r(i)−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

(by Eq. (35)) (39)

where
[
π>θt+1

r | at = i
]

means the value of π>θt+1
r given the sampled action ai = i.

Partition the action set [K] into three parts using π>θtr as follows,

A0
t :=

{
a0 ∈ [K] : r(a0) = π>θtr

}
, (40)

A+
t :=

{
a+ ∈ [K] : r(a+) > π>θtr

}
, (41)

A−t :=
{
a− ∈ [K] : r(a−) < π>θtr

}
. (42)

From Eq. (37), we have,

Et[π>θt+1
r]− π>θtr =

∑
a+∈A+

t

πθt(a
+) ·

[
exp

{
η · r(a

+)−π>θtr
πθt (a

+)

}
− 1

]
·
(
r(a+)− π>θtr

)
exp

{
η ·

r(a+)−π>θtr
πθt (a

+)

}
+

1−πθt (a+)

πθt (a
+)

(43)

+
∑

a−∈A−t

πθt(a
−) ·

[
exp

{
η · r(a

−)−π>θtr
πθt (a

−)

}
− 1

]
·
(
r(a−)− π>θtr

)
exp

{
η ·

r(a−)−π>θtr
πθt (a

−)

}
+

1−πθt (a−)

πθt (a
−)

. (44)
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For any a+ ∈ A+
t , we have,[

exp
{
η · r(a

+)−π>θtr
πθt (a

+)

}
− 1

]
·
(
r(a+)− π>θtr

)
exp

{
η ·

r(a+)−π>θtr
πθt (a

+)

}
+

1−πθt (a+)

πθt (a
+)

≥
η · r(a

+)−π>θtr
πθt (a

+) ·
(
r(a+)− π>θtr

)
η ·

r(a+)−π>θtr
πθt (a

+) + 1
πθt (a

+)

(ex − 1 ≥ x > 0)

(45)

=
η ·
(
r(a+)− π>θtr

)2
η ·
(
r(a+)− π>θtr

)
+ 1
≥ η

1 + η
·
(
r(a+)− π>θtr

)2
.

(
r ∈ [0, 1]K

)
(46)

For any a− ∈ A−t , we have,[
exp

{
η · r(a

−)−π>θtr
πθt (a

−)

}
− 1

]
·
(
r(a−)− π>θtr

)
exp

{
η ·

r(a−)−π>θtr
πθt (a

−)

}
+

1−πθt (a−)

πθt (a
−)

=

[
exp

{
η · π

>
θt
r−r(a−)

πθt (a
−)

}
− 1

]
·
(
π>θtr − r(a

−)
)

[
exp

{
η ·

π>θt
r−r(a−)

πθt (a
−)

}
− 1

]
· 1−πθt (a−)

πθt (a
−) + 1

πθt (a
−)

(47)

≥
η · π

>
θt
r−r(a−)

πθt (a
−) ·

(
π>θtr − r(a

−)
)

η ·
π>θt

r−r(a−)

πθt (a
−) · 1−πθt (a−)

πθt (a
−) + 1

πθt (a
−)

(ex − 1 ≥ x > 0) (48)

=
η · πθt(a−) ·

(
π>θtr − r(a

−)
)2

η ·
(
π>θtr − r(a

−)
)
·
(
1− πθt(a−)

)
+ πθt(a

−)
(49)

≥ η

1 + η
· πθt(a−) ·

(
π>θtr − r(a

−)
)2 (

r ∈ [0, 1]K , πθt(a
−) ∈ (0, 1)

)
(50)

Combining Eqs. (43), (45) and (47), we have,

Et[π>θt+1
r]− π>θtr ≥

∑
a+∈A+

t

πθt(a
+) · η

1 + η
·
(
r(a+)− π>θtr

)2
(51)

+
∑

a−∈A−t

πθt(a
−) · η

1 + η
· πθt(a−) ·

(
π>θtr − r(a

−)
)2

(52)

≥ η

1 + η
· πθt(a∗) ·

(
r(a∗)− π>θtr

)2
.

(
a∗ ∈ A+

t

)
(53)

Second part. (2) If r̂t is from Definition 1.

As noted after Update 2, we analyze Update 3, which is duplicated as follows,

θt+1(a)← θt(a) + η · I {at = a}
πθt(a)

·
(
xt(a)− π>θtr

)
. (54)

For all t ≥ 1, given current policy πθt , the expected reward of next policy π>θt+1
r is a random variable,

and the randomness is from on-policy sampling at ∼ πθt(·) and reward sampling x ∼ Rat . The
expected progress after one update is,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) · Et[π>θt+1
r | at = i]− π>θtr (at ∼ πθt(·)) (55)

=

K∑
i=1

πθt(i) ·
(
Et[π>θt+1

r | at = i]− π>θtr
)

︸ ︷︷ ︸
expected progress of at=i

(56)

=

K∑
i=1

πθt(i) ·

(∫ Rmax

−Rmax

[
π>θt+1

r | at = i, Rt = x
]
· Pi(x)µ(dx)− π>θtr

)
(57)

=

K∑
i=1

πθt(i) ·
∫ Rmax

−Rmax

([
π>θt+1

r | at = i, Rt = x
]
− π>θtr

)
︸ ︷︷ ︸

progress of at=i, Rt=x

·Pi(x)µ(dx), (58)
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where
[
π>θt+1

r | at = i, Rt = x
]

means the value of π>θt+1
r given the sampled action ai = i and

sampled reward Rt = x. According to Eq. (54) and Definition 1, we have,

[
π>θt+1

r | at = i, Rt = x
]

=
exp

{
θt(i) + η · x−π

>
θt
r

πθt (i)

}
· r(i) +

∑
j 6=i exp{θt(j)} · r(j)

exp
{
θt(i) + η ·

x−π>θtr
πθt (i)

}
+
∑
j 6=i exp{θt(j)}

(59)

=
πθt(i) · exp

{
η · x−π

>
θt
r

πθt (i)

}
· r(i) +

∑
j 6=i πθt(j) · r(j)

πθt(i) · exp
{
η ·

x−π>θtr
πθt (i)

}
+
∑
j 6=i πθt(j)

, (60)

where the last equation is by dividing
∑
a∈[K] exp

{
θt(a)

}
from both the numerator and the denomi-

nator. Therefore, by algebra we have,

[
π>θt+1

r | at = i, Rt = x
]
− π>θtr =

[
πθt(i) · exp

{
η · x−π

>
θt
r

πθt (i)

}
− πθt(i)

]
·
(
r(i)− π>θtr

)
πθt(i) · exp

{
η ·

x−π>θtr
πθt (i)

}
+
∑
j 6=i πθt(j)

(61)

=

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

. (62)

Combining Eqs. (55) and (61), we have,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) ·
∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx)

(63)

=

K∑
i=1

πθt(i) ·
(
r(i)− π>θtr

)
·

[∫
x∈X+

t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (64)

+

∫
x∈X−t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx)

]
, (65)

where X+
t and X−t are defined by partitioning the sampled reward range [−Rmax, Rmax] into two

parts for the current iteration,

X+
t :=

{
x ∈ [−Rmax, Rmax] : x− π>θtr ≥ 0

}
= [π>θtr, Rmax], (66)

X−t :=
{
x ∈ [−Rmax, Rmax] : x− π>θtr < 0

}
= [−Rmax, π

>
θtr). (67)

We next prove that, in Eq. (63), for any sampled action at = i ∈ [K], we have,

∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) ≥ η

2
·
(
r(i)− π>θtr

)2
. (68)

There are three cases of sampled action at = i ∈ [K].

Case (a). i ∈ [K] is a “good” action at the current iteration, i.e., r(i)− π>θtr > 0.

According to Eq. (485) in Lemma 15, given any fixed p ∈ (0, 1], and any fixed ε ∈ [0, 1], we have,

fp(y) :=
ey − 1

ey + 1−p
p

≥ (1− ε) · p · y, for all y ∈ [0, ε]. (69)
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Let p = πθt(i) ∈ (0, 1] according to the softmax parameterization. Let

ε =
1

2
·

r(i)− π>θtr∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)
> 0, (70)

where the inequality is because of r(i)− π>θtr > 0. Also note that,

ε =
1

2
·

∣∣r(i)− π>θtr∣∣∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)

(
r(i)− π>θtr > 0

)
(71)

=
1

2
·

∣∣∣∫ Rmax

−Rmax
x · Pi(x)µ(dx)− π>θtr

∣∣∣∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)
(by Assumption 1) (72)

=
1

2
·

∣∣∣∫ Rmax

−Rmax

(
x− π>θtr

)
· Pi(x)µ(dx)

∣∣∣∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)
(73)

≤ 1

2
·
∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)
(by triangle inequality) (74)

= 1/2 ≤ 1, (75)

which means ε ∈ (0, 1]. Let

y = η ·
x− π>θtr
πθt(i)

. (76)

We have,

|y| =
πθt(i) ·

∣∣r(i)− π>θtr∣∣
8 ·R2

max

·
∣∣x− π>θtr∣∣
πθt(i)

(by Eq. (6)) (77)

≤
∣∣r(i)− π>θtr∣∣

4 ·Rmax

(∣∣x− π>θtr∣∣ ≤ 2 ·Rmax

)
(78)

≤ 1

2
·

∣∣r(i)− π>θtr∣∣∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)

(∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx) ≤ 2 ·Rmax

)
(79)

= ε. (80)

Therefore, we have,

∫
x∈X+

t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (81)

≥
∫
x∈X+

t

(1− ε) · πθt(i) · η ·
x− π>θtr
πθt(i)

· Pi(x)µ(dx) (by Eq. (69)) (82)

= η ·
∫
x∈X+

t

(1− ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx). (83)

According to Eq. (486) in Lemma 15, given any fixed p ∈ (0, 1], and any fixed ε ∈ [0, 1], we have,

ey − 1

ey + 1−p
p

≥ (1 + ε) · p · y, for all y ∈ [−ε, 0]. (84)
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Using the same values of p = πθt(i), ε in Eq. (70), and y in Eq. (76), we have,

∫
x∈X−t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (85)

≥
∫
x∈X−t

(1 + ε) · πθt(i) · η ·
x− π>θtr
πθt(i)

· Pi(x)µ(dx) (by Eq. (84)) (86)

= η ·
∫
x∈X−t

(1 + ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx). (87)

Combining Eqs. (63), (81) and (85), we have,

∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (88)

≥
(
r(i)− π>θtr

)
· η ·

[∫
x∈X+

t

(1− ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx) (89)

+

∫
x∈X−t

(1 + ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx)

] (
since r(i)− π>θtr > 0

)
(90)

=
(
r(i)− π>θtr

)
· η ·

[∫ Rmax

−Rmax

(
x− π>θtr

)
· Pi(x)µ(dx) (by Eq. (66)) (91)

− ε ·

(∫
x∈X+

t

(
x− π>θtr

)
· Pi(x)µ(dx)−

∫
x∈X−t

(
x− π>θtr

)
· Pi(x)µ(dx)

)]
(92)

=
(
r(i)− π>θtr

)
· η ·

[ (
r(i)− π>θtr

)
(by Assumption 1) (93)

− ε ·
∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)

]
(by Eq. (66)) (94)

=
(
r(i)− π>θtr

)
· η ·

[(
r(i)− π>θtr

)
− 1

2
·
(
r(i)− π>θtr

)]
(by Eq. (70)) (95)

=
η

2
·
(
r(i)− π>θtr

)2
. (96)

Case (b). i ∈ [K] is a “bad” action at the current iteration, i.e., r(i)− π>θtr < 0.

According to Eq. (485) in Lemma 15, given any fixed p ∈ (0, 1], and any fixed ε ∈ [0, 1], we have,

ey − 1

ey + 1−p
p

≤ (1 + ε) · p · y, for all y ∈ [0, ε]. (97)

Let p = πθt(i) ∈ (0, 1] according to the softmax parameterization. Let

ε =
1

2
·

−
(
r(i)− π>θtr

)∑M
m=1 Pi(m) ·

∣∣Ri(m)− π>θtr
∣∣ > 0. (98)
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We have ε ≤ 1 according to Eq. (71). Using the same value of y in Eq. (76), we have,

∫
x∈X+

t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (99)

≤
∫
x∈X+

t

(1 + ε) · πθt(i) · η ·
x− π>θtr
πθt(i)

· Pi(x)µ(dx) (by Eq. (97)) (100)

= η ·
∫
x∈X+

t

(1 + ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx). (101)

According to Eq. (486) in Lemma 15, given any fixed p ∈ (0, 1], and any fixed ε ∈ [0, 1], we have,

ey − 1

ey + 1−p
p

≤ (1− ε) · p · y, for all y ∈ [−ε, 0]. (102)

Using the same values of p = πθt(i), ε in Eq. (98), and y in Eq. (76), we have,

∫
x∈X−t

exp
{
η · x−π

>
θt
r

πθt (i)

}
− 1

exp
{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (103)

≤
∫
x∈X−t

(1− ε) · πθt(i) · η ·
x− π>θtr
πθt(i)

· Pi(x)µ(dx) (by Eq. (102)) (104)

= η ·
∫
x∈X−t

(1− ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx). (105)

Combining Eqs. (63), (99) and (103), we have,

∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (106)

≥
(
r(i)− π>θtr

)
· η ·

[∫
x∈X+

t

(1 + ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx) (107)

+

∫
x∈X−t

(1− ε) ·
(
x− π>θtr

)
· Pi(x)µ(dx)

] (
since r(i)− π>θtr < 0

)
(108)

=
(
r(i)− π>θtr

)
· η ·

[∫ Rmax

−Rmax

(
x− π>θtr

)
· Pi(x)µ(dx) (by Eq. (66)) (109)

+ ε ·

(∫
x∈X+

t

(
x− π>θtr

)
· Pi(x)µ(dx)−

∫
x∈X−t

(
x− π>θtr

)
· Pi(x)µ(dx)

)]
(110)

=
(
r(i)− π>θtr

)
· η ·

[ (
r(i)− π>θtr

)
(by Assumption 1) (111)

+ ε ·
∫ Rmax

−Rmax

∣∣x− π>θtr∣∣ · Pi(x)µ(dx)

]
(by Eq. (66)) (112)

=
(
r(i)− π>θtr

)
· η ·

[(
r(i)− π>θtr

)
− 1

2
·
(
r(i)− π>θtr

)]
(by Eq. (98)) (113)

=
η

2
·
(
r(i)− π>θtr

)2
. (114)

Case (c). i ∈ [K] is an “indifferent” action at the current iteration, i.e., r(i)− π>θtr = 0.
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According to Eq. (63), we have,

∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) (115)

= 0 ≥ η

2
·
(
r(i)− π>θtr

)2
.

(
since r(i)− π>θtr = 0

)
(116)

Combining the three cases, i.e., Eqs. (88), (106) and (115), we have, for all action i ∈ [K],

∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx) ≥ η

2
·
(
r(i)− π>θtr

)2
(117)

=
1

2
·
πθt(i) ·

∣∣r(i)− π>θtr∣∣
8 ·R2

max

·
(
r(i)− π>θtr

)2
. (by Eq. (6)) (118)

Combining Eqs. (63) and (117), we have,

Et[π>θt+1
r]− π>θtr =

K∑
i=1

πθt(i) ·
∫ Rmax

−Rmax

[
exp

{
η · x−π

>
θt
r

πθt (i)

}
− 1

]
·
(
r(i)− π>θtr

)
exp

{
η ·

x−π>θtr
πθt (i)

}
+

1−πθt (i)
πθt (i)

· Pi(x)µ(dx)

(119)

≥ 1

16 ·R2
max

·
K∑
i=1

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 (120)

≥ 1

16 ·R2
max

· ∆

K − 1
· πθt(a∗)2 ·

(
r(a∗)− π>θtr

)2
, (by Lemma 16) (121)

thus finishing the proofs.

