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Abstract

The recently proposed distribution correction estimation (DICE) family of estima-
tors has advanced the state of the art in off-policy evaluation from behavior-agnostic
data. While these estimators all perform some form of stationary distribution cor-
rection, they arise from different derivations and objective functions. In this paper,
we unify these estimators as regularized Lagrangians of the same linear program.
The unification allows us to expand the space of DICE estimators to new alterna-
tives that demonstrate improved performance. More importantly, by analyzing the
expanded space of estimators both mathematically and empirically we find that dual
solutions offer greater flexibility in navigating the tradeoff between optimization
stability and estimation bias, and generally provide superior estimates in practice.

1 Introduction

One of the most fundamental problems in reinforcement learning (RL) is policy evaluation, where
we seek to estimate the expected long-term payoff of a given target policy in a decision making
environment. An important variant of this problem, off-policy evaluation (OPE) [23], is motivated by
applications where deploying a policy in a live environment entails significant cost or risk [20, 27].
To circumvent these issues, OPE attempts to estimate the value of a target policy by referring only to
a dataset of experience previously gathered by other policies in the environment. Often, such logging
or behavior policies are not known explicitly (e.g., the experience may come from human actors),
which necessitates the use of behavior-agnostic OPE methods [21].

While behavior-agnostic OPE appears to be a daunting problem, a number of estimators have recently
been developed for this scenario [21, 28, 30, 31], demonstrating impressive empirical results. Such
estimators, known collectively as the “DICE” family for DIstribution Correction Estimation, model
the ratio between the propensity of the target policy to visit particular state-action pairs relative to
their likelihood of appearing in the logged data. A distribution corrector of this form can then be
directly used to estimate the value of the target policy.

Although there are many commonalities between the various DICE estimators, their derivations
are distinct and seemingly incompatible. For example, DualDICE [21] is derived by a particular
change-of-variables technique, whereas GenDICE [30] observes that the substitution strategy cannot
work in the average reward setting, and proposes a distinct derivation based on distribution matching.
GradientDICE [31] notes that GenDICE exacerbates optimization difficulties, and proposes a variant
designed for limited sampling capabilities. Despite these apparent differences in these methods, the
algorithms all involve a minimax optimization that has a strikingly similar form, which suggests that
there is a common connection that underlies the alternative derivations.

We show that the previous DICE formulations are all in fact equivalent to regularized Lagrangians
of the same linear program (LP). This LP shares an intimate relationship with the policy evaluation
problem, and has a primal form we refer to as the Q-LP and a dual form we refer to as the d-LP. The
primal form has been concurrently identified and studied in the context of policy optimization [22],
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but we focus on the d-LP formulation for off-policy evaluation here, which we find to have a more
succinct and revealing form for this purpose. Using the d-LP, we identify a number of key choices
in translating it into a stable minimax optimization problem – i.e. whether to include redundant
constraints, whether to regularize the primal or dual variables – in addition to choices in how to
translate an optimized solution into an asymptotically unbiased estimate of the policy value.2 We
use this characterization to show that the known members of the DICE family are a small subset of
specific choices made within a much larger, unexplored set of potential OPE methods.

To understand the consequences of the various choices, we provide a comprehensive study. First, we
theoretically investigate which configurations lead to bias in the primal or dual solutions, and when
this affects the final estimates. Our analysis shows that the dual solutions offer greater flexibility in
stabilizing the optimization while preserving asymptotic unbiasedness, versus primal solutions. We
also perform an extensive empirical evaluation of the various choices across different domains and
function approximators, and identify novel configurations that improve the observed outcomes.

2 Background

We consider an infinite-horizon Markov Decision Process (MDP) [24], specified by a tuple
M = hS,A,R, T, µ0, �i, which consists of a state space, action space, reward function, transi-
tion probability function, initial state distribution, and discount factor � 2 [0, 1].3 A policy ⇡ interacts
with the environment starting at an initial state s0 ⇠ µ0, producing a distribution ⇡(·|st) over A from
which an action at is sampled and applied to the environment at each step t � 0. The environment
produces a scalar reward rt = R(st, at),4 and transitions to a new state st+1 ⇠ T (st, at).

2.1 Policy Evaluation

The value of a policy ⇡ is defined as the normalized expected per-step reward it obtains:
⇢(⇡) := (1 � �)E [

P1
t=0 �

tR(st, at) | s0 ⇠ µ0, 8t, at ⇠ ⇡(st), st+1 ⇠ T (st, at)] . (1)
In the policy evaluation setting, the policy being evaluated is referred to as the target policy. The
value of a policy may be expressed in two equivalent ways:

⇢(⇡) = (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q⇡(s0, a0)] = E(s,a)⇠d⇡ [R(s, a)], (2)

where Q⇡ and d⇡ are the state-action values and visitations of ⇡, respectively, which satisfy
Q⇡(s, a) = R(s, a) + � · P⇡Q⇡(s, a), where P⇡Q(s, a) := Es0⇠T (s,a),a0⇠⇡(s0)[Q(s0, a0)] , (3)

d⇡(s, a) = (1� �)µ0(s)⇡(a|s) + � · P⇡
⇤ d

⇡(s, a), where P⇡
⇤ d(s, a) := ⇡(a|s)

P
s̃,ã T (s|s̃, ã)d(s̃, ã). (4)

Note that P⇡ and P⇡
⇤ are linear operators that are transposes (adjoints) of each other. We refer to P⇡

as the policy transition operator and P⇡
⇤ as the transpose policy transition operator. The function

Q⇡ corresponds to the Q-values of the policy ⇡; it maps state-action pairs (s, a) to the expected
value of policy ⇡ when run in the environment starting at (s, a). The function d⇡ corresponds to the
on-policy distribution of ⇡; it is the normalized distribution over state-action pairs (s, a) measuring
the likelihood ⇡ enounters the pair (s, a), averaging over time via �-discounting. We make the
following standard assumption, which is common in previous policy evaluation work [30, 22].
Assumption 1 (MDP ergodicity). There is unique fixed point solution to (4).

When � 2 [0, 1), (4) always has a unique solution, as 0 cannot belong to the spectrum of I��P⇡
⇤ . For

�=1, the assumption reduces to ergodicity for discrete case under a restriction of d to a normalized
distribution; the continuous case is treated by [18].

2.2 Off-policy Evaluation via the DICE Family

Off-policy evaluation (OPE) aims to estimate ⇢(⇡) using only a fixed dataset of experiences. Specif-
ically, we assume access to a finite dataset D = {(s(i)0 , s(i), a(i), r(i), s0(i))}Ni=1, where s(i)0 ⇠ µ0,

2With a slight terminology abuse, we use asymptotically unbiased and unbiased interchangeably.
3For simplicity, we focus on the discounted case where � 2 [0, 1) unless otherwise specified. The same

conclusions generally hold for the undiscounted case with � = 1; see Appendix E for more details.
4We consider a a deterministic reward function. All of our results apply to stochastic rewards as well.
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(s(i), a(i)) ⇠ dD are samples from some unknown distribution dD, r(i) = R(s(i), a(i)), and
s0(i) ⇠ T (s(i), a(i)). We at times abuse notation and use (s, a, r, s0) ⇠ dD or (s, a, r) ⇠ dD as
a shorthand for (s, a) ⇠ dD, r = R(s, a), s0 ⇠ T (s, a), which simulates sampling from the dataset
D when using a finite number of samples.

The recent DICE methods take advantage of the following expression for the policy value:
⇢(⇡) = E(s,a,r)⇠dD [⇣⇤(s, a) · r] , (5)

where ⇣⇤ (s, a) := d⇡(s, a)/dD(s, a) is the distribution correction ratio. The existing DICE estima-
tors seek to approximate this ratio without knowledge of d⇡ or dD, and then apply (5) to derive an
estimate of ⇢(⇡). This general paradigm is supported by the following assumption.
Assumption 2 (Boundedness). The stationary correction ratio is bounded, k⇣⇤k1  C < 1.

When � < 1, DualDICE [21] chooses a convex objective whose optimal solution corresponds to this
ratio, and employs a change of variables to transform the dependence on d⇡ to µ0. GenDICE [30], on
the other hand, minimizes a divergence between successive on-policy state-action distributions, and
introduces a normalization constraint to ensure the estimated ratios average to 1 over the off-policy
dataset. Both DualDICE and GenDICE apply Fenchel duality to reduce an intractable convex objective
to a minimax objective, which enables sampling and optimization in a stochastic or continuous action
space. GradientDICE [31] extends GenDICE by using a linear parametrization so that the minimax
optimization is convex-concave with convergence guarantees.