Corollary 1. The sequence {π>θtr}t≥1 converges with probability one.

Proof. Setting Yt = r(a∗) − π>θtr we have Yt ∈ [0, 1]. Define Ft as the σ-algebra generated by
a1, x1(a1), a2, x2(a2), . . . , at−1, xt−1(at−1). Note that Yt is Ft-measurable since θt is a determin-
istic function of a1, x1(a1), . . . , at−1, xt−1(at−1). By Lemma 1, E[Yt+1|Ft] ≤ Yt. Hence, the
conditions of Doob’s supermartingale theorem (Theorem 4) are satisfied and the result follows.

Lemma 2 (Non-vanishing stochastic NŁ coefficient / “automatic exploration”). Using Update 2 with
the same settings as in Lemma 1, with arbitrary policy parameter initialization θ1 ∈ RK , we have,

c := inf
t≥1

πθt(a
∗) > 0, almost surely (a.s.). (122)

Proof. Since the claim is concerned with the policies underlying the parameter vectors and not the
parameter vectors themselves, as noted after Update 2, without loss of generality, in the rest of the
proof we assume that the parameter vector is updated according to Update 3 as follows,

θt+1(a)← θt(a) + η · I {at = a}
πθt(a)

·
(
xt(a)− π>θtr

)
. (123)

Given i ∈ [K], define the following set P(i) of “generalized one-hot policy”,

A(i) := {j ∈ [K] : r(j) = r(i)} , (124)

P(i) :=

{
π ∈ ∆(K) :

∑
j∈A(i)

π(j) = 1

}
. (125)

We make the following two claims.
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Claim 1. Almost surely, πθt approaches one “generalized one-hot policy”, i.e., there exists (a
possibly random) i ∈ [K], such that

∑
j∈A(i) πθt(j)→ 1 almost surely as t→∞.

Claim 2. Almost surely, πθt cannot approach any “sub-optimal generalized one-hot policies”, i.e., i
in the previous claim must be an optimal action.

From Claim 2, it follows that
∑
j∈A(a∗) πθt(j) → 1 almost surely, as t → ∞ and thus the policy

sequence obtained almost surely convergences to a globally optimal policy π∗.

Proof of Claim 1.

According to Corollary 1, we have that for some (possibly random) c ∈ [0, 1], almost surely,

lim
t→∞

π>θtr = c . (126)

Thanks to π>θtr ∈ [0, 1] and Eq. (11), Xt = π>θtr (t ≥ 1) satisfies the conditions of Corollary 3.
Hence, by this result, almost surely,

lim
t→∞

Et[π>θt+1
r]− π>θt+1

r = 0 , (127)

which, combined with Eq. (126) also gives that limt→∞ Et[π>θt+1
r] = c almost surely. Hence,

lim
t→∞

Et[π>θt+1
r]− π>θtr = c− c = 0, a.s. (128)

According to Eq. (120) in the proof of Lemma 1, we have,

Et[π>θt+1
r]− π>θtr ≥

1

16 ·R2
max

·
K∑
i=1

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 a.s. (129)

Combining Eqs. (128) and (129), we have, with probability 1,

lim
t→∞

K∑
i=1

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 = 0, (130)

which implies that, for all i ∈ [K], almost surely,

lim
t→∞

πθt(i)
2 ·
∣∣r(i)− π>θtr∣∣3 = 0 . (131)

We claim that c, the almost sure limit of π>θtr, is such that almost surely, for some (possibly random)
i ∈ [K], c = r(i) almost surely. We prove this by contradiction. Let Ei = {c = r(i)}. Hence, our
goal is to show that P(∪iEi) = 1. Clearly, this follows from P(∩iEci ) = 0, hence, we prove this. On
Eci , since limt→∞ π>θtr 6= r(i), we also have

lim
t→∞

∣∣r(i)− π>θtr∣∣3 > 0, almost surely on Eci . (132)

This, together with Eq. (131) gives that almost surely on Eci ,

lim
t→∞

πθt(i)
2 = 0 . (133)

Hence, on ∩iEci , almost surely, for all i ∈ [K], limt→∞ πθt(i)
2 = 0. This contradicts with that∑

i πθt(i) = 1 holds for all t ≥ 1, and hence we must have that P(∩iEci ) = 0, finishing the proof
that P(∪iEi) = 1.

Now, let i ∈ [K] be the (possibly random) index of the action for which c = r(i) almost surely.
Recall that A(i) contains all actions j with r(j) = r(i) (cf. Eq. (124)). Clearly, it holds that for all
j ∈ A(i),

lim
t→∞

π>θtr = r(j), a.s., (134)

and we have, for all k 6∈ A(i),

lim
t→∞

∣∣r(k)− π>θtr
∣∣3 > 0, a.s., (135)
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which implies that,

lim
t→∞

∑
k 6∈A(i)

πθt(k)2 = 0, a.s. (136)

Therefore, we have,

lim
t→∞

∑
j∈A(i)

πθt(j) = 1, a.s., (137)

which means πθt a.s. approaches the “generalized one-hot policy” P(i) in Eq. (125) as t → ∞,
finishing the proof of the first claim.

Proof of Claim 2. Recall that this claim stated that limt→∞
∑
j∈A(a∗) πθt(j) = 1. The brief

sketch of the proof is as follows: By Claim 1, there exists a (possibly random) i ∈ [K] such that∑
j∈A(i) πθt(j) → 1 almost surely, as t → ∞. If i = a∗ almost surely, Claim 2 follows. Hence,

it suffices to consider the event that {i 6= a∗} and show that this event has zero probability mass.
Hence, in the rest of the proof we assume that we are on the event when i 6= a∗.

Since i 6= a∗, there exists at least one “good” action a+ ∈ [K] such that r(a+) > r(i). The two
cases are as follows.

2a) All “good” actions are sampled finitely many times as t→∞.

2b) At least one “good” action is sampled infinitely many times as t→∞.

In both cases, we show that
∑
j∈A(i) exp{θt(j)} <∞ as t→∞ (but for different reasons), which is

a contradiction with the assumption of
∑
j∈A(i) πθt(j)→ 1 as t→∞, given that a “good” action’s

parameter is almost surely lower bounded. Hence, i 6= a∗ almost surely does not happen, which
means that almost surely i = a∗.

Let us now turn to the details of the proof. We start with some useful extra notation. For each action
a ∈ [K], for t ≥ 2, we have the following decomposition,

θt(a) = θt(a)− Et−1[θt(a)]︸ ︷︷ ︸
Wt(a)

+Et−1[θt(a)]− θt−1(a)︸ ︷︷ ︸
Pt−1(a)

+θt−1(a), (138)

while we also have,

θ1(a) = θ1(a)− E[θ1(a)]︸ ︷︷ ︸
W1(a)

+E[θ1(a)], (139)

where E[θ1(a)] accounts for possible randomness in initialization of θ1.

Define the following notations,

Zt(a) := W1(a) + · · ·+Wt(a), (“cumulative noise”) (140)
Wt(a) := θt(a)− Et−1[θt(a)], (“noise”) (141)
Pt(a) := Et[θt+1(a)]− θt(a). (“progress”) (142)

Recursing Eq. (138) gives,

θt(a) = E[θ1(a)] + Zt(a) + P1(a) + · · ·+ Pt−1(a)︸ ︷︷ ︸
“cumulative progress”

. (143)

We have that Et[Wt+1(a)] = 0, for t = 0, 1, . . . . Let

It(a) =

{
1, if at = a ,

0, otherwise .
(144)

The update rule (cf. Eq. (123)) is,

θt+1(a) = θt(a) + η · It(a)

πθt(a)
·
(
xt(a)− π>θtr

)
, (145)
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where at ∼ πθt(·), and xt(a) ∼ Pa. Let Ft be the σ-algebra generated by a1, x1(a1), · · · , at−1,
xt−1(at−1), at:

Ft = σ({a1, x1(a1), · · · , at−1, xt−1(at−1), at}) . (146)
Note that θt, It are Ft-measurable and x̂t is Ft+1-measurable for all t ≥ 1. Let Et denote the
conditional expectation with respect to Ft: Et[X] = E[X|Ft].
Using the above notations, we have,
Wt+1(a) = θt+1(a)− Et[θt+1(a)] (147)

=HHHθt(a) + η · It(a)

πθt(a)
·
(
xt(a)−Z

ZZπ
>
θtr
)
− Et

[
HHHθt(a) + η · It(a)

πθt(a)
·
(
xt(a)−Z

ZZπ
>
θtr
)]

(148)

= η · It(a)

πθt(a)
· (xt(a)− r(a)) , (149)

which implies that,
Zt(a) = W1(a) + · · ·+Wt(a) (150)

=

t−1∑
s=1

η · Is(a)

πθs(a)
· (xs(a)− r(a)). (151)

We also have,
Pt(a) = Et[θt+1(a)]− θt(a) (152)

= Et
[
HHHθt(a) + η · It(a)

πθt(a)
·
(
xt(a)− π>θtr

)]
−HHHθt(a) (153)

= η · It(a)

πθt(a)
·
(
r(a)− π>θtr

)
. (154)

Using the learning rate of Eq. (6),

η =
πθt(at) ·

∣∣r(at)− π>θtr∣∣
8 ·R2

max

, (155)

we have,

Wt+1(a) =
πθt(at) ·

∣∣r(at)− π>θtr∣∣
8 ·R2

max

· It(a)

πθt(a)
· (xt(a)− r(a)) (by Eq. (147)) (156)

=
It(a)

8 ·R2
max

·
∣∣r(a)− π>θtr

∣∣ · (xt(a)− r(a)) (157)

∈
[
− 1

8 ·Rmax
,

1

8 ·Rmax

]
. (158)

Similarly, we have,

Pt(a) =
It(a)

8 ·R2
max

·
∣∣r(a)− π>θtr

∣∣ · (r(a)− π>θtr
)
, (159)

and

Zt(a) =

t−1∑
s=1

Is(a)

8 ·R2
max

·
∣∣r(a)− π>θsr

∣∣ · (xs(a)− r(a)). (160)

Define the following notations,

Nt(a) :=

t∑
s=1

Is(a), (161)

N∞(a) :=

∞∑
s=1

Is(a), (162)

Np:q(a) :=

q∑
s=p

Is(a). (163)
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Recall that i is the index of the (random) action I ∈ [K] with

lim
t→∞

∑
j∈A(I)

πθt(j) = 1, a.s. (164)

As noted earlier we consider the event {I 6= a∗}, where a∗ is the index of an optimal action and we
will show that this event has zero probability. Since {I 6= a∗} = ∪i∈[K]{I = i, i 6= a∗}, it suffices
to show that for any fixed i ∈ [K] index with r(i) < r(a∗), {I = i, i 6= a∗} has zero probability.
Hence, in what follows we fix such a suboptimal action’s index i ∈ [K] and consider the event
{I = i, i 6= a∗}.
Partition the action set [K] into three parts using r(i) as follows,

A(i) := {j ∈ [K] : r(j) = r(i)} , (from Eq. (124)) (165)

A+(i) :=
{
a+ ∈ [K] : r(a+) > r(i)

}
, (166)

A−(i) :=
{
a− ∈ [K] : r(a−) < r(i)

}
. (167)

Because i was the index of a sub-optimal action, we have A+(i) 6= ∅. According to Eq. (164), on
{I = i} ⊃ {I = i, i 6= a∗}, we have π>θtr → r(i) as t→∞ because∣∣r(i)− π>θtr∣∣ =

∣∣∣∣ ∑
k 6∈A(i)

πθt(k) · (r(i)− r(k))

∣∣∣∣ (168)

≤
∑

k 6∈A(i)

πθt(k) · |r(i)− r(k)| (169)

≤ 1−
∑
j∈A(i)

πθt(j).
(
r ∈ [0, 1]K

)
(170)

Therefore, there exists τ ≥ 1 such that almost surely on {I = i, i 6= a∗} τ <∞ while we also have

r(a+)− c′ ≥ π>θtr ≥ r(a
−) + c′, for all t ≥ τ, (171)

for all a+ ∈ A+(i), a− ∈ A−(i), where c′ > 0.

Now, take any a− ∈ A−(i). According to Lemma 9, we have, almost surely on {I = i, i 6= a∗},

c1 := sup
t≥1

θt(a
−) <∞. (172)

First case. 2a). Consider the event,

E0 :=
⋂

a+∈A+(i)

{
N∞(a+) <∞

}︸ ︷︷ ︸
E0(a+)

, (173)

i.e., any “good” action a+ ∈ A+(i) has finitely many updates as t → ∞. Pick a+ ∈ A+(i), such
that P(N∞(a+) <∞) > 0. According to the extended Borel-Cantelli lemma (Lemma 14), we have,
almost surely, {∑

t≥1

πθt(a
+) =∞

}
=
{
N∞(a+) =∞

}
. (174)

Hence, taking complements, we have,{∑
t≥1

πθt(a
+) <∞

}
=
{
N∞(a+) <∞

}
(175)

also holds almost surely.

On event E0(a+), we also have,

c2 := inf
t≥1

θt(a
+) > −∞, (176)

c3 := sup
t≥1

θt(a
+) <∞, (177)
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which is because on this event the parameter corresponding to a+ receives finitely many updates and
each update is bounded, i.e., for any a ∈ [K],∣∣θt+1(a)− θt(a)

∣∣ = η · It(a)

πθt(a)
·
∣∣xt(a)− π>θtr

∣∣ (by Eq. (145)) (178)

=
πθt(at) ·

∣∣r(at)− π>θtr∣∣
8 ·R2

max

· It(a)

πθt(a)
·
∣∣xt(a)− π>θtr

∣∣ (by Eq. (155)) (179)

=
It(a)

8 ·R2
max

·
∣∣r(a)− π>θtr

∣∣ · ∣∣xt(a)− π>θtr
∣∣ ≤ 1

8 ·Rmax
. (180)

Define

qt =
∑

a+∈A+(i)

πθt(a
+). (181)

On event E ′ := E0 ∩ {I = i, i 6= a∗}, and by the softmax parameterization, we have,

qt =

∑
a+∈A+(i) e

θt(a
+)∑

j∈A(i) e
θt(j) +

∑
a+∈A+(i) e

θt(a+) +
∑
a−∈A−(i) e

θt(a−)
(182)

≥
∑
a+∈A+(i) e

c2∑
j∈A(i) e

θt(j) +
∑
a+∈A+(i) e

c2 +
∑
a−∈A−(i) e

θt(a−)
(by Eq. (176)) (183)

≥
∑
a+∈A+(i) e

c2∑
j∈A(i) e

θt(j) +
∑
a+∈A+(i) e

c2 +
∑
a−∈A−(i) e

c1
(by Eq. (172)) (184)

=
ec2 · |A+(i)|∑

j∈A(i) e
θt(j) + ec2 · |A+(i)|+ ec1 · |A−(i)|

. (185)

Next, we have,

1−
∑
j∈A(i)

πθt(j) =

∑
a+∈A+(i) e

θt(a
+) +

∑
a−∈A−(i) e

θt(a
−)∑

j∈A(i) e
θt(j) +

∑
a+∈A+(i) e

θt(a+) +
∑
a−∈A−(i) e

θt(a−)
(186)

≤
∑
a+∈A+(i) e

c3 +
∑
a−∈A−(i) e

c1∑
j∈A(i) e

θt(j) +
∑
a+∈A+(i) e

c3 +
∑
a−∈A−(i) e

c1
(by Eqs. (172) and (177))

(187)

=
ec3 · |A+(i)|+ ec1 · |A−(i)|∑

j∈A(i) e
θt(j) + ec2 · |A+(i)|+ ec1 · |A−(i)|+ (ec3 − ec2) · |A+(i)|

(188)

≤ ec3 · |A+(i)|+ ec1 · |A−(i)|
ec2
qt
· |A+(i)|+ (ec3 − ec2) · |A+(i)|

(by Eq. (182)) (189)

=
ec3 · |A+(i)|+ ec1 · |A−(i)|

ec2 · |A+(i)|+ (ec3 − ec2) · |A+(i)| · qt
· qt (190)

≤ ec3 · |A+(i)|+ ec1 · |A−(i)|
ec2 · |A+(i)|

· qt . (because qt > 0) (191)

Denote C ′ :=
ec3 ·|A+(i)|+ec1 ·|A−(i)|

ec2 ·|A+(i)| . We have,∣∣r(i)− π>θtr∣∣ ≤ 1−
∑
j∈A(i)

πθt(j)
(
r ∈ [0, 1]K

)
(by Eq. (168)) (192)

≤ C ′ · qt. (by Eq. (191)) (193)

Take any j ∈ A(i), according to Eq. (143), we have,

θt(j) = E[θ1(j)] + Zt(j) +

t−1∑
s=1

Ps(j). (194)
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According to Eq. (159), we have,

Ps(j) =
Is(j)

8 ·R2
max

·
∣∣r(j)− π>θsr∣∣ · (r(j)− π>θsr) . (195)

Therefore, for all s ≥ 1,

|Ps(j)| ≤
1

8 ·R2
max

·
(
r(i)− π>θsr

)2
(j ∈ A(i), r(j) = r(i)) (196)

≤ C ′

8 ·R2
max

· q2
s (by Eq. (192)) (197)

≤ C ′

8 ·R2
max

· qs. (qs ∈ (0, 1)) (198)

For any j ∈ A(i), we have,

S2
t (j) :=

t∑
s=1

(
r(j)− π>θsr

)2 · Is(j) (199)

≤
t∑

s=1

(
r(j)− π>θsr

)2
(200)

≤
t∑

s=1

q2
s (by Eq. (192)) (201)

≤
t∑

s=1

qs (qs ∈ [0, 1]) (202)

=: Qt. (203)

Fix δ ∈ [0, 1]. According to Lemma 11, ∃ Eδ with P(Eδ) ≥ 1− δ, and on Eδ , for all t ≥ 1,

|Zt(j)| ≤
1

8Rmax
·

√√√√(1 + S2
t (j)) ·

(
1 + 2 log

(
(1 + S2

t (j))
1
2

δ

))
. (204)

Then, on E ′ ∩ Eδ , Eq. (203) holds and also,
t−1∑
s=1

Ps(j) ≤
C ′

8 ·R2
max

·Qt. (by Eq. (198)) (205)

According to Eqs. (194), (204) and (205), we have, on E ′ ∩ Eδ ,

θt(j) ≤ E[θ1(j)] +
1

8Rmax
·

√√√√(1 +Qt) ·

(
1 + 2 log

(
(1 +Qt)

1
2

δ

))
+

C ′

8R2
max

·Qt (206)

≤ E[θ1(j)] +
1

8Rmax
·

√√√√(1 +Q) ·

(
1 + 2 log

(
(1 +Q)

1
2

δ

))
+

C ′

8R2
max

·Q , (207)

where Q = limt→∞Qt and the inequality follows because (Qt) is increasing. Note that on E ′, Q is
finite almost surely, according to Eqs. (175), (181) and (203).

Now take any ω ∈ E ′. Because P(E ′ \ (E ′ ∩ Eδ)) ≤ P(Ω \ Eδ) ≤ δ → 0 as δ → 0, we have that
P-almost surely for all ω ∈ E ′ there exists δ > 0 such that ω ∈ E ′ ∩ Eδ while Eq. (207) also holds for
this δ. Take such a δ. By Eq. (207),

lim sup
t→∞

θt(j)(ω) <∞. (208)

Hence, almost surely on E ′,
c4 := lim sup

t→∞
θt(j) <∞. (209)
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Therefore, we have, almost surely on E ′,

∑
j∈A(i)

πθt(j) =

∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) +
∑
a+∈A+(i) e

θt(a+) +
∑
a−∈A−(i) e

θt(a−)
(210)

≤
∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) +
∑
a+∈A+(i) e

θt(a+)

(
eθt(a

−) > 0
)

(211)

≤
∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) + ec2 · |A+(i)|
(by Eq. (176)) (212)

≤ ec4 · |A(i)|
ec4 · |A(i)|+ ec2 · |A+(i)|

(by Eq. (209)) (213)

6→ 1, (214)

which is a contradiction with the assumption of Eq. (164), showing that P(E ′) = 0.

Second case. 2b). Consider the complement Ec0 of E0, where E0 is by Eq. (173). Ec0 indicates the
event for at least one “good” action a+ ∈ A+(i) has infinitely many updates as t→∞.

We now show that also P(E ′′) = 0 where E ′′ = Ec0 ∩ {I = i, i 6= a∗} = (∪a+∈A(i){N∞(a+) =

∞}) ∩ {I = i, i 6= a∗}. It suffices to show that for any a+ ∈ A+(i), P({N∞(a+) =∞}) ∩ {I =
i, i 6= a∗}) = 0.

Thus, fix an arbitrary a+ ∈ A+(i) and let

E ′ := E∞(a+) ∩ {I = i, i 6= a∗},

where for a ∈ [K], E∞(a) = {N∞(a) =∞}. With this notation, the goal is to show that P(E ′) = 0.2
Since E ′ ⊂ E∞(a+), the statement follows if P(E∞(a+)) = 0. Hence, assume that P(E∞(a+)) > 0.

Fix δ ∈ [0, 1]. According to Corollary 2, there exists an event Eδ such that P(Eδ) ≥ 1− δ, and on Eδ ,
for all t ≥ 1,

∣∣Zt(a+)
∣∣ ≤ 1

8Rmax
·

√√√√(1 +Nt(a+)) ·

(
1 + 2 log

(
(1 +Nt(a+))

1
2

δ

))
. (215)

Using a similar calculation as in the proof of Lemma 9, we have, on Eδ ∩ E∞(a+) that

θt(a
+) ≥ E[θ1(a+)]− 1

8Rmax
·

√√√√(1 +Nt(a+)) ·

(
1 + 2 log

(
(1 +Nt(a+))

1
2

δ

))
(216)

+
c

8 ·R2
max

·Nt−1(a+)︸ ︷︷ ︸
→∞

− c

8 ·R2
max

· (τ − 1) + P1(a+) + · · ·+ Pτ−1(a+). (217)

On E∞(a+) ∩ Eδ , Nt−1(a+)→∞ as t→∞, we have θt(a+)→∞ as t→∞.

Since P(E∞(a+) \ (E∞(a+) ∩ Eδ))→ 0 as δ → 0, we have, almost surely on E∞(a+),

lim
t→∞

θt(a
+) =∞, (218)

which implies that there exists τ ≥ 1 such that on E ′(= E∞(a+) ∩ {I = i, i 6= a∗}) we have almost
surely that τ < +∞ while we also have that for all t ≥ τ ,∑

a−∈A−(i)

r(i)− r(a−)

exp{θt(a+)− c1}
<
r(a+)− r(i)

2
. (219)

2Here, E ′ is redefined to minimize clutter; the previous definition is not used in this part of the proof.
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Hence, on E ′, for t ≥ τ , almost surely,

π>θtr =
∑
j∈A(i)

πθt(j) · r(i) +
∑

a−∈A−(i)

πθt(a
−) · r(a−) +

∑
ã+∈A+(i)

πθt(ã
+) · r(ã+) (220)

= r(i)−
∑

a−∈A−(i)

πθt(a
−) ·

(
r(i)− r(a−)

)
+

∑
ã+∈A+(i)

πθt(ã
+) ·

(
r(ã+)− r(i)

)
(221)

≥ r(i)−
∑

a−∈A−(i)

πθt(a
−) ·

(
r(i)− r(a−)

)
+ πθt(a

+) ·
(
r(a+)− r(i)

) (
r(ã+)− r(i) > 0, Eq. (166)

)
(222)

= r(i) + πθt(a
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

πθt(a
−)

πθt(a
+)
·
(
r(i)− r(a−)

) ]
(223)

= r(i) + πθt(a
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

r(i)− r(a−)

exp{θt(a+)− θt(a−)}

]
(224)

≥ r(i) + πθt(a
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

r(i)− r(a−)

exp{θt(a+)− c1}

]
(by Eq. (172))

(225)

> r(i) +
r(a+)− r(i)

2
· πθt(a+) . (by Eq. (219)) (226)

Therefore, on E ′, for all s ≥ τ , for any j ∈ A(i), almost surely,

Ps(j) =
Is(j)

8 ·R2
max

·
∣∣r(j)− π>θsr∣∣ · (r(j)− π>θsr) (by Eq. (159)) (227)

= − Is(j)

8 ·R2
max

·
(
r(j)− π>θsr

)2
.

(
by Eq. (220), r(i)− π>θsr < 0

)
(228)

From now on assume that E ′ holds. Therefore, we have, for all t ≥ τ ,
t−1∑
s=1

Ps(j) =

τ−1∑
s=1

Ps(j) +

t∑
s=τ

Ps(j)− Pt(j) (229)

=

τ−1∑
s=1

Ps(j)−
1

8 ·R2
max

·
t∑

s=τ

(
r(j)− π>θsr

)2 · Is(j)− Pt(j) (by Eq. (227)) (230)

=

τ−1∑
s=1

Ps(j)−
1

8 ·R2
max

·
[
S2
t (j)−

τ−1∑
s=1

(
r(j)− π>θsr

)2 · Is(j)]− Pt(j) (231)

= − 1

8 ·R2
max

· S2
t (j) +

τ−1∑
s=1

[
Ps(j) +

(
r(j)− π>θsr

)2 · Is(j)
8 ·R2

max

·
]
− Pt(j) (232)

≤ − 1

8 ·R2
max

· S2
t (j) +

τ − 1

4 ·R2
max

+
1

8 ·R2
max

,

(
|Pt(j)| ≤

1

8 ·R2
max

, Eq. (227)
)
(233)

where S2
t (j) =

∑t
s=1

(
r(j)− π>θsr

)2 · Is(j). According to Lemma 11, for any δ ∈ [0, 1], there exist
an event Eδ such that P(Eδ) ≥ 1− δ and on Eδ ∩ E ′, we have,

θt(j) ≤ E[θ1(j)] + Zt(j) +

t−1∑
s=1

Ps(j) (by Eq. (143)) (234)

≤ E[θ1(j)] +
1

8Rmax
·

√√√√(1 + S2
t (j)) ·

(
1 + 2 log

(
(1 + S2

t (j))
1
2

δ

))
(235)

− 1

8 ·R2
max

·
(
1 + S2

t (j)
)

+
τ

4 ·R2
max

. (236)
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Note that,

M(δ) := sup
s≥0

1

8Rmax
·

√√√√(1 + s) ·

(
1 + 2 log

(
(1 + s)

1
2

δ

))
− 1

8 ·R2
max

· (1 + s) (237)

<∞. (238)
Therefore, on E ′ ∩ Eδ for t ≥ τ we have,

θt(j) ≤ E[θ1(j)] +M(δ) +
τ

4 ·R2
max

. (239)

Since P(Ecδ )→ 0 as δ → 0, with an argument parallel to that used in the proof of the first part (cf.
the argument around Eq. (208)), we get that there exists a random constant c5(j) such that almost
surely on E ′, c5(j) < ∞ and supt≥τ θt(j) ≤ c5(j). Define c5 := maxj∈A(i) c5(j). Then, almost
surely on E ′, c5 <∞ and

sup
t≥τ

max
j∈A(i)

θt(j) ≤ c5 . (240)

By Eq. (218), there exists τ ′ ≥ 1, such that almost surely on E ′, τ ′ <∞ while we also have
inf
t≥τ ′

θt(a
+) ≥ 0, (241)

for all t ≥ τ ′. Hence, on E ′, almost surely for all t ≥ max(τ, τ ′),∑
j∈A(i)

πθt(j) =

∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) +
∑
ã+∈A+(i) e

θt(ã+) +
∑
a−∈A−(i) e

θt(a−)
(242)

≤
∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) + eθt(a+)

(
eθt(k) > 0 for any k ∈ [K]

)
(243)

≤
∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) + 1
(by Eq. (241) ) (244)

≤ ec5 · |A(i)|
ec5 · |A(i)|+ 1

(by Eq. (239)) (245)

6→ 1 . (246)
Hence, P(E ′) = 0, finishing the proof.

Let us now turn to the proof of the results that were used in the above proof.
Lemma 9. Let I be as in Eq. (164), let i be a sub-optimal action, and let τ be as in Eq. (171), Then,
on {I = i, i 6= a∗}, for any action a− ∈ A−(i) (using Update 2) we have, almost surely,

c1 := sup
t≥1

θt(a
−) <∞. (247)

Proof. According to Eq. (159), we have, for all t ≥ τ ,

Pt(a
−) =

It(a
−)

8 ·R2
max

·
∣∣r(a−)− π>θtr

∣∣ · (r(a−)− π>θtr
)

(248)

≤ −c · It(a
−)

8 ·R2
max

, (by Eq. (171)) (249)

which implies that,
θt(a

−) = E[θ1(a−)] + Zt(a
−) + P1(a−) + · · ·+ Pτ−1(a−) (by Eq. (143)) (250)

+ Pτ (a−) + · · ·+ Pt−1(a−) (251)

≤ E[θ1(a−)] + Zt(a
−) + P1(a−) + · · ·+ Pτ−1(a−) (252)

− c

8 ·R2
max

·
(
Iτ (a−) + · · ·+ It−1(a−)

)
(by Eq. (248)) (253)

= E[θ1(a−)] + Zt(a
−) + P1(a−) + · · ·+ Pτ−1(a−) (254)

− c

8 ·R2
max

·Nτ :t−1(a−) (Eq. (163)) (255)
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Denote E∞(a) := {N∞(a) =∞}, where N∞(a) is defined in Eq. (162).

Fix δ ∈ [0, 1]. Take Eδ from Corollary 2. Consider on event E∞(a−) ∩ Eδ , we have,

θt(a
−) ≤ E[θ1(a−)] +

1

8Rmax
·

√√√√(1 +Nt(a)) ·

(
1 + 2 log

(
(1 +Nt(a))

1
2

δ

))
(256)

− c

8 ·R2
max

·Nτ :t−1(a−) + P1(a−) + · · ·+ Pτ−1(a−). (257)

Note that,

Nτ :t−1(a−) = Nt−1(a−)−N1:τ−1(a−) (Eqs. (161) and (163)) (258)

≥ Nt−1(a−)− (τ − 1) . (259)

We have,

θt(a
−) ≤ E[θ1(a−)] +

1

8Rmax
·

√√√√(1 +Nt(a)) ·

(
1 + 2 log

(
(1 +Nt(a))

1
2

δ

))
(260)

− c

8 ·R2
max

·Nt−1(a−)︸ ︷︷ ︸
→∞

+
c

8 ·R2
max

· (τ − 1) + P1(a−) + · · ·+ Pτ−1(a−). (261)

On E∞(a−) ∩ Eδ , Nt−1(a−)→∞ as t→∞, we have θt(a−)→ −∞ as t→∞.

Since P(E∞(a−) \ (E∞(a−) ∩ Eδ))→ 0 as δ → 0, we have, almost surely on E∞(a−),

lim
t→∞

θt(a
−) = −∞, (262)

which implies that on E∞(a−), we have supt≥1 θt(a
−) <∞.