3 A Unified Framework of DICE Estimators

In this section, given a fixed target policy ⇡, we present a linear programming representation (LP) of
its state-action stationary distribution d⇡ (s, a) 2 P , referred to as the d-LP. Here P represents the
space of all stationary distributions. The dual of this LP has solution Q⇡, thus revealing the duality
between the Q-function and the d-distribution of any policy ⇡. We then discuss the mechanisms by
which one can improve optimization stability through the application of regularization and redundant
constraints. Although in general this may introduce bias into the final value estimate, there are a
number of valid configurations for which the resulting estimator for ⇢(⇡) remains unbiased. We show
that existing DICE algorithms cover several choices of these configurations, while there is also a
sizable subset which remains unexplored.

3.1 Linear Programming Representation for the d⇡-distribution

The following theorem presents a formulation of ⇢(⇡) in terms of a linear program with respect to
the constraints in (4) and (3).
Theorem 1. Given a policy ⇡, under Assumption 1, its value ⇢ (⇡) defined in (1) can be expressed

by the following d-LP:

max
d:S⇥A!R

Ed [R (s, a)] , s.t., d(s, a) = (1 � �)µ0(s)⇡(a|s) + � · P⇡
⇤ d(s, a)| {z }

B⇡
⇤ ·d

. (6)

We refer to the d-LP above as the dual problem. Its corresponding primal LP is

min
Q:S⇥A!R

(1 � �)Eµ0⇡ [Q (s, a)] , s.t., Q(s, a) = R(s, a) + � · P⇡Q(s, a)| {z }
B⇡·Q

. (7)

Proof. Notice that under Assumption 1, the constraint in (6) determines a unique solution, which is
the stationary distribution d⇡ . Therefore, the objective will be ⇢ (⇡) by definition. On the other hand,
due to the contraction of � · P⇡ , the primal problem is feasible and the solution is Q⇡ , which shows
the optimal objective value will also be ⇢ (⇡), implying strong duality holds.

Theorem 1 presents a succinct LP representation for policy value and reveals the duality between the
Q⇡-function and d⇡-distribution, thus providing an answer to the question raised by [28]. Although
the d-LP provides a mechanism for policy evaluation, directly solving either the primal or dual d-LPs
is difficult due to the number of constraints, which will present difficulties when the state and action
spaces is uncountable. These issues are exaggerated in the off-policy setting where one only has
access to samples (s0, s, a, r, s0) from a stochastic process. To overcome these difficulties, one can
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instead approach these primal and dual LPs through the Lagrangian,
maxd minQ L(d,Q) := (1 � �) · Ea0⇠⇡(s0)

s0⇠µ0

[Q(s0, a0)] +
P

s,a d(s, a) · (R(s, a) + �P⇡Q(s, a) � Q(s, a)).

In order to enable the use of an arbitrary off-policy distribution dD, we make the change of variables
⇣(s, a) := d(s, a)/dD(s, a). This yields an equivalent Lagrangian in a more convenient form:

max
⇣

min
Q

LD(⇣, Q) :=(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)]

+ E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (r + �Q(s0, a0) � Q(s, a))]. (8)

The Lagrangian has primal and dual solutions Q⇤ = Q⇡ and ⇣⇤ = d⇡/dD. Approximate solutions to
one or both of Q̂, ⇣̂ can be used to estimate ⇢̂(⇡), by either using the standard DICE paradigm in (5)
which corresponds to the dual objective in (6) or, alternatively, by using the primal objective in (7)
or the Lagrangian objective in (8); we further discuss these choices later in this section. Although
the Lagrangian in (8) should in principle be able to derive the solutions Q⇡, d⇡ and so yield accurate
estimates of ⇢(⇡), in practice there are a number of optimization difficulties that are liable to be
encountered. Specifically, even in tabular case, due to lack of curvature, the Lagrangian is not
strongly-convex-strongly-concave, and so one cannot guarantee the convergence of the final solution
with stochastic gradient descent-ascent (SGDA). These optimization issues can become more severe
when moving to the continuous case with neural network parametrization, which is the dominant
application case in practice. In order to mitigate these issues, we present a number of ways to
introduce more stability into the optimization and discuss how these mechanisms may trade-off with
the bias of the final estimate. We will show that the application of certain mechanisms recovers the
existing members of the DICE family, while a larger set remains unexplored.

3.2 Regularizations and Redundant Constraints

The augmented Lagrangian method (ALM) [25] is proposed exactly for circumventing the optimiza-
tion instability, where strong convexity is introduced by adding extra regularizations without changing
the optimal solution. However, directly applying ALM, i.e., adding hp (Q) := kB⇡ · Q � Qk2dD or
hd (d) := Df (d||B⇡

⇤ · d) where Df denotes the f -divergence, will introduce extra difficulty, both
statistically and algorithmically, due to the conditional expectation operator in B⇡ and B⇡

⇤ inside
of the non-linear function in hp (Q) and hd (d), which is known as “double sample” in the RL
literature [1]. Therefore, the vanilla stochastic gradient descent is no longer applicable [5], due to the
bias in the gradient estimator.

In this section, we use the spirit of ALM but explore other choices of regularizations to introduce
strong convexity to the original Lagrangian (8). In addition to regularizations, we also employ the use
of redundant constraints, which serve to add more structure to the optimization without affecting the
optimal solutions. We will later analyze for which configurations these modifications of the original
problem will lead to biased estimates for ⇢(⇡).

We first present the unified objective in full form equipped with all choices of regularizations and
redundant constraints:
max
⇣�0

min
Q,�

LD(⇣, Q,�) :=(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + �

+ E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (↵R · R(s, a) + �Q(s0, a0) � Q(s, a) � �)]

+ ↵Q · E(s,a)⇠dD [f1(Q(s, a))] � ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))]. (9)

Now, let us explain each term in (↵Q,↵⇣ ,↵R, ⇣� 0,�).

• Primal and Dual regularization: To introduce better curvature into the Lagrangian, we introduce
primal and dual regularization ↵QEdD [f1 (Q)] or ↵⇣EdD [f2 (⇣)], respectively. Here f1, f2 are
some convex and lower-semicontinuous functions.

• Reward: Scaling the reward may be seen as an extension of the dual regularizer, as it is a
component in the dual objective in (6). We consider ↵R 2 {0, 1}.

• Positivity: Recall that the solution to the original Lagrangian is ⇣⇤ (s, a) = d⇡(s,a)
dD(s,a) � 0. We thus

consider adding a positivity constraint to the dual variable. This may be interpreted as modifying
the original d-LP in (6) to add a condition d � 0 to its objective.
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• Normalization: Similarly, the normalization constraint also comes from the property of the
optimal solution ⇣⇤ (s, a), i.e., EdD [⇣ (s, a)] = 1. If we add an extra constraint to the d-LP (6) asP

s,a d(s, a) = 1 and apply the Lagrangian, we result in the term � � EdD [�⇣ (s, a)] seen in (9).

As we can see, the latter two options come from the properties of optimal dual solution, and this
suggests that their inclusion would not affect the optimal dual solution. On the other hand, the first
two options (primal/dual regularization and reward scaling) will in general affect the solutions to the
optimization. Whether a bias in the solution affects the final estimate depends on the estimator being
used.

Remark (Robust optimization justification): Besides the motivation from ALM for strong con-
vexity, the regularization terms in (9), ↵Q · E(s,a)⇠dD [f1(Q(s, a))] and ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))],
can also be interpreted as introducing robustness via perturbation to the Bellman difference. Con-
sider dual regularization as an example. The Fenchel dual of ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))] gives

↵⇣

n
max�(s,a)2⌦ h⇣, �i � E(s,a)⇠dD [f⇤

2 (� (s, a))]
o

, where ⌦ denotes the domain of function f⇤
2 .

By plugging f⇤
2 (·) = (·)2 back into (9), we obtain

max
⇣�0

min
Q,�,�2⌦

LD(⇣, Q,�) := (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + �

+ E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (↵R · R(s, a) + �Q(s0, a0) � Q(s, a) � � � ↵⇣� (s, a))]

+ ↵Q · E(s,a)⇠dD [f1(Q(s, a))] + ↵⇣ · E(s,a)⇠dD [�2 (s, a)], (10)
which can be understood as introducing slack variables (i.e., perturbations in the L2-ball) to the
Bellman difference ↵R · R(s, a) + �Q(s0, a0) � Q(s, a). Different dual regularizations will result in
perturbation in different dual spaces. From this perspective, the dual regularization mitigates both
sampling error in approximating the Bellman difference and approximation error induced by the
parametrization of Q. Similarly, the primal regularization can be interpreted as introducing slack
variables to the stationary state-action distribution condition. Please refer to Appendix A for details.

Given estimates Q̂, �̂, ⇣̂, there are three potential ways to estimate ⇢(⇡).

• Primal estimator: ⇢̂Q(⇡) := (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q̂(s0, a0)] + �̂.

• Dual estimator: ⇢̂⇣(⇡) := E(s,a,r)⇠dD [⇣̂(s, a) · r].

• Lagrangian: ⇢̂Q,⇣(⇡) := ⇢̂Q(⇡) + ⇢̂⇣(⇡) + E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

h
⇣̂ (s, a) (�Q̂(s0, a0) � Q̂(s, a) � �̂)

i
.