On the other hand, on (E∞(a−))
c, we have supt≥1 θt(a

−) < ∞ by construction (finitely many
updates of a− as t→∞, and each update is bounded according to Eq. (178)).

Therefore, we have supt≥1 θt(a
−) <∞ almost surely.

Lemma 10 (Lemma 6 in [1]). Let Xt =
∑t
s=1 Is · ηs, and Nt =

∑t
s=1 Is. Assume ηt is condition-

ally σ-sub-Gaussian, and It is Ft-measurable. Then, for all δ ∈ [0, 1], with probability 1− δ, for all
t ≥ 1,

|Xt| ≤ σ ·

√√√√(1 +Nt) ·

(
1 + 2 log

(
(1 +Nt)

1
2

δ

))
. (263)

Corollary 2. For all a ∈ [K], ∀δ, ∃ Eδ with P(Eδ) ≥ 1− δ, such that on Eδ , for all t ≥ 1,

|Zt(a)| ≤ 1

8Rmax
·

√√√√(1 +Nt(a)) ·

(
1 + 2 log

(
(1 +Nt(a))

1
2

δ

))
. (264)

Lemma 11. For all a ∈ [K], ∀δ ∈ [0, 1], ∃ Eδ with P(Eδ) ≥ 1− δ, such that on Eδ , for all t ≥ 1,

|Zt(a)| ≤ 1

8Rmax
·

√√√√(1 + S2
t (a)) ·

(
1 + 2 log

(
(1 + S2

t (a))
1
2

δ

))
, (265)

where S2
t (a) :=

∑t
s=1

(
r(a)− π>θsr

)2 · Is(a).

Proof. Follow the steps of the proof of Lemma 6 in [1].
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Theorem 1 (Almost sure global convergence rate). Using Update 2 with on-policy sampling at ∼
πθt(·), the IS estimator in Definition 1, η in Eq. (6), and any initialization θ1 ∈ RK , we have,

E[(π∗ − πθt)
>
r] ≤ 16 ·R2

max

∆ · E[c2]
· K − 1

t
, and (266)

lim sup
t≥1

{
∆ · c2

16 ·R2
max

· t

K − 1
· (π∗ − πθt)

>
r

}
<∞, a.s., (267)

where Et[·] denotes Et[·|Ft], and Ft is the σ-algebra generated by a1, x1(a1), . . . , at−1, xt−1(at−1),
π∗ := arg maxπ∈∆(K) π

>r is the optimal policy, Rmax is the sampled reward range from Assump-
tion 1, ∆ := r(a∗)−maxa 6=a∗ r(a) is the reward gap of r, and c > 0 is from Lemma 2.

Proof. First part. According to Lemma 1, we have,

Et[π>θt+1
r]− π>θtr ≥

1

16 ·R2
max

· ∆

K − 1
· πθt(a∗)2 ·

(
r(a∗)− π>θtr

)2
(268)

≥ 1

16 ·R2
max

· ∆

K − 1
· inf
t≥1

πθt(a
∗)2 ·

(
r(a∗)− π>θtr

)2
(269)

=
1

16 ·R2
max

· ∆

K − 1
· c2 ·

(
r(a∗)− π>θtr

)2
, (270)

where c := inft≥1 πθt(a
∗) > 0 is according to Lemma 2. Let δ(θt) := (π∗ − πθt)

>
r denote the

sub-optimality gap. We have,

δ(θt)− Et[δ(θt+1)] = (π∗ − πθt)
>
r − Et

[ (
π∗ − πθt+1

)>
r
]

(271)

= (π∗ − πθt)
>
r −

(
π∗ − Et[πθt+1

]
)>
r (272)

= Et[π>θt+1
r]− π>θtr (273)

≥ 1

16 ·R2
max

· ∆

K − 1
· c2 ·

(
r(a∗)− π>θtr

)2
(274)

=
1

16 ·R2
max

· ∆

K − 1
· c2 · δ(θt)2. (275)

Taking expectation, we have,

E [δ(θt)]− E [δ(θt+1)] ≥ ∆ · E[c2]

16 ·R2
max

· 1

K − 1
· E [δ(θt)

2] (276)

≥ ∆ · E[c2]

16 ·R2
max

· 1

K − 1
· (E [δ(θt)])

2
. (by Jensen’s inequality) (277)

Therefore, we have, for all t ≥ 1,

1

E [δ(θt)]
=

1

E [δ(θ1)]
+

t−1∑
s=1

[
1

E [δ(θs+1)]
− 1

E [δ(θs)]

]
(278)

=
1

E [δ(θ1)]
+

t−1∑
s=1

1

E [δ(θs+1)] · E [δ(θs)]
· (E [δ(θs)]− E [δ(θs+1)]) (279)

≥ 1

E [δ(θ1)]
+

t−1∑
s=1

1

E [δ(θs+1)] · E [δ(θs)]
· ∆ · E[c2]

16 ·R2
max

· 1

K − 1
· (E [δ(θs)])

2 (280)

≥ 1

E [δ(θ1)]
+

t−1∑
s=1

∆ · E[c2]

16 ·R2
max

· 1

K − 1
(E [δ(θs)] ≥ E [δ(θs+1)] > 0) (281)

=
1

E [δ(θ1)]
+

∆ · E[c2]

16 ·R2
max

· 1

K − 1
· (t− 1) (282)

≥ ∆ · E[c2]

16 ·R2
max

· t

K − 1
,

(
E [δ(θ1)] ≤ 1 <

16 ·R2
max

∆ · E[c2]
· (K − 1)

)
(283)
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which implies that, for all t ≥ 1,

E[(π∗ − πθt)
>
r] = E [δ(θt)] ≤

16 ·R2
max

∆ · E[c2]
· K − 1

t
. (284)

Second part. The result follows from the following Lemma 12 by choosing Xt = (π∗ − πθt)
>
r

and f(t) = ∆·E[c2]
16·R2

max
· t
K−1 .

Lemma 12. Let (Xt)t≥1 be a sequence of random variables such that Xt ∈ [0, 1], Xt → 0 almost
surely and for t ≥ 1, E[Xt] ≤ 1

f(t) with f(t) → ∞ as t → ∞. Then lim supt→∞ f(t)Xt < ∞
almost surely.

Proof of Lemma 12. Let E be the event when lim supt→∞
{
f(t) ·Xt

}
=∞. It suffices to show that

P(E) = 0. Consider the event E . On this event, there exists a strictly increasing sequence {tk}k≥1,
such that f(tk) ·Xtk →∞ as k →∞. Since Xt ≥ 0, we have,

E[Xtk ] ≥ E[Xtk · IE ]. (285)

Then we have,

1 ≥ lim
k→∞

E[f(tk) ·Xtk ] (286)

≥ lim
k→∞

E[f(tk) ·Xtk · IE ] (287)

= lim inf
k→∞

E[f(tk) ·Xtk · IE ] (288)

≥ E[(lim inf
k→∞

f(tk) ·Xtk) · IE ]. (Fatou’s lemma) (289)

If P(E) > 0, the right-hand side above is∞, which would imply that∞ ≤ 1. Hence, we must have
P(E) = 0.

B Proofs for General MDPs

Lemma 3 (Stochastic NŁ). Using Algorithm 1 with constant η > 0, we have, for all t ≥ 1,

V πθt+1 (s0)− V πθt (s0) ≥ 0, a.s., ∀s0 ∈ S, and (290)

Et[V πθt+1 (µ)]− V πθt (µ) ≥ η · (1− γ)
4

1 + η
·min

s
µ(s) ·

∥∥∥∥dπ∗µµ
∥∥∥∥−1

∞
· mins πθt(a

∗(s)|s)2

S
·
(
V π
∗
(µ)− V πθt (µ)

)2
,

(291)

where Et[·] is on randomness from state sampling st ∼ d
πθt
µ (·) and on-policy sampling at ∼ πθt(·|st),

and a∗(s) is the action selected by the optimal policy π∗ under state s.

Proof. For all t ≥ 1, for any state action pair (s, i) ∈ S ×A, denote[
V πθt+1 (s0) | st = s, at = i

]
(292)

as the the value of V πθt+1 (s0) given the sampled state action pair (st, at) = (s, i).

Given st = s, for all s′ 6= s, we have, for all a ∈ A,

πθt+1(a|s′) =
exp{θt+1(s′, a)}∑

a′∈A exp{θt+1(s′, a′)}
(293)

=
exp{θt(s′, a)}∑

a′∈A exp{θt(s′, a′)}
(s′ 6= st, Algorithm 1) (294)

= πθt(a|s′). (295)
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According to the performance difference Lemma 17, we have,[
V πθt+1 (s0) | st = s, at = i

]
− V πθt (s0) (296)

=
1

1− γ
·
∑
s′∈S

d
πθt+1
s0 (s′) ·

∑
a

(
πθt+1(a|s′)− πθt(a|s′)

)
·Qπθt (s′, a) (297)

=
1

1− γ
· d
πθt+1
s0 (s) ·

∑
a

(
πθt+1

(a|s)− πθt(a|s)
)
·Qπθt (s, a). (by Eq. (293)) (298)

Note that, in the above equation d
πθt+1
s0 (s) =

[
d
πθt+1
s0 (s) | st = s, at = i

]
, which means that for each

sampled state action pair (st, at) = (s, i), we have a different πθt+1 and thus d
πθt+1
s0 . According to

the update in Algorithm 1, we have,[∑
a

πθt+1(a|s) ·Qπθt (s, a)
∣∣∣ st = s, at = i

]
(299)

=
exp

{
θt(s, i) + η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
·Qπθt (s, i) +

∑
j 6=i exp{θt(s, j)} ·Qπθt (s, j)

exp
{
θt(s, i) + η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+
∑
j 6=i exp{θt(s, j)}

,

(300)

which is similar to Eq. (33). Therefore, by algebra we have,[∑
a

(
πθt+1

(a|s)− πθt(a|s)
)
·Qπθt (s, a) | st = s, at = i

]
(301)

=

[
exp

{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
− 1
]
· (Qπθt (s, i)− V πθt (s))

exp
{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+

1−πθt (i|s)
πθt (i|s)

≥ 0, (302)

where the last inequality is from (ec·y − 1) · y ≥ 0 for all y ∈ R with c := η
πθt (i|s)

> 0.

Combining Eqs. (296) and (301), we have,[
V πθt+1 (s0) | st = s, at = i

]
− V πθt (s0) (303)

=
d
πθt+1
s0 (s)

1− γ
·

[
exp

{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
− 1
]
· (Qπθt (s, i)− V πθt (s))

exp
{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+

1−πθt (i|s)
πθt (i|s)

≥ 0, (304)

which proves Eq. (290) because of (s, i) ∈ S ×A is arbitrary.

For all t ≥ 1, given current policy πθt , the value function of next policy V πθt+1 (µ) is a random
variable, and the randomness is from state sampling st ∼ d

πθt
µ (·) and on-policy sampling at ∼

πθt(·|st). According to Eq. (303), the expected progress after one update is,

Et[V πθt+1 (µ)]− V πθt (µ) =
∑
s

d
πθt
µ (s)

∑
i

πθt(i|s) ·
([
V πθt+1 (µ) | st = s, at = i

]
− V πθt (µ)

)
(305)

=
∑
s

d
πθt
µ (s)

∑
i

πθt(i|s) ·
d
πθt+1
µ (s)

1− γ
·

[
exp

{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
− 1
]
· (Qπθt (s, i)− V πθt (s))

exp
{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+

1−πθt (i|s)
πθt (i|s)

(306)

≥
∑
s

µ(s) · dπθtµ (s)
∑
i

πθt(i|s) ·

[
exp

{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
− 1
]
· (Qπθt (s, i)− V πθt (s))

exp
{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+

1−πθt (i|s)
πθt (i|s)

,

(307)
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where the inequality is because of Eq. (301) and for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
(308)

= E
s0∼µ

[
(1− γ) ·

∞∑
t=0

γt · P(st = s | s0, πθ,P)

]
(309)

≥ (1− γ) · E
s0∼µ

[P(s0 = s|s0)] (310)

= (1− γ) · µ(s). (311)

Partition the action set A under state s ∈ S into three parts using V πθt (s) as follows,

A0
t (s) :=

{
a0 ∈ A : Qπθt (s, a0) = V πθt (s)

}
, (312)

A+
t (s) :=

{
a+ ∈ A : Qπθt (s, a+) > V πθt (s)

}
, (313)

A−t (s) :=
{
a− ∈ A : Qπθt (s, a−) < V πθt (s)

}
. (314)

From Eq. (305), we have,

Et[V πθt+1 (µ)]− V πθt (µ) (315)

≥
∑
s

µ(s) · dπθtµ (s)
∑

a+∈A+
t (s)

πθt(a
+|s) ·

[
exp

{
η · Q

πθt (s,a+)−V πθt (s)
πθt (a

+|s)

}
− 1
]
· (Qπθt (s, a+)− V πθt (s))

exp
{
η · Q

πθt (s,a+)−V πθt (s)
πθt (a

+|s)

}
+

1−πθt (a+|s)
πθt (a

+|s)
(316)

+
∑
s

µ(s) · dπθtµ (s)
∑

a−∈A+
t (s)

πθt(a
−|s) ·

[
exp

{
η · Q

πθt (s,a−)−V πθt (s)
πθt (a

−|s)

}
− 1
]
· (Qπθt (s, a−)− V πθt (s))

exp
{
η · Q

πθt (s,a−)−V πθt (s)
πθt (a

−|s)

}
+

1−πθt (a−|s)
πθt (a

−|s)

.

(317)

For any a+ ∈ A+
t (t), using similar calculations in Eq. (45), we have,[

exp
{
η · Q

πθt (s,a+)−V πθt (s)
πθt (a

+|s)

}
− 1
]
· (Qπθt (s, a+)− V πθt (s))

exp
{
η · Q

πθt (s,a+)−V πθt (s)
πθt (a

+|s)

}
+

1−πθt (a+|s)
πθt (a

+|s)

(318)

≥ η · (Qπθt (s, a+)− V πθt (s))2

η · (Qπθt (s, a+)− V πθt (s)) + 1
(319)

≥ η

1 + η
1−γ
·
(
Qπθt (s, a+)− V πθt (s)

)2
(Qπθ (s, a) ∈ [0, 1/(1− γ)]) (320)

≥ η

1 + η
1−γ
· πθt(a+|s) ·

(
Qπθt (s, a+)− V πθt (s)

)2
.

(
πθt(a

+|s) ∈ (0, 1)
)

(321)

For any a− ∈ A−t (s), using similar calculations in Eq. (47), we have,[
exp

{
η · Q

πθt (s,a−)−V πθt (s)
πθt (a

−|s)

}
− 1
]
· (Qπθt (s, a−)− V πθt (s))

exp
{
η · Q

πθt (s,a−)−V πθt (s)
πθt (a

−|s)

}
+

1−πθt (a−|s)
πθt (a

−|s)

(322)

≥ η · πθt(a−|s) · (V πθt (s)−Qπθt (s, a−))
2

η · (V πθt (s)−Qπθt (s, a−)) ·
(
1− πθt(a−|s)

)
+ πθt(a

−|s)
(323)

≥ η · πθt(a−|s) · (V πθt (s)−Qπθt (s, a−))
2

η · (V πθt (s)−Qπθt (s, a−)) + 1

(
πθt(a

−|s) ∈ (0, 1)
)

(324)

≥ η

1 + η
1−γ
· πθt(a−|s) ·

(
V πθt (s)−Qπθt (s, a−)

)2
. (Qπθ (s, a) ∈ [0, 1/(1− γ)])

(325)
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Combining Eqs. (315), (318) and (322), we have,

Et[V πθt+1 (µ)]− V πθt (µ) (326)

≥
∑
s

µ(s) · dπθtµ (s)
∑

a+∈A+
t (s)

πθt(a
+|s) · η

1 + η
1−γ
· πθt(a+|s) ·

(
Qπθt (s, a+)− V πθt (s)

)2
(327)

+
∑
s

µ(s) · dπθtµ (s)
∑

a−∈A+
t (s)

πθt(a
−|s) · η

1 + η
1−γ
· πθt(a−|s) ·

(
V πθt (s)−Qπθt (s, a−)

)2
(328)

=
η

1 + η
1−γ
·
∑
s

µ(s) · dπθtµ (s) ·
∑
a

πθt(a|s)2 · (Qπθt (s, a)− V πθt (s))2 (329)

≥ η · (1− γ)

1 + η
·
∑
s

µ(s) · dπθtµ (s) ·
∑
a

πθt(a|s)2 · (Qπθt (s, a)− V πθt (s))2 (330)

Therefore, we have,

Et[V πθt+1 (µ)]− V πθt (µ) (331)

≥ η · (1− γ)

1 + η
·
∑
s

µ(s) · dπθtµ (s) · πθt(a∗(s)|s)2 · (Qπθt (s, a∗(s))− V πθt (s))2
(fewer terms)

(332)

=
η · (1− γ)

1 + η
·
∑
s

µ(s) · d
πθt
µ (s)

dπ∗µ (s)
· dπ

∗

µ (s) · πθt(a∗(s)|s)2 · (Qπθt (s, a∗(s))− V πθt (s))2

(333)

≥ η · (1− γ)

1 + η
·min

s
µ(s) ·

∥∥∥∥ dπ∗µdπθtµ

∥∥∥∥−1

∞
·min

s
πθt(a

∗(s)|s)2 ·
∑
s

dπ
∗

µ (s) · (Qπθt (s, a∗(s))− V πθt (s))2

(334)

≥ η · (1− γ)
2

1 + η
·min

s
µ(s) ·

∥∥∥∥dπ∗µµ
∥∥∥∥−1

∞
·min

s
πθt(a

∗(s)|s)2 ·
∑
s

dπ
∗

µ (s) · (Qπθt (s, a∗(s))− V πθt (s))2
,

(335)

where mins µ(s) > 0 is by Assumption 2, and the last inequality because of∥∥∥∥ dπ∗µdπθtµ

∥∥∥∥
∞

:= max
s∈S

dπ
∗

µ (s)

d
πθt
µ (s)

≤ max
s∈S

dπ
∗

µ (s)

(1− γ) · µ(s)
=

1

1− γ
·
∥∥∥∥dπ∗µµ

∥∥∥∥
∞
, (336)

where the inequality is from Eq. (308). Next, we have,

Et[V πθt+1 (µ)]− V πθt (µ) (337)

≥ η · (1− γ)
2

1 + η
·min

s
µ(s) ·

∥∥∥∥dπ∗µµ
∥∥∥∥−1

∞
·min

s
πθt(a

∗(s)|s)2 ·
∑
s

dπ
∗

µ (s)2 · (Qπθt (s, a∗(s))− V πθt (s))2

(338)

≥ η · (1− γ)
2

1 + η
·min

s
µ(s) ·

∥∥∥∥dπ∗µµ
∥∥∥∥−1

∞
· mins πθt(a

∗(s)|s)2

S
·
[∑

s

dπ
∗

µ (s) · |Qπθt (s, a∗(s))− V πθt (s)|
]2

,

(339)

where the last inequality is by Cauchy–Schwarz. Note that,∑
s

dπ
∗

µ (s) · |Qπθt (s, a∗(s))− V πθt (s)| ≥
∑
s

dπ
∗

µ (s) · (Qπθt (s, a∗(s))− V πθt (s)) (340)

=
∑
s

dπ
∗

µ (s) ·
∑
a

(π∗(a|s)− πθt(a|s)) ·Qπθt (s, a) (341)

= (1− γ) ·
(
V π
∗
(µ)− V πθt (µ)

)
. (by Lemma 17) (342)
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Combining Eqs. (337) and (340), we have,

Et[V πθt+1 (µ)]− V πθt (µ) (343)

≥ η · (1− γ)
4

1 + η
·min

s
µ(s) ·

∥∥∥∥dπ∗µµ
∥∥∥∥−1

∞
· mins πθt(a

∗(s)|s)2

S
·
(
V π
∗
(µ)− V πθt (µ)

)2
, (344)

thus finishing the proofs.

Lemma 4 (Non-vanishing stochastic NŁ coefficient / “automatic exploration”). Using Algorithm 1
with the same assumptions as Lemma 3, with arbitrary initialization θ1 ∈ RS×A, we have,

c := inf
t≥1,s∈S

πθt(a
∗(s)|s) > 0, a.s. (345)

Proof. Given any sampled state action pair (st, at) = (s, i), we have,[
V πθt+1 (µ) | st = s, at = i

]
− V πθt (µ) (346)

=
1

1− γ
·
[∑

s′

d
πθt+1
µ (s′) ·

∑
a

(
πθt+1(a|s′)− πθt(a|s′)

)
·Qπθt (s′, a)

∣∣∣ st = s, at = i

]
(347)

=
1

1− γ
·
[
d
πθt+1
µ (s) ·

∑
a

(
πθt+1

(a|s)− πθt(a|s)
)
·Qπθt (s, a)

∣∣∣ at = i

]
(348)

=
1

1− γ
· d
πθt+1
µ (s) ·

[
exp

{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
− 1
]
· (Qπθt (s, i)− V πθt (s))

exp
{
η · Q

πθt (s,i)−V πθt (s)
πθt (i|s)

}
+

1−πθt (i|s)
πθt (i|s)

(349)

≥ 0, (by Eq. (301)) (350)

where the second equation is due to πθt+1(a|s′) = πθt(a|s′) for all s′ 6= s by Algorithm 1.

From Eq. (346), we have V πθt+1 (µ) ≥ V πθt (µ) holds almost surely. According to the definition of
Qπ(s, a), we have,

Qπθt+1 (s, a)−Qπθt (s, a) = γ ·
∑
s′

P(s′|s, a) · (V πθt+1 (s′)− V πθt (s′)) ≥ 0, (351)

where the last inequality is by Eq. (346). Also note thatQπ(s, a) ∈ [0, 1/(1−γ)] since r(s, a) ∈ [0, 1]
for all (s, a) ∈ S ×A. According to monotone convergence theorem, we have, for all (s, a) ∈ S ×A,
the following exists,

Q∞(s, a) := lim
t→∞

Qπθt (s, a). (352)

Also, define V∞(s) := limt→∞ V πθt (s) for all s ∈ S.

For all state s ∈ S, given i ∈ A, define the following set P(s, i) of “generalized one-hot policy”
under state s,

A(s, i) := {j ∈ A : Q∞(s, j) = Q∞(s, i)} , (353)

P(s, i) :=

{
π(·|s) ∈ ∆(A) :

∑
j∈A(s,i)

π(j|s) = 1

}
. (354)

Similar to Claims 1 and 2 in the proofs for Lemma 2, we make the following two claims.

Claim 3. Almost surely, πθt(·|s) approaches one “generalized one-hot policy” under all state s ∈ S ,
i.e., there exists (a possibly random) i ∈ A, such that

∑
j∈A(s,i) πθt(j|s) → 1 as t → ∞ almost

surely as t→∞.

Claim 4. Almost surely, πθt(·|s) cannot approach any “sub-optimal generalized one-hot policies”
under all state s ∈ S, i.e., i in the previous claim must be an optimal action.
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From Claim 4, it follows that
∑
j∈A(a∗(s)) πθt(j|s) → 1 almost surely under all state s ∈ S, as

t → ∞ and thus the policy sequence obtained almost surely convergences to a globally optimal
policy π∗.

Proof of Claim 3.

Using similar arguments in Eq. (128), we have,

lim
t→∞

Et[V πθt+1 (µ)]− V πθt (µ) = 0, a.s. (355)

According to Eqs. (292) and (326), we have,

Et[V πθt+1 (µ)]− V πθt (µ) ≥
∑
s

d
πθt
µ (s) · µ(s) · η · (1− γ)

1 + η
·
∑
a

πθt(a|s)2 · (Qπθt (s, a)− V πθt (s))2
.

(356)

Since dπθtµ (s) ≥ (1− γ) · µ(s) > 0 by Eq. (308) and Assumption 2, we have, almost surely,

lim
t→∞

∑
s

∑
a

πθt(a|s)2 · (Qπθt (s, a)− V πθt (s))2
= 0, (357)

which implies that for all s ∈ S, almost surely,

lim
t→∞

∑
a

πθt(a|s)2 · (Qπθt (s, a)− V πθt (s))2
= 0. (358)

Using similar arguments in Eq. (130), we have, for each state s ∈ S, there exists i ∈ A, such that,

lim
t→∞

∑
j∈A(s,i)

πθt(j|s) = 1, a.s., (359)

which means πθt(·|s) a.s. approaches the “generalized one-hot policy” P(s, i) in Eq. (354) as t→∞,
finishing the proof of Claim 3.

Proof of Claim 4. The brief sketch of the proof is as follows: By Claim 3, for each state s ∈ S , there
exists a (possibly random) i ∈ A such that

∑
j∈A(s,i) πθt(j|s) → 1 almost surely, as t → ∞. If

i = a∗(s) almost surely, Claim 4 follows. Hence, it suffices to consider the event that {i 6= a∗(s)}
for at least one state s ∈ S , and show that this event has zero probability mass. Hence, in the rest of
the proof we assume that we are on the event when i 6= a∗(s) for one state s ∈ S.

Since i 6= a∗(s), there exists at least one “good” action a+ ∈ A such that Q∞(s, a+) > Q∞(s, i).
The two cases are as follows.

2a) All “good” actions are sampled finitely many times as t→∞.

2b) At least one “good” action is sampled infinitely many times as t→∞.

In both cases, we show that
∑
j∈A(s,i) exp{θt(j|s)} < ∞ as t → ∞ (but for different reasons),

which is a contradiction with the assumption of
∑
j∈A(s,i) πθt(j|s) → 1 as t → ∞, given that a

“good” action’s parameter is almost surely lower bounded. Hence, i 6= a∗(s) almost surely does not
happen, which means that almost surely i = a∗(s). Let

It(s, a) =

{
1, if (st, at) = (s, a) ;

0, otherwise .
(360)

Define the following notations,

Nt(s, a) :=

t∑
u=1

Is(s, a), (361)

N∞(s, a) :=

∞∑
u=1

Iu(s, a). (362)
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Assume {i 6= a∗(s)} for at least one state s ∈ S , and
∑
j∈A(s,i) πθt(j|s)→ 1 almost surely. Partition

the action set A under s ∈ S into three parts using V∞(s) as follows,

A(s, i) := {j ∈ A : Q∞(s, j) = Q∞(s, i)} , (363)

A+(s, i) :=
{
a+ ∈ A : Q∞(s, a+) > Q∞(s, i)

}
, (364)

A−(s, i) :=
{
a− ∈ A : Q∞(s, a−) < Q∞(s, i)

}
. (365)

Since i 6= a∗(s), we have, A+(s, i) 6= ∅. Note that,∣∣V πθt (s)−Q∞(s, i)
∣∣ =

∣∣∣∣ ∑
k 6∈A(s,i)

πθt(k|s) · (Qπθt (s, k)−Q∞(s, i)) (366)

+
∑
j 6=i,

j∈A(s,i)

πθt(j|s) · (Qπθt (s, j)−Q∞(s, i))

∣∣∣∣ (367)

≤
∑

k 6∈A(s,i)

πθt(k|s) · |Qπθt (s, k)−Q∞(s, i)| (triangle inequality)

(368)

+
∑
j 6=i,

j∈A(s,i)

πθt(j|s) · |Qπθt (s, j)−Q∞(s, i)| (369)

≤ 1

1− γ
·
(

1−
∑

j∈A(s,i)

πθt(j|s)︸ ︷︷ ︸
→0

)
+

∑
j 6=i,

j∈A(s,i)

|Qπθt (s, j)−Q∞(s, i)|︸ ︷︷ ︸
→0

,

(370)

which implies that V πθt (s)→ Q∞(s, i) as t→∞. Therefore, there exists 1 ≤ τ , almost surely on
{i 6= a∗(s)} τ <∞ while we also have, for all t ≥ τ ,

Qπθt (s, a+)− c ≥ V πθt (s) ≥ Qπθt (s, a−) + c, (371)

for all a+ ∈ A+(s, i), a− ∈ A−(s, i), where c > 0. For all t ≥ τ , for any a+ ∈ A+(s, a), we have,
almost surely,

θt+1(s, a+) = θt(s, a
+) + η · It(s, a+) · Q

πθt (s, a+)− V πθt (s)
πθt(a

+|s)
(by Algorithm 1) (372)

≥ θt(s, a+) + η · It(s, a+) · c

πθt(a
+|s)

(by Eq. (371)) (373)

≥ θt(s, a+) + η · It(s, a+) · c
(
πθt(a

+|s) ∈ (0, 1)
)

(374)

≥ θt(s, a+), (375)

which implies that, almost surely,

c1 := inf
t≥1

θt(s, a
+) > −∞. (376)

On the other hand, for all t ≥ τ , for any a− ∈ A−(s, a), we have, almost surely,

θt+1(s, a−) = θt(s, a
−) + η · It(s, a−) · Q

πθt (s, a−)− V πθt (s)
πθt(a

−|s)
(by Algorithm 1) (377)

≤ θt(s, a−)− η · It(s, a−) · c

πθt(a
−|s)

(by Eq. (371)) (378)

≤ θt(s, a−)− η · It(s, a−) · c
(
πθt(a

−|s) ∈ (0, 1)
)

(379)

≤ θt(s, a−), (380)

which implies that, almost surely,

c2 := sup
t≥1

θt(s, a
−) <∞. (381)
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First case. 2a). Consider the event,

E0 :=
⋂

a+∈A+(s,i)

{
N∞(s, a+) <∞

}︸ ︷︷ ︸
E0(s,a+)

, (382)

i.e., any “good” action a+ ∈ A+(s, i) has finitely many updates as t → ∞. Using the extended
Borel-Cantelli lemma (Lemma 14), we have, almost surely,{∑

t≥1

πθt(a
+|s) <∞

}
=
{
N∞(s, a+) <∞

}
. (383)

Next, we have, almost surely,

1−
∑

j∈A(s,i)

πθt(j|s) =

∑
a+∈A+(s,i) e

θt(s,a
+) +

∑
a−∈A−(s,i) e

θt(s,a
−)∑

a∈A e
θt(s,a)

(384)

≤
∑
a+∈A+(s,i) e

θt(s,a
+) +

∑
a−∈A−(s,i) e

c2∑
a∈A e

θt(s,a)
(by Eq. (381)) (385)

=

∑
a+∈A+(s,i) e

θt(s,a
+) + ec2−c1 · |A

−(s,i)|
|A+(s,i)| · |A

+(s, i)| · ec1∑
a∈A e

θt(s,a)
(386)

≤
∑
a+∈A+(s,i) e

θt(s,a
+) + ec2−c1 · |A

−(s,i)|
|A+(s,i)| ·

∑
a+∈A+(s,i) e

θt(s,a
+)∑

a∈A e
θt(s,a)

(by Eq. (376))

(387)

=

∑
a+∈A+(s,i) e

θt(s,a
+)∑

a∈A e
θt(s,a)

·
(

1 + ec2−c1 · |A
−(s, i)|

|A+(s, i)|

)
(388)

=

(
1 + ec2−c1 · |A

−(s, i)|
|A+(s, i)|

)
·

∑
a+∈A+(s,i)