The following theorem outlines when a choice of regularizations, redundant constraints, and final
estimator will provably result in an unbiased estimate of policy value.
Theorem 2 (Regularization profiling). Under Assumption 1 and 2, we summarize the effects of

(↵Q, ↵⇣ , ↵R, ⇣� 0, �), which corresponds to primal and dual regularizations, w/w.o. reward, and

positivity and normalization constraints. without considering function approximation.

Regularization (with or without �) ⇢̂Q ⇢̂⇣ ⇢̂Q,⇣

↵R = 1
⇣ free Unbiased Biased Unbiased

↵⇣ = 0 ⇣� 0

Biased

Biased
↵Q > 0

↵R = 0
⇣ free

Unbiased Unbiased

⇣� 0

↵R = 1
⇣ free

↵⇣ > 0 ⇣� 0

↵Q = 0
↵R = 0

⇣ free
⇣� 0

Notice that the primal and dual solutions can both be unbiased under specific regularization config-
urations, but the dual solutions are unbiased in 6 out of 8 such configurations, whereas the primal
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solution is unbiased in only 1 configuration. The primal solution additionally requires the positivity
constraint to be excluded (see details in Appendix B), further restricting its optimization choices.

The Lagrangian estimator is unbiased when at least one of Q̂, �̂ or ⇣̂ are unbiased. This property is
referred to as doubly robust in the literature [12] This seems to imply that the Lagrangian estimator
is optimal for behavior-agnostic off-policy evaluation. However, this is not the case as we will see
in the empirical analysis. Instead, the approximate dual solutions are typically more accurate than
approximate primal solutions. Since neither is exact, the Lagrangian suffers from error in both, while
the dual estimator ⇢̂⇣ will exhibit more robust performance, as it solely relies on the approximate ⇣̂.

3.3 Recovering Existing OPE Estimators

This organization provides a complete picture of the DICE family of estimators. Existing DICE
estimators can simply be recovered by picking one of the valid regularization configurations:

• DualDICE [21]: (↵Q = 0,↵⇣ = 1,↵R = 0) without ⇣� 0 and without �. DualDICE also derives
an unconstrained primal form where optimization is exclusively over the primal variables (see Ap-
pendix D). This form results in a biased estimate but avoids difficults in minimax optimization,
which again is a tradeoff between optimization stability and solution unbiasedness.

• GenDICE [30] and GradientDICE [31]: (↵Q = 1,↵⇣ = 0,↵R = 0) with �. GenDICE differs
from GradientDICE in that GenDICE enables ⇣� 0 whereas GradientDICE disables it.

• DR-MWQL and MWL [28]:(↵Q = 0,↵⇣ = 0,↵R = 1) and (↵Q = 0,↵⇣ = 0,↵R = 0), both
without ⇣� 0 and without �.

• LSTDQ [15]: With linear parametrization for ⇣(s, a) = v>� (s, a) and Q (s, a) = w>� (s, a), for
any unbiased estimator without ⇣� 0 and � in Theorem 2, we can recover LSTDQ. Please refer
to Appendix C for details.

• Algae Q-LP [22]: (↵Q = 0,↵⇣ = 1,↵R = 1, ⇣� 0) without ⇣� 0 and without �.
• BestDICE: (↵Q = 0,↵⇣ = 1,↵R = 0/1) with ⇣� 0 and with �. More importantly, we discover a

variant that achieves the best performance, which was not identified without this unified framework.

4 Experiments

In this section, we empirically verify the theoretical findings. We evaluate different choices of estima-
tors, regularizers, and constraints, on a set of OPE tasks ranging from tabular (Grid) to discrete-control
(Cartpole) and continuous-control (Reacher), under linear and neural network parametrizations, with
offline data collected from behavior policies with different noise levels (⇡1 and ⇡2). See Appendix F
for implementation details and additional results. Our empirical conclusions are as follows:

• The dual estimator ⇢̂⇣ is unbiased under more configurations and yields best performance out of all
estimators, and furthermore exhibits strong robustness to scaling and shifting of MDP rewards.

• Dual regularization (↵⇣ > 0) yields better estimates than primal regularization; the choice of
↵R 2 {0, 1} exhibits a slight advantage to ↵R = 1.

• The inclusion of redundant constraints (� and ⇣ � 0) improves stability and estimation performance.
• As expected, optimization using the unconstrained primal form is more stable but also more biased

than optimization using the minimax regularized Lagrangian.

Based on these findings, we propose a particular set of choices that generally performs well, over-
looked by previously proposed DICE estimators: the dual estimator ⇢̂⇣ with regularized dual variable
(↵⇣ > 0,↵R = 1) and redundant constraints (�, ⇣ � 0) optimized with the Lagrangian.

4.1 Choice of Estimator (⇢̂Q, ⇢̂⇣ , or ⇢̂Q,⇣)

We first consider the choice of estimator. In each case, we perform Lagrangian optimization with
regularization chosen according to Theorem 2 to not bias the resulting estimator. We also use ↵R = 1
and include redundant constraints for � and ⇣ � 0 in the dual estimator. Although not shown, we also
evaluated combinations of regularizations which can bias the estimator (as well as no regularizations)
and found that these generally performed worse; see Section 4.2 for a subset of these experiments.
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Figure 1: Estimation results on Grid, Reacher, and Cartpole using data collected from different
behavior policies (⇡2 is closer to the target policy than ⇡1). Biased estimator-regularizer combinations
from Theorem 2 are omitted. The dual estimator with regularized dual variable outperforms all other
estimators/regularizers. Lagrangian can be as good as the dual but has a larger variance.
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Figure 2: Primal (red), dual (blue), and Lagrangian (green) estimates under linear (top) and neural
network (bottom) parametrization when rewards are transformed during training. Estimations are
transformed back and plotted on the original scale. The dual estimates are robust to all transformations,
whereas the primal and Lagrangian estimates are sensitive to the reward values.

Our evaluation of different estimators is presented in Figure 1. We find that the dual estimator
consistently produces the best estimates across different tasks and behavior policies. In comparison,
the primal estimates are significantly worse. While the Lagrangian estimator can improve on the
primal, it generally exhibits higher variance than the dual estimator. Presumably, the Lagrangian does
not benefit from the doubly robust property, since both solutions are biased in this practical setting.

To more extensively evaluate the dual estimator, we investigate its performance when the reward
function is scaled by a constant, shifted by a constant, or exponentiated. 5 To control for difficulties in
optimization, we first parametrize the primal and dual variables as linear functions, and use stochastic
gradient descent to solve the convex-concave minimax objective in (9) with ↵Q = 0, ↵⇣ = 1, and
↵R = 1. Since a linear parametrization changes the ground truth of evaluation, we compute the
upper and lower estimation bounds by only parameterizing the primal or the dual variable as a linear
function. Figure 2 (top) shows the estimated per-step reward of the Grid task. When the original
reward is used (col. 1), the primal, dual, and Lagrangian estimates eventually converge to roughly the
same value (even though primal estimates converge much slower). When the reward is scaled by 10
or 100 times or shifted by 5 or 10 units (the original reward is between 0 and 1), the resulting primal
estimates are severely affected and do not converge given the same number of gradient updates. When
performing this same evaluation with neural network parametrization (Figure 2, bottom), the primal
estimates continue to exhibit sensitivity to reward transformations, whereas the dual estimates stay
roughly the same after being transformed back to the original scale. We further implemented target

5Note this is separate from ↵R, which only affects optimization. We use ↵R = 1 exclusively here.
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Figure 3: Dual estimates when ↵R = 0 (dotted line) and ↵R = 1 (solid line). Regularizing the dual
variable (blue) is consistently better than regularizing the primal variable (orange). ↵R 6= 0 and
↵Q 6= 0 leads to biased estimation (solid orange). The value of ↵R does not affect the final estimate
when ↵⇣ = 1,↵Q = 0.

network for training stability of the primal variable, and the same concolusion holds (see Appendix).
Note that while the dual solution is robust to the scale and range of rewards, the optimization objective
used here still has ↵R = 1, which is different from ↵R = 0 where ⇢̂Q is no longer a valid estimator.

4.2 Choice of Regularization (↵⇣ , ↵R, and ↵Q)

Next, we study the choice between regularizing the primal or dual variables. Given the results
of Section 4.1, we focus on ablations using the dual estimator ⇢̂⇣ to estimate ⇢⇡ . Results are presented
in Figure 3. As expected, we see that regularizing the primal variables when ↵R = 1 leads to a
biased estimate, especially in Grid (⇡1), Reacher (⇡2), and Cartpole. Regularizing the dual variable
(blue lines) on the other hand does not incur such a bias. Additionally, the value of ↵R has little
effect on the final estimates when the dual variable is regularized (dotted versus solid blue lines).
While the invariance to ↵R may not generalize to other tasks, an advantage of the dual estimates with
regularized dual variable is the flexibility to set ↵R = 0 or 1 depending on the reward function.
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Figure 4: Apply positive constraint, normalization constraint, and the unconstrained primal form
during optimization (blue curves). Positivity constraint (row 1) improves training stability. Nor-
malization constraint is essential when � = 1, and also helps when � < 1 (row 2). Solving the
unconstrained primal problem (row 3) can be useful when the action space is discrete.