πθt(a
+|s) . (389)

Define

qt :=
∑

a+∈A+(s,i)

πθt(a
+|s). (390)

According to Eq. (383), we have, on E0, almost surely,
∞∑
t=1

qt <∞. (391)

On the other hand, according to the assumption of
∑
j∈A(s,i) πθt(j|s)→ 1, there exists at least one

j ∈ A(s, i), such that almost surely, for all t ≥ τ , πθt(j|s) > c′ for some c′ > 0. We have,

θt+1(s, j) = θt(s, j) + η · It(s, j) ·
Qπθt (s, j)− V πθt (s)

πθt(j|s)
(by Algorithm 1) (392)

≤ θt(s, j) + η · It(s, j) ·
1−

∑
j∈A(s,i) πθt(j|s)
πθt(j|s)

· 1

1− γ
(393)

≤ θt(s, j) + η · It(s, j) ·
1−

∑
j∈A(s,i) πθt(j|s)

c′
· 1

1− γ
, (πθt(j|s) > c′) (394)

which implies that, for C := maxt∈[1,τ ] θt(s, j), we have

sup
t≥1

θt(s, j) ≤ C +
η ·
(

1 + ec2−c1 · |A
−(s,i)|

|A+(s,i)|

)
(1− γ) · c′

·
∞∑
t=τ

∑
a+∈A+(s,i)

πθt(a
+|s) <∞. (395)

Following calculations in Eq. (210), almost surely on E ′ := E0 ∩ {i 6= a∗(s)}, we have,∑
j∈A(s,i) πθt(j|s) 6→ 1, which is a contradiction with the assumption, showing that P(E ′) = 0.
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Second case. 2b). Consider the complement Ec0 of E0, where E0 is by Eq. (382). We now show that
also P(E ′′) = 0 where E ′′ = Ec0 ∩ {i 6= a∗(s)}.
Pick a+ ∈ A+(s, i), such that P(N∞(s, a+) =∞) > 0. On event E∞(s, a+) := {N∞(s, a+) =
∞}, accoding to Eq. (372), we have, almost surely,

c3 := lim
t→∞

θt(s, a
+) =∞. (396)

Therefore, we have, for all t ≥ τ ,

V πθt (s) = Qπθt (s, i) +
∑
j 6=i,

j∈A(s,i)

πθt(j|s) · (Qπθt (s, j)−Qπθt (s, i))︸ ︷︷ ︸
→0

(397)

+
∑

a−∈A−(s,i)

πθt(a
−|s) ·

(
Qπθt (s, a−)−Qπθt (s, i)

)︸ ︷︷ ︸
<0

(398)

+
∑

ã+∈A+(s,i)

πθt(ã
+|s) ·

(
Qπθt (s, ã+)−Qπθt (s, i)

)︸ ︷︷ ︸
>0

(399)

≥ Qπθt (s, i) +
∑
j 6=i,

j∈A(s,i)

πθt(j|s) · (Qπθt (s, j)−Qπθt (s, i)) (400)

+ πθt(a
+|s) ·

[ (
Qπθt (s, a+)−Qπθt (s, i)

)
−

∑
a−∈A−(s,i)

Qπθt (s, i)−Qπθt (s, a−)

exp{θt(s, a+)− θt(s, a−)}

]
.

(401)

According to Eqs. (381) and (396), θt(s, a+) − θt(s, a
−) → ∞, which implies that, on event

E∞(s, a+), almost surely, for all t ≥ τ ,

V πθt (s) > Qπθt (s, i) +
∑
j 6=i,

j∈A(s,i)

πθt(j|s) · (Qπθt (s, j)−Qπθt (s, i)), (402)

which implies that,∑
k∈A(s,i)

πθt(k|s) · V πθt (s) >
∑

k∈A(s,i)

πθt(k|s) ·Qπθt (s, k) (403)

+
∑

k∈A(s,i)

πθt(k|s) ·
∑
j 6=k,

j∈A(s,i)

πθt(j|s) · (Qπθt (s, j)−Qπθt (s, k))

(404)

=
∑

k∈A(s,i)

πθt(k|s) ·Qπθt (s, k). (405)

For all t ≥ τ , we have,

θt+1(s, i) = θt(s, i) + η · It(s, i) ·
Qπθt (s, i)− V πθt (s)

πθt(i|s)
(by Algorithm 1) (406)

≤ θt(s, i), (407)

which implies that,

sup
t≥1

θt(s, i) <∞. (408)

Following calculations in Eq. (242), almost surely on E ′′ = Ec0 ∩ {i 6= a∗(s)}, we have,∑
j∈A(s,i) πθt(j|s) 6→ 1, which is a contradiction with the assumption, showing that P(E ′′) = 0.
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Theorem 2 (Almost sure global convergence rate) . Using Algorithm 1 with any initialization
θ1 ∈ RK , under the same assumptions as Lemmas 3, we have, for all t ≥ 1,

E[V ∗(µ)− V πθt (µ)] ≤ 1 + η

η · (1− γ)
4 ·mins µ(s)

·
∥∥∥∥dπ∗µµ

∥∥∥∥
∞
· S

E[c2]
· 1

t
, and

(409)

lim sup
t≥1

{
η · (1− γ)

4 ·mins µ(s)

1 + η
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
· c

2 · t
S
· (V ∗(µ)− V πθt (µ))

}
<∞, a.s.,

(410)

where we use Et[·] to denote Et[·|Ft] for brevity, and Ft is the σ-algebra generated by
(s1, a1), (s2, a2), . . . , (st−1, at−1), π∗ is the global optimal policy, S is the state number,
mins µ(s) > 0 by Assumption 2, and c := inft≥1,s∈S πθt(a

∗(s)|s) > 0 is from Lemma 4.

Proof. First part. According to Lemma 3, we have,
Et[V πθt+1 (µ)]− V πθt (µ) (411)

≥ η · (1− γ)
4 ·mins µ(s)

1 + η
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
· mins πθt(a

∗(s)|s)2

S
·
(
V π
∗
(µ)− V πθt (µ)

)2
(412)

≥ η · (1− γ)
4 ·mins µ(s)

1 + η
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
· inft≥1,s∈S πθt(a

∗(s)|s)2

S
·
(
V π
∗
(µ)− V πθt (µ)

)2
(413)

=
η · (1− γ)

4 ·mins µ(s)

1 + η
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
· c

2

S
·
(
V π
∗
(µ)− V πθt (µ)

)2
, (414)

where c := inft≥1,s∈S πθt(a
∗(s)|s) > 0 according to Lemma 4. Let δ(θt) := V ∗(µ) − V πθt (µ)

denote the sub-optimality gap. Using similar calculations in Theorem 1, we have, for all t ≥ 1,

E[V ∗(µ)− V πθt (µ)] = E [δ(θt)] ≤
1 + η

η · (1− γ)
4 ·mins µ(s)

·
∥∥∥∥dπ∗µµ

∥∥∥∥
∞
· S

E[c2]
· 1

t
. (415)

Second part. The result follows from Lemma 12 by choosing Xt = V ∗(µ) − V πθt (µ) and

f(t) = η·(1−γ)4·mins µ(s)
1+η ·

∥∥∥dπ∗µµ ∥∥∥−1

∞
· E[c2]

S · t.

C Proofs for Understanding Baselines

Proposition 2 (Unbiasedness of NPG). For NPG with and without a state value baseline, correspond-
ing to Updates 1 and 2 respectively, we have Eat∼πθt (·) [r̂t] = Eat∼πθt (·) [r̂t − b̂t] = r.

Proof. First part. Eat∼πθt (·) [r̂t] = r.

According to Definition 2, we have, for all i ∈ [K],

E
at∼πθt (·)

[r̂t(i)] =
∑
a∈[K]

P(at = a) · r̂t(i) (416)

=
∑
a∈[K]

πθt(a) · I {a = i}
πθt(i)

· r(i) = r(i). (at ∼ πθt(·)) (417)

Second part. Eat∼πθt (·) [r̂t − b̂t] = r. According to Definition 2, we have, for all i ∈ [K],

E
at∼πθt (·)

[r̂t(i)− b̂t(i)] =
∑
a∈[K]

πθt(a) ·
[
I {a = i}
πθt(i)

·
(
r(i)− π>θtr

)
+ π>θtr

]
(by Update 2)

(418)

= r(i)− π>θtr + π>θtr (419)

= r(i).
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Proposition 3 (Unboundedness of NPG). For NPG without a baseline, Update 1, we have
Eat∼πθt (·) ‖r̂t‖

2
2 =

∑
a∈[K]

r(a)2

πθt (a) . For NPG with a state value baseline, Update 2, we have

Eat∼πθt (·) ‖r̂t − b̂t‖
2
2 =

∑
a∈[K]

(r(a)−π>θtr)
2

πθt (a) −K · (π>θtr)
2 + 2 · (π>θtr) · (r

>1).

Proof. First part. Eat∼πθt (·) ‖r̂t‖
2
2 =

∑
a∈[K]

r(a)2

πθt (a) .

According to Definition 2, we have,

‖r̂t‖22 =
∑
i

r̂t(i)
2 =

∑
i

(I {at = i})2

πθt(i)
2

· r(i)2 =
∑
i

I {at = i}
πθt(i)

2
· r(i)2. (420)

Taking expectation, we have,

E
at∼πθt (·)

‖r̂t‖22 =
∑
a∈[K]

πθt(a) ·
∑
i

I {a = i}
πθt(i)

2
· r(i)2 (421)

=
∑
a∈[K]

πθt(a) · 1

πθt(a)2
· r(a)2 (422)

=
∑
a∈[K]

r(a)2

πθt(a)
. (423)

Second part. Eat∼πθt (·) ‖r̂t − b̂t‖
2
2 =

∑
a∈[K]

(r(a)−π>θtr)
2

πθt (a) −K · (π>θtr)
2 + 2 · (π>θtr) · (r

>1).

According to Definition 2, we have,∥∥r̂t − b̂t∥∥2

2
=
∑
i

(
r̂t(i)− b̂t(i)

)2

(424)

=
∑
i

[
I {at = i}
πθt(i)

·
(
r(i)− π>θtr

)
+ π>θtr

]2

(425)

=
∑
i

(I {at = i})2

πθt(i)
2

·
(
r(i)− π>θtr

)2
+
∑
i

(
π>θtr

)2
+ 2 ·

∑
i

I {at = i}
πθt(i)

·
(
r(i)− π>θtr

)
·
(
π>θtr

)
(426)

=
∑
i

I {at = i}
πθt(i)

2
·
(
r(i)− π>θtr

)2
+K ·

(
π>θtr

)2
+ 2 ·

∑
i

I {at = i}
πθt(i)

·
(
r(i)− π>θtr

)
·
(
π>θtr

)
.

(427)

Taking expectation, we have,

E
at∼πθt (·)

∥∥r̂t − b̂t∥∥2

2
=
∑
a∈[K]

πθt(a) ·
∑
i

I {a = i}
πθt(i)

2
·
(
r(i)− π>θtr

)2
(428)

+
∑
a∈[K]

πθt(a) ·K ·
(
π>θtr

)2
+ 2 ·

(
π>θtr

)
·
∑
a∈[K]

πθt(a) ·
∑
i

I {at = i}
πθt(i)

·
(
r(i)− π>θtr

)
(429)

=
∑
a∈[K]

πθt(a) · 1

πθt(a)2
·
(
r(a)− π>θtr

)2
(430)

+K ·
(
π>θtr

)2
+ 2 ·

(
π>θtr

)
·
∑
a∈[K]

πθt(a) · 1

πθt(a)
·
(
r(a)− π>θtr

)
(431)

=
∑
a∈[K]

(r(a)− π>θtr)
2

πθt(a)
−K · (π>θtr)

2 + 2 · (π>θtr) · (r
>1).
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Lemma 5 (Bad sampling). Let πθt(a) ∈ (0, 1) be the probability of sampling action a using online
sampling at ∼ πθt(·), for all t ≥ 1. If 1− πθt(a) ∈ O(1/t1+ε), where ε > 0, then

∏∞
t=1 πθt(a) > 0.

Proof. According to Lemma 18, we have, for a sequence ut ∈ (0, 1) for all t ≥ 1, if
∑∞
t=1 ut <∞,

then
∏∞
t=1 (1− ut) > 0.

Let ut = 1− πθt(a) ∈ (0, 1) according to the softmax parameterization. If 1− πθt(a) ∈ O(1/t1+ε),
such as 1− πθt(a) ∈ Θ(1/tα) where a ∈ (1,∞), then we have, for all C > 0,

∞∑
t=1

ut =

∞∑
t=1

(1− πθt(a)) (432)

=

∞∑
t=1

C

tα
(433)

≤ C ·
(

1 +

∫ ∞
t=1

1

tα
dt

)
(434)

=
C · α
α− 1

, (435)

or if 1− πθt(a) ∈ Θ(e−c·t) where c > 0, then we have, for all C > 0 and C ′ > 0,
∞∑
t=1

ut =

∞∑
t=1

(1− πθt(a)) (436)

=

∞∑
t=1

C

exp{C ′ · t}
(437)

≤
∫ ∞
t=0

C

exp{C ′ · t}
(438)

=
C

C ′
. (439)

Therefore, using Lemma 18, we have,
∞∏
t=1

(1− ut) =

∞∏
t=1

πθt(a) > 0, (440)

finishing the proofs.

Lemma 6 (NPG aggressiveness). Fix sampling at = a for all t ≥ 1, using Update 1 with constant
learning rate η > 0, where r̂t is from Definition 2, we have 1 − πθt(a) ∈ O(e−c·t) for all t ≥ 1,
where c > 0.

Proof. See [21, Theorem 3]. We include a proof for completeness.

Suppose a1 = a, a2 = a, · · · , at−1 = a. We have,

θt(a) = θ1(a) + η ·
t−1∑
s=1

r̂s(a) (by Update 1) (441)

= θ1(a) + η ·
t−1∑
s=1

I {as = a}
πθs(a)

· r(a) (by Definition 2) (442)

= θ1(a) + η ·
t−1∑
s=1

r(a)

πθs(a)
(as = a for all s ∈ {1, 2, . . . , t− 1}) (443)

≥ θ1(a) + η ·
t−1∑
s=1

r(a) (πθs(a) ∈ (0, 1)) (444)

= θ1(a) + η · r(a) · (t− 1) . (445)
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On the other hand, we have, for any other action a′ 6= a,

θt(a
′) = θ1(a′) + η ·

t−1∑
s=1

I {as = a′}
πθs(a

′)
· r(a′) (by Update 1 and Definition 2) (446)

= θ1(a′). (as 6= a′ for all s ∈ {1, 2, . . . , t− 1}) (447)

Therefore, we have,

πθt(a) = 1−
∑
a′ 6=a

πθt(a
′) (448)

= 1−
∑
a′ 6=a exp{θt(a′)}

exp{θt(a)}+
∑
a′ 6=a exp{θt(a′)}

(449)

≥ 1−
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

, (by Eqs. (441) and (446))

(450)

which implies that,

1− πθt(a) ≤
∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑
a′ 6=a exp{θ1(a′)}

(451)

∈ O(e−c·t), (452)

where c := η · r(a) > 0.

Lemma 7 (Good sampling). Let πθt(a) ∈ (0, 1) and at ∼ πθt(·), for all t ≥ 1. If∑∞
t=1 (1− πθt(a)) =∞ (e.g., 1− πθt(a) ∈ Ω(1/t)), then

∏∞
t=1 πθt(a) = 0.

Proof. According to Lemma 19, we have, for a sequence ut ∈ (0, 1) for all t ≥ 1, if
∑∞
t=1 ut =∞,

then
∏∞
t=1 (1− ut) = 0.