4.3 Choice of Redundant Constraints (� and ⇣ � 0)

So far our experiments with the dual estimator used � and ⇣ � 0 in the optimizations, corresponding
to the normalization and positive constraints in the d-LP. However, these are in principle not necessary
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when � < 1, and so we evaluate the effect of removing them. Given the results of the previous sections,
we focus our ablations on the use of the dual estimator ⇢̂⇣ with dual regularization ↵⇣ > 0,↵R = 1.

Normalization. We consider the effect of removing the normalization constraint (�). Figure 4 (row
1) shows the effect of keeping (blue curve) or removing (red curve) this constraint during training.
We see that training becomes less stable and approximation error increases, even when � < 1.

Positivity. We continue to evaluate the effect of removing the positivity constraint ⇣ � 0, which, in
our previous experiments, was enforced via applying a square function to the dual variable neural
network output. Results are presented in Figure 4 (row 2), where we again see that the removal of
this constraint is detrimental to optimization stability and estimator accuracy.

4.4 Choice of Optimization (Lagrangian or Unconstrained Primal Form)

So far, our experiments have used minimax optimization via the Lagrangian to learn primal and dual
variables. We now consider solving the unconstrained primal form of the d-LP, which Section 3.2
suggests may lead to an easier, but biased, optimization. Figure 4 (row 3) indeed shows that the
unconstrained primal reduces variance on Grid and produces better estimates on Cartpole. Both
environments have discrete action spaces. Reacher, on the other hand, has a continuous action space,
which creates difficulty when taking the expectation over next step samples, causing bias in the
unconstrained primal form. Given this mixed performance, we generally advocate for the Lagrangian,
unless the task is discrete-action and the stochasticity of the dynamics is known to be low.

5 Related work

Off-policy evaluation has long been studied in the RL literature [9, 12, 13, 19, 23, 27]. While
some approaches are model-based [10], or work by estimating the value function [8], most rely on
importance reweighting to transform the off-policy data distribution to the on-policy target distribution.
They often require to know or estimate the behavior policy, and suffer a variance exponential in
the horizon, both of which limit their applications. Recently, a series of works were proposed
to address these challenges [14, 17, 26]. Among them is the DICE family [21, 30, 31], which
performs some form of stationary distribution estimation. The present paper develops a convex
duality framework that unifies many of these algorithms, and offers further important insights. Many
OPE algorithms may be understood to correspond to the categories considered here. Naturally, the
recent stationary distribution correction algorithms [21, 30, 31], are the dual methods. The FQI-style
estimator [8] loosely corresponds to our primal estimator. Moreover, Lagrangian-type estimators are
also considered [26, 28], although some are not for the behavior-agnostic setting [26].

Convex duality has been widely used in machine learning, and in RL in particular. In one line of
literature, it was used to solve the Bellman equation, whose fixed point is the value function [6, 7, 16].
Here, duality facilitates derivation of an objective function that can be conveniently approximated
by sample averages, so that solving for the fixed point is converted to that of finding a saddle point.
Another line of work, more similar to the present paper, is to optimize the Lagrangian of the linear
program that characterizes the value function [2, 4, 29]. In contrast to our work, these algorithms
typically do not incorporate off-policy correction, but assume the availability of on-policy samples.

6 Conclusion

We have proposed a unified view of off-policy evaluation via the regularized Lagrangian of the d-LP.
Under this unification, existing DICE algorithms are recovered by specific (suboptimal) choices
of regularizers, (redundant) constraints, and ways to convert optimized solutions to policy values.
By systematically studying the mathematical properties and empirical effects of these choices, we
have found that the dual estimates (i.e., policy value in terms of the state-action distribution) offer
greater flexibility in incorporating optimization stablizers while preserving asymptotic unibasedness,
in comparison to the primal estimates (i.e., estimated Q-values). Our study also reveals alternative
estimators not previously identified in the literature that exhibit improved performance. Overall, these
findings suggest promising new directions of focus for OPE research in the offline setting.
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Broader Impact

One of the broader issues in reinforcement learning is reproducibility — it is difficult to make a
compelling case that any new algorithm is actually an improvement without a common framework
for reliably reproducing past related research results. This paper unifies existing DICE estimators and
offers a standard implementation of a number of seemingly distinct algorithms that in fact only differ
in regularization. Future researchers and practioners in this domain can benefit from this unification,
where algorithms can be effectively compared in isolation from other artifacts such as neural network
architecture.