Let ut = 1− πθt(a) ∈ (0, 1) according to the softmax parameterization, the result follows.

Lemma 8 (Value baselines reduce NPG aggressiveness). Fix sampling at = a for all t ≥ 1. Then
using Update 2 with a constant learning rate η > 0 and r̂t from Definition 2 obtains 1− πθt(a) ∈
Ω(1/t) for all t ≥ 1.

Proof. Since the claim is concerned with the policies underlying the parameter vectors and not the
parameter vectors themselves, as noted after Update 2, we used the equivalent Update 3 with the
change of r̂t is from Definition 2 as follows,

θt+1(a)← θt(a) + η · I {at = a}
πθt(a)

·
(
r(a)− π>θtr

)
. (453)

Since at = a for all t ≥ 1 by assumption, we have,

θt+1(a)← θt(a) + η ·
r(a)− π>θtr
πθt(a)

, (454)

while for all a′ 6= a,

θt+1(a′)← θt(a
′). (455)

If π>θtr < r(a), then we have,

θt+1(a) = θt(a) + η ·
r(a)− π>θtr
πθt(a)

(by Eq. (454)) (456)

≥ 0,
(
π>θtr < r(a)

)
(457)
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which implies that,

πθt+1(a) =
exp{θt+1(a)}

exp{θt+1(a)}+
∑
a′ 6=a exp{θt+1(a′)}

(458)

=
exp{θt+1(a)}

exp{θt+1(a)}+
∑
a′ 6=a exp{θt(a′)}

(by Eq. (455)) (459)

≥ exp{θt(a)}
exp{θt(a)}+

∑
a′ 6=a exp{θt(a′)}

(by Eq. (456)) (460)

= πθt(a), (461)

which means 1− πθt(a) is decreasing. Otherwise, if π>θtr ≥ r(a), then using similar calculations,
we have πθt+1(a) ≤ πθt(a), i.e., 1− πθt(a) is increasing and will not approach 0. Since we prove
1− πθt(a) ∈ Ω(1/t), we assume the non-trivial case where π>θtr < r(a) for all t ≥ 1.

According to Lemma 20, we have,

∣∣∣∣πθt+1(a)− πθt(a)−
〈dπθt(a)

dθt
, θt+1 − θt

〉∣∣∣∣ ≤ 3

4
· ‖θt+1 − θt‖22. (462)

Therefore, we have,

(1− πθt(a))−
(
1− πθt+1

(a)
)

= πθt+1
(a)− πθt(a)−

〈dπθt(a)

dθt
, θt+1 − θt

〉
+
〈dπθt(a)

dθt
, θt+1 − θt

〉
(463)

≤ 3

4
· ‖θt+1 − θt‖22 +

〈dπθt(a)

dθt
, θt+1 − θt

〉
(by Eq. (454)) (464)

=
3 · η2

4
·

(r(a)− π>θtr)
2

πθt(a)2
+ η · dπθt(a)

dθt(a)
·
r(a)− π>θtr
πθt(a)

, (using the update) (465)

=
3 · η2

4
·

(r(a)− π>θtr)
2

πθt(a)2
+ η · (1− πθt(a)) ·

(
r(a)− π>θtr

) (
dπθt(a)

dθt(a)
= πθt(a) · (1− πθt(a))

)
(466)

≤ 3 · η2

4
·

(r(a)− π>θtr)
2

πθ1(a)2
+ η · (1− πθt(a)) ·

(
r(a)− π>θtr

)
(by Eq. (458)) (467)

≤ 3 · η2

4
· (1− πθt(a))

2

πθ1(a)2
+ η · (1− πθt(a))

2 (468)

= C · (1− πθt(a))
2

(
C :=

3 · η2

4 · πθ1(a)2
+ η

)
(469)

where the last inequality is because of,

r(a)− π>θtr =
∑
a′ 6=a

πθt(a
′) · (r(a)− r(a′)) (470)

≤ 1− πθt(a).
(
r ∈ (0, 1]K

)
(471)
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Next, we have,

1

1− πθt(a)
=

1

1− πθ1(a)
+

t−1∑
s=1

[
1

1− πθs+1
(a)
− 1

1− πθs(a)

]
(472)

=
1

1− πθ1(a)
+

t−1∑
s=1

1(
1− πθs+1(a)

)
· (1− πθs(a))

·
[
(1− πθs(a))−

(
1− πθs+1(a)

)]
(473)

≤ 1

1− πθ1(a)
+

t−1∑
s=1

1(
1− πθs+1(a)

)
· (1− πθs(a))

· C · (1− πθs(a))
2

(by Eq. (463))

(474)

≤ 1

1− πθ1(a)
+
C

2
· (t− 1), (475)

which implies that, for all large enough t ≥ 1,

1− πθt(a) ≥ 1
1

1−πθ1 (a) + C
2 · (t− 1)

∈ Ω(1/t).

D Simulation Settings

D.1 One-state MDPs

The detailed settings for simulations in Figure 2 are as follows. The total number of actions is
K = 20, and after sorting rewards the true mean reward vector r ∈ (0, 1)K is,

r = (0.96990985, 0.95071431, 0.86617615, 0.83244264,

0.73199394, 0.70807258, 0.60111501, 0.59865848,

0.52475643, 0.43194502, 0.37454012, 0.30424224,

0.29122914, 0.21233911, 0.18340451, 0.18182497,

0.15601864, 0.15599452, 0.05808361, 0.02058449)>.

For each a ∈ [K], the sampled reward distribution is Bernoulli(0.5), such that with probability 0.5,
one of the following two sampled reward values is observed,

R1 = (−2.03009015, 3.96990985), R2 = (−2.04928569, 3.95071431),

R3 = (−2.13382385, 3.86617615), R4 = (−2.16755736, 3.83244264),

R5 = (−2.26800606, 3.73199394), R6 = (−2.29192742, 3.70807258),

R7 = (−2.39888499, 3.60111501), R8 = (−2.40134152, 3.59865848),

R9 = (−2.47524357, 3.52475643), R10 = (−2.56805498, 3.43194502),

R11 = (−2.62545988, 3.37454012), R12 = (−2.69575776, 3.30424224),

R13 = (−2.70877086, 3.29122914), R14 = (−2.78766089, 3.21233911),

R15 = (−2.81659549, 3.18340451), R16 = (−2.81817503, 3.18182497),

R17 = (−2.84398136, 3.15601864), R18 = (−2.84400548, 3.15599452),

R19 = (−2.94191639, 3.05808361), R20 = (−2.97941551, 3.02058449).

The initial parameter θ1 ∈ RK is,

θ(i) =

{
5, if i = 2,

0, otherwise,
(476)

such that the initial probability of best sub-optimal action is,

πθ1(2) =
e5

e5 + 19 · e0
≈ 0.8865, (477)
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and all the other action’s probability, including the optimal action, is

πθ1(1) =
e0

e5 + 19 · e0
≈ 0.0060. (478)

We run Update 2 with learning rate,

η =
1

2
·
πθt(at) ·

∣∣r(at)− π>θtr∣∣
9

, (479)

and the results are shown in Figures 2a and 2b.

For the results in Figure 2c, Definition 2 is used, i.e., the true mean reward value r(at) is observed
for sampled action at, and we run the same update Update 2 using the same true mean reward vector
r ∈ (0, 1)K with learning rate η = 0.1 and uniform initial policy πθ1(a) = 1/K for all a ∈ [K].

D.2 Tree MDPs

We conduct experiments using a synthetic tree MDP with depth d = 4 and branch factor (number of
actions) k = 4. The total number of states is

S =

d−1∑
i=0

ki =

3∑
i=0

4i = 85. (480)

The discount factor γ = 0.9. For each state s ∈ S, the immediate reward vector is,

r(s, ·) := (1.0, 0.9, 0.8, 0.2)
>
. (481)

The state distribution ρ we used to measure the sub-optimality gap V ∗(ρ)−V πθt (ρ) is ρ(s0) = 1 for
the root state s0. The initial state distribution µ we used in the algorithm is set to satisfy Assumption 2
as follows,

µ = 0.2 · ρ+
0.8

S − 1
· (1− ρ) , (482)

i.e., µ(s0) = 0.2 and µ(s′) = 0.8
84 for any other state s′ 6= s0. We use an adversarial initialization,

such that optimal actions have smallest initial probabilities, i.e., for all s ∈ S,

πθ1(a∗(s)|s) = 0.07, (483)

and πθ1(a′|s) = 0.31 for any sub-optimal action a′ 6= a∗(s), where the optimal action a∗(s) and
policy π∗ are calculated using dynamic programming.
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Figure 3: Results on a tree MDP, adversarial initialization.

As shown in Figure 3, the sub-optimality gap V ∗(ρ)− V πθt (ρ) quickly approached about 0.1 value,
while the optimal action’s minimum probability mins∈S πθt(a

∗(s)|s) approaching very close to 0.
The algorithm got stuck on the sub-optimality plateau and finally escaped and approached the global
optimal policy π∗ after about 7× 106 iterations.

Figure 4 demonstrates a more detailed process of the optimization. Note that the tree MDP has
four layers of states, with state numbers S1 = 1 (root state), S2 = k = 4, S3 = k2 = 16, and
S4 = k3 = 64, respectively. We calculated the optimal actions’ probabilities for each layers of states.
For example, Figure 4(b) shows πθt(a

∗(s)|s) for all state s in Layer 2.
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Figure 4: Optimal actions’ probabilities for different layers of states.

As shown in Figure 4, πθt(a
∗(s)|s) for states in Layer 4 approaches to 1 most quickly comparing to

other layers of states. However, it took πθt(a
∗(s)|s) for Layers 2 and 3 several millions of iterations

to approach 1, and in the meanwhile πθt(a
∗(s0)|s0) decreased to near zero values. Therefore, a∗(s0)

would have very small chance to be sampled and learned using on-policy sampling, which created
the sub-optimality plateau for about 7× 106 iterations.

E Miscellaneous Extra Supporting Results

Recall that (Xt,Ft)t≥1 is a sub-martingale (super-martingale, martingale) if (Xt)t≥1 is adapted to
the filtration (Ft)t≥1 and E[Xt+1|Ft] ≥ Xt (E[Xt+1|Ft] ≤ Xt, E[Xt+1|Ft] = Xt, respectively)
holds almost surely for any t ≥ 1. For brevity, let Et[·] denote E[·|Ft] where the filtration should be
clear from the context and we also extend this notation to t = 0 such that E0U = E[U ].

Theorem 3 (Theorem 13.3.2 of [3]). Let (Xt,Ft)t≥1 be a sub-martingale such that
supn≥1 E[X+

n ] <∞. Then (Xt)t≥1 converges to a finite limit X∞ a.s. and E[|X∞|] <∞.

Theorem 3 implies the following Theorem 4.

Theorem 4 (Doob’s supermartingale convergence theorem [9]). If (Yt)t≥1 is an {Ft}t≥1-adapted
sequence such that E[Yt+1|Ft] ≤ Yt and supt E[|Yt|] < ∞ then {Yt}t≥1 almost surely converges
(a.s.) and, in particular, Yt → Y a.s. as t→∞ where Y = lim supt→∞ Yt is such that E[|Y |] <∞.

Lemma 13. Let (Xt,Ft)t≥1 be a sub-martingale such that supn≥1 E[X+
n ] < ∞. Let Zn =∑n−1

t=0 Xt+1 − Et[Xt+1] and assume that for any n, E[|Zn|] < ∞. Then, Xt+1 − Et[Xt+1] → 0
almost surely as t→∞.

Proof. By construction, and the assumption that E[|Zn|] <∞, (Zn,Fn)n≥1 is a martingale and as
such, it is also a sub-martingale. Further, for any n ≥ 1,

Zn = (Xn − En−1[Xn]) + (Xn−1 − En−2[Xn−1]) + · · ·+ (X1 − E0[X1])

= Xn + (Xn−1 − En−1[Xn]) + (Xn−2 − En−2[Xn−1]) + · · ·+ (X1 − E1[X2])− E0[X1]

≤ Xn − E0[X1] .

Hence, Z+
n ≤ (Xn−E0[X1])+ ≤ (Xn+ |E0[X1]|)+ ≤ X+

n +E[|X1|], and hence supn≥1 E[Z+
n ] ≤

supn≥1 E[X+
n ] + E[|X1|] < ∞. Applying Theorem 3 to (Zn,Fn)n≥1, we get that there exist a

random variable Z∞ such that E[|Z∞|] < ∞ and Zn → Z∞ almost surely as n → ∞. On the
set where (Zn)n≥1 converges to Z∞, (Zn)n≥1 is a Cauchy sequence, and it follows that |Xn+1 −
EnXn+1| = |Zn+1 − Zn| → 0, finishing the proof.

Corollary 3. Let (Xt,Ft)t≥1 be a sub-martingale such that Xn ∈ [a, b] almost surely for some
reals a < b. Let Zn =

∑n−1
t=0 Xt+1 − Et[Xt+1] and assume that for any n, E[|Zn|] < ∞. Then,

Xt+1 − Et[Xt+1]→ 0 almost surely as t→∞.

Proof. We use Lemma 13, hence we need to verify that the conditions of this result hold. Clearly,
supn≥1 E[X+

n ] ≤ b+ <∞. Next, we have for any n ≥ 1 that |Zn| ≤
∑n−1
t=0 |Xt+1 − Et[Xt+1]| ≤

n(b− a) <∞ since Et[Xt+1] ∈ [a, b] also holds when Xt+1 ∈ [a, b].
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Lemma 14 (Extended Borel-Cantelli Lemma, Corollary 5.29 of [5]). Let (Fn)n≥1 be a filtration,
An ∈ Fn. Then, almost surely,

{ω : ω ∈ An infinitely often } =

{
ω :

∞∑
n=1

P(An|Fn)

}
.

Lemma 15 (Piecewise linear domination for sigmoid-like functions). Given p ∈ (0, 1], define the
following function,

fp(y) :=
ey − 1

ey + 1−p
p

. (484)

For any fixed p ∈ (0, 1], and any fixed ε ∈ [0, 1], we have,

(1− ε) · p · y ≤ fp(y) ≤ (1 + ε) · p · y, for all y ∈ [0, ε], (485)
(1 + ε) · p · y ≤ fp(y) ≤ (1− ε) · p · y, for all y ∈ [−ε, 0]. (486)

Proof. First part. For y = 0 or ε = 0, Eqs. (485) and (486) hold trivially.

First, if y = 0, then we have fp(y) = p · y = 0, which means Eqs. (485) and (486) hold. Next, if
ε = 0, then y = 0 (since we prove for |y| ≤ ε) and Eqs. (485) and (486) again hold trivially.

We then prove for ε ∈ (0, 1] and for y 6= 0. Define the following function, for p ∈ [0, 1],

gp(y) :=
ey − 1

p · y · (ey − 1) + y
, for all y 6= 0. (487)

Second part. Eq. (485). We prove for any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1],

1− ε ≤ gp(y) ≤ 1 + ε, for all y ∈ (0, ε]. (488)

First, for p = 1, and any fixed ε ∈ (0, 1], we have, for all y ∈ (0, ε],

g1(y) =
ey − 1

y · ey
(by Eq. (487)) (489)

=
1− e−y

y
(490)

≥ y − y2

y

(
e−y ≤ 1− y + y2, for all y > 0

)
(491)

= 1− y (y > 0) (492)
≥ 1− ε. (y ∈ (0, ε]) (493)

Second, for p = 0, and any fixed ε ∈ (0, 1], we have, for all y ∈ (0, ε],

g0(y) =
ey − 1

y
(by Eq. (487)) (494)

≤ y + y2

y

(
ey ≤ 1 + y + y2, for all y ≤ 1

)
(495)

= 1 + y (y > 0) (496)
≤ 1 + ε. (y ∈ (0, ε]) (497)

Note that, for any y > 0, we have, gp(y) is monotonically decreasing over p, since

gp(y)−1 = p · y +
y

ey − 1
(498)

is monotonically increasing over p.

Therefore, we have, any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1], for all y ∈ (0, ε],

1− ε ≤ g1(y) (by Eq. (489)) (499)
≤ gp(y) (gp(y) is monotonically decreasing over p) (500)
≤ g0(y) (501)
≤ 1 + ε, (by Eq. (494)) (502)
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Note that,

fp(y) =
ey − 1

ey + 1−p
p

(by Eq. (484)) (503)

=
ey − 1

p · y · (ey − 1) + y
· p · y (p ∈ (0, 1], ε ∈ (0, 1], and y ∈ (0, ε]) (504)

= gp(y) · p · y. (by Eq. (487)) (505)

Therefore, according to Eqs. (499) and (503), we have,

(1− ε) · p · y ≤ fp(y) ≤ (1 + ε) · p · y, (p · y > 0) (506)

which means any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1], Eq. (485) holds for all y ∈ (0, ε].

Second part. Eq. (486). We prove for any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1],

1− ε ≤ gp(y) ≤ 1 + ε, for all y ∈ [−ε, 0). (507)

First, for p = 1, and any fixed ε ∈ (0, 1], we have, for all y ∈ [−ε, 0),

g1(y) =
ey − 1

y · ey
(by Eq. (487)) (508)

=
1− e−y

y
(509)

≤ y − y2

y

(
e−y ≤ 1− y + y2, for all y ≥ −1

)
(510)

= 1− y (y < 0) (511)
≤ 1 + ε. (y ∈ [−ε, 0)) (512)

Second, for p = 0, and any fixed ε ∈ (0, 1], we have, for all y ∈ [−ε, 0),

g0(y) =
ey − 1

y
(by Eq. (487)) (513)

≥ y + y2

y

(
ey ≤ 1 + y + y2, for all y ≤ 1

)
(514)

= 1 + y (y < 0) (515)
≥ 1− ε, (y ∈ [−ε, 0)) (516)

Note that, for any y < 0, we have, gp(y) is monotonically increasing over p, since

gp(y)−1 = p · y +
y

ey − 1
(517)

is monotonically decreasing over p.

Therefore, we have, any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1], for all y ∈ [−ε, 0),

1− ε ≤ g0(y) (by Eq. (513)) (518)
≤ gp(y) (gp(y) is monotonically increasing over p) (519)
≤ g1(y) (520)
≤ 1 + ε, (by Eq. (508)) (521)

Note that,

fp(y) =
ey − 1

ey + 1−p
p

(by Eq. (484)) (522)

=
ey − 1

p · y · (ey − 1) + y
· p · y (p ∈ (0, 1], ε ∈ (0, 1], and y ∈ [−ε, 0)) (523)

= gp(y) · p · y. (by Eq. (487)) (524)

Therefore, according to Eqs. (518) and (522), we have,

(1 + ε) · p · y ≤ fp(y) ≤ (1− ε) · p · y, (p · y < 0) (525)

which means any fixed p ∈ (0, 1], and any fixed ε ∈ (0, 1], Eq. (486) holds for all y ∈ [−ε, 0).
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Lemma 16. Let r ∈ [0, 1]K and a∗ := arg maxa∈[K] r(a) be the optimal action. Denote ∆ :=

r(a∗)−maxa6=a∗ r(a) as the reward gap of r. We have, for any policy π,
K∑
i=1

π(i)2 ·
∣∣r(i)− π>r∣∣3 ≥ ∆

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
. (526)

Proof. First case. If π>r ≤ maxa6=a∗ r(a), then we have,
r(a∗)− π>r ≥ r(a∗)−max

a 6=a∗
r(a) = ∆. (527)

Therefore, we have,
K∑
i=1

π(i)2 ·
∣∣r(i)− π>r∣∣3 ≥ π(a∗)2 ·

∣∣r(a∗)− π>r∣∣3 (fewer terms) (528)

≥ π(a∗)2 ·
(
r(a∗)− π>r

)2 ·∆ (by Eq. (527)) (529)

≥ ∆

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
. (K ≥ 2) (530)

Second case. If π>r > maxa 6=a∗ r(a), then we have, for all a 6= a∗,
π>r − r(a) ≥ π>r −max

a6=a∗
r(a) > 0. (531)

Therefore, we have,
K∑
i=1

π(i)2 ·
∣∣r(i)− π>r∣∣3 = π(a∗)2 ·

(
r(a∗)− π>r

)3
+
∑
a6=a∗

π(a)2 ·
(
π>r − r(a)

)3
. (532)

Note that,

π(a∗) ·
(
r(a∗)− π>r

)
=

K∑
i=1

π(i) ·
(
r(i)− π>r

)
︸ ︷︷ ︸

=0

−
∑
a6=a∗

π(a) ·
(
r(a)− π>r

)
(533)

=
∑
a6=a∗

π(a) ·
(
π>r − r(a)

)
. (534)

Next, we have,∑
a6=a∗

π(a)2 ·
(
π>r − r(a)

)3 ≥ (π>r −max
a 6=a∗

r(a)

)
·
∑
a6=a∗

π(a)2 ·
(
π>r − r(a)

)2
(by Eq. (531))

(535)

≥ π>r −maxa 6=a∗ r(a)

K − 1
·

∑
a 6=a∗

π(a) ·
(
π>r − r(a)

)2

(by Cauchy–Schwarz) (536)

=
π>r −maxa 6=a∗ r(a)

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
. (by Eq. (533)) (537)

Combining Eqs. (532) and (535), we have,
K∑
i=1

π(i)2 ·
∣∣r(i)− π>r∣∣3 ≥ π(a∗)2 ·

(
r(a∗)− π>r

)3
+
π>r −maxa 6=a∗ r(a)

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
(538)

≥
[
r(a∗)− π>r
K − 1

+
π>r −maxa 6=a∗ r(a)

K − 1

]
· π(a∗)2 ·

(
r(a∗)− π>r

)2
(K ≥ 2)

(539)

=
r(a∗)−maxa6=a∗ r(a)

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
(540)

=
∆

K − 1
· π(a∗)2 ·

(
r(a∗)− π>r

)2
. (541)

Combining Eqs. (528) and (538) we finish the proofs.
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Lemma 17 (Performance difference lemma [12]). For any policies π and π′,

V π
′
(ρ)− V π(ρ) =

1

1− γ
·
∑
s

dπ
′

ρ (s) ·
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (542)

=
1

1− γ
·
∑
s

dπ
′

ρ (s) ·
∑
a

π′(a|s) ·Aπ(s, a). (543)

Proof. According to the definition of value function,

V π
′
(s)− V π(s) =

∑
a

π′(a|s) ·Qπ
′
(s, a)−

∑
a

π(a|s) ·Qπ(s, a) (544)

=
∑
a

π′(a|s) ·
(
Qπ
′
(s, a)−Qπ(s, a)

)
+
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (545)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) + γ ·
∑
a

π′(a|s) ·
∑
s′

P(s′|s, a) ·
[
V π
′
(s′)− V π(s′)

]
(546)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

(π′(a′|s′)− π(a′|s′)) ·Qπ(s′, a′) (547)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

π′(a′|s′) · (Qπ(s′, a′)− V π(s′)) (548)

=
1

1− γ
·
∑
s′

dπ
′

s (s′) ·
∑
a′

π′(a′|s′) ·Aπ(s′, a′).

Lemma 18. Let ut ∈ (0, 1) for all t ≥ 1. The infinite product
∏∞
t=1 (1− ut) converges to a positive

value if and only if the series
∑∞
t=1 ut converges to a finite value.

Proof. See [21, Lemma 16]. We include a proof for completeness.

Define the following partial products and partial sums,

pT :=

T∏
t=1

(1− ut), (549)

sT :=

T∑
t=1

ut. (550)

Since pT is monotonically decreasing and non-negative, the infinite product converges to positive
values, i.e.,

∞∏
t=1

(1− ut) = lim
T→∞

T∏
t=1

(1− ut) = lim
T→∞

pT > 0, (551)

if and only if pT is lower bounded away from zero (boundedness convergence criterion for monotone
sequence) [15, p. 80].

Similarly, since sT is monotonically increasing, the series converges to finite values, i.e.,

∞∑
t=1

ut = lim
T→∞

T∑
t=1

ut = lim
T→∞

sT <∞, (552)

if and only if sT is upper bounded.

First part.
∏∞
t=1 (1− ut) converges to a positive value only if

∑∞
t=1 ut converges to a finite value.

Suppose
∏∞
t=1 (1− ut) converges to a positive value. We have, for all T ≥ 1,

qT ≥ q > 0. (553)
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Then we have,

q ≤ qT (554)

= exp

{
log

( T∏
t=1

(1− ut)
)}

(555)

= exp

{ T∑
t=1

log (1− ut)
}

(556)

≤ exp

{
−

T∑
t=1

ut

}
(log (1− x) < −x) (557)

= exp{−sT }, (558)

which implies that,

sT ≤ − log q <∞. (559)

Therefore, we have
∑∞
t=1 ut converges to a finite value.

Second part.
∏∞
t=1 (1− ut) converges to a positive value if

∑∞
t=1 ut converges to a finite value.

Suppose
∑∞
t=1 ut converges to a finite value. Then we have, ut → 0 as t→∞. There exists a finite

number t0 ≥ 1, such that for all t ≥ t0, we have ut ≤ 1/2. Also, we have, for all T ≥ 1,

sT ≤ s <∞. (560)

Then we have,

T∏
t=t0

(1− ut) = exp

{ T∑
t=t0

log (1− ut)
}

(561)

≥ exp

{
−

T∑
t=t0

2 · ut
}

(−2 · x ≤ log (1− x) for all x ∈ [0, 1/2]) (562)

= exp{−2 · sT }, (563)

which implies that, for all large enough T ≥ 1,

qT =

(
t0−1∏
t=1

(1− ut)

)
·

(
T∏
t=t0

(1− ut)

)
(564)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · sT } (565)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · s} (566)

> 0. (567)

Therefore, we have
∏∞
t=1 (1− ut) converges to a positive value.

Lemma 19. Let ut ∈ (0, 1) for all t ≥ 1. We have
∏∞
t=1 (1− ut) = limT→∞

∏T
t=1 (1− ut) = 0

if and only if the series
∑∞
t=1 ut diverges to positive infinity.

Proof. See [21, Lemma 17]. We include a proof for completeness.

First part.
∏∞
t=1 (1− ut) diverges to 0 only if

∑∞
t=1 ut diverges to positive infinity.

Suppose
∏∞
t=1 (1− ut) diverges to 0. According to Lemma 18,

∑∞
t=1 ut diverges. And since the

partial sum sT :=
∑T
t=1 ut is monotonically increasing, we have

∑∞
t=1 ut diverges to positive

infinity.
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Second part.
∏∞
t=1 (1− ut) diverges to 0 if

∑∞
t=1 ut diverges to a positive infinity.

Suppose
∑∞
t=1 ut diverges to positive infinity. According to Lemma 18,

∏∞
t=1 (1− ut) diverges.

And since the partial product qT :=
∏T
t=1 (1− ut) is non-negative and monotonically decreasing,

we have
∏∞
t=1 (1− ut) diverges to 0.

Lemma 20 (Smoothness). Let πθ = softmax(θ) and πθ′ = softmax(θ′). For any r ∈ (0, 1]
K , for

any πθ(a), we have θ 7→ πθ(a) is 3/2-smooth, i.e.,∣∣∣∣πθ′(a)− πθ(a)−
〈dπθ(a)

dθ
, θ′ − θ

〉∣∣∣∣ ≤ 3

4
· ‖θ′ − θ‖22. (568)

Proof. The proof is based on and improves [24, Lemma 2].

Let S := S(r, θ) ∈ RK×K be the second derivative of the value map θ 7→ πθ(a) = π>θ 1a, where

1a(i) =

{
1, if i = a,

0, otherwise.
(569)

By Taylor’s theorem, it suffices to show that the spectral radius of S (regardless of r and θ) is bounded
by 3/2. Now, by its definition we have

S =
d

dθ

{
dπ>θ 1a
dθ

}
(570)

=
d

dθ

{
(diag(πθ)− πθπ>θ )1a

}
. (571)

Continuing with our calculation fix i, j ∈ [K]. Then,

Si,j =
d{πθ(i) · (1a(i)− π>θ 1a)}

dθ(j)
(572)

=
dπθ(i)

dθ(j)
· (1a(i)− π>θ 1a) + πθ(i) ·

d{1a(i)− π>θ 1a}
dθ(j)

(573)

= (δijπθ(j)− πθ(i)πθ(j)) · (1a(i)− π>θ 1a)− πθ(i) · (πθ(j)1a(j)− πθ(j)π>θ 1a) (574)

= δijπθ(j) · (1a(i)− π>θ 1a)− πθ(i)πθ(j) · (1a(i)− π>θ 1a)− πθ(i)πθ(j) · (1a(j)− π>θ 1a),
(575)

where

δij =

{
1, if i = j,

0, otherwise,
(576)

is Kronecker’s δ-function. To show the bound on the spectral radius of S, pick y ∈ RK . Then,

∣∣y>Sy∣∣ =

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

Si,jy(i)y(j)

∣∣∣∣∣∣ (577)

=

∣∣∣∣∣∣
∑
i

πθ(i)(1a(i)− π>θ 1a)y(i)2 − 2
∑
i

πθ(i)(1a(i)− π>θ 1a)y(i)
∑
j

πθ(j)y(j)

∣∣∣∣∣∣ (578)

=
∣∣∣((diag(πθ)− πθπ>θ )1a

)>
(y � y)− 2 ·

(
(diag(πθ)− πθπ>θ )1a

)>
y ·
(
π>θ y

)∣∣∣ (579)

≤
∥∥(diag(πθ)− πθπ>θ )1a

∥∥
∞ · ‖y � y‖1 + 2 ·

∥∥(diag(πθ)− πθπ>θ )1a
∥∥

1
· ‖y‖∞ · ‖πθ‖1 · ‖y‖∞

(580)

≤
∥∥(diag(πθ)− πθπ>θ )1a

∥∥
∞ · ‖y‖

2
2 + 2 ·

∥∥(diag(πθ)− πθπ>θ )1a
∥∥

1
· ‖y‖22 (581)

≤ 3 ·
∥∥(diag(πθ)− πθπ>θ )1a

∥∥
1
· ‖y‖22, (582)
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where� is Hadamard (component-wise) product, and the third last inequality uses Hölder’s inequality
together with the triangle inequality, and the second inequality uses ‖y � y‖1 = ‖y‖22, ‖πθ‖1 = 1,
and ‖y‖∞ ≤ ‖y‖2. Next, we have,∥∥(diag(πθ)− πθπ>θ )1a

∥∥
1

=
∑
i

πθ(i) ·
∣∣1a(i)− π>θ 1a

∣∣ (583)

= πθ(a) · (1− πθ(a)) + πθ(a) ·
∑
i 6=a

πθ(i) (584)

= 2 · πθ(a) · (1− πθ(a)) (585)
≤ 1/2. (x · (1− x) ≤ 1/4 for all x ∈ [0, 1]) (586)

Therefore we have, ∣∣y>S(r, θ)y
∣∣ ≤ 3 ·

∥∥(diag(πθ)− πθπ>θ )1a
∥∥

1
· ‖y‖22 (587)

≤ 3/2 · ‖y‖22 , (588)

finishing the proof.
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