Meanwhile, this research has revealed a number of choices in regularization, redundant constraints,
and final estimators in DICE, suggesting a large hyperparameter search space. While we try our best
to illustrate which choices matter through mathematical analysis and ablation study, individuals with
limited computational resources could still be put at a disadvantage when tuning their algorithms to
achieve the best performance for a specific task.
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Appendix
A Robustness Justification

We explain the robustness interpretation of the dual regularization as the perturbation of Bellman
differences. In this section, we elaborate the robustness interpretation of the primal regularization.
For simplicity, we also consider f1 (·) = (·)2. Therefore, we have ↵Q · E(s,a)⇠dD [f1(Q(s, a))] =

↵Q ·
n
max�(s,a) hQ, �i � E(s,a)⇠dD

⇥
�2 (s, a)

⇤o
. Plug the dual form into (9) and with strong duality,

we have
max
⇣�0,�

min
Q,�

LD(⇣, Q,�, �) :=(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + ↵QE(s,a)⇠dD [� (s, a) · Q (s, a)] + �

+ E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (↵R · R(s, a) + �Q(s0, a0) � Q(s, a) � �)]

� ↵Q · E(s,a)⇠dD [�2(s, a)] � ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))], (11)
which can be understood as the Lagrangian of
max
⇣�0,�

↵RE(s,a)⇠dD [⇣ (s, a) · R (s, a)] � ↵Q · E(s,a)⇠dD [�2(s, a)] � ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))]

s.t. (1 � �)µ0⇡ + ↵QdD · � + � · P⇡
⇤ ·
�
dD · ⇣

�
=
�
dD · ⇣

�
(12)

E(s,a)⇠dD [⇣] = 1.

As we can see, the primal regularization actually introduces L2-ball perturbations to the stationary
state-action distribution condition (12). For different regularization, the perturbations will be in
different dual spaces. For examples, with entropy-regularization, the perturbation lies in the simplex.
The corresponding optimization of (10) is

min
Q

(1 � �)Eµ0⇡ [Q (s, a)] + ↵Q · E(s,a)⇠dD [f1 (Q)] + ↵⇣ · E(s,a)⇠dD
⇥
�2 (s, a)

⇤
(13)

s.t. Q (s, a) � R (s, a) + � · P⇡Q (s, a) � ↵⇣� (s, a) . (14)
In both (13) and (12), the relaxation of dual ⇣ in (12) does not affect the optimality of dual solution:
the stationary state-action distribution is still the only solution to (12); while in (13), the relaxation
of primal Q will lead to different optimal primal solution. From this view, one can also justify the
advantages of the dual OPE estimation.

B Proof for Theorem 2

The full enumeration of ↵Q,↵⇣ ,↵R,�, and ⇣� 0 results in 25 = 32 configurations. We note that it is
enough to characterize the solutions Q⇤, ⇣⇤ under these different configurations. Clearly, the primal
estimator ⇢̂Q is unbiased when Q⇤ = Q⇡, and the dual estimator ⇢̂⇣ is unbiased when ⇣⇤ = d⇡/dD.
For the Lagrangian estimator ⇢̂Q,⇣ , we may write it in two ways:

⇢̂Q,⇣(⇡) = ⇢̂Q(⇡) +
X

s,a

dD(s, a)⇣(s, a)(R(s, a) + �P⇡Q(s, a) � Q(s, a)) (15)

= ⇢̂⇣(⇡) +
X

s,a

Q(s, a)((1 � �)µ0(s)⇡(a|s) + �P⇡
⇤ d

D ⇥ ⇣(s, a) � dD ⇥ ⇣(s, a)). (16)

It is clear that when Q⇤ = Q⇡ , the second term of (15) is 0 and ⇢̂Q,⇣(⇡) = ⇢(⇡). When ⇣⇤ = d⇡/dD,
the second term of (16) is 0 and ⇢̂Q,⇣(⇡) = ⇢(⇡). Therefore, the Lagrangian estimator is unbiased
when either Q⇤ = Q⇡ or ⇣⇤ = d⇡/dD.

Now we continue to characterizing Q⇤, ⇣⇤ under different configurations. First, when ↵Q = 0,↵⇣ =
0, it is clear that the solutions are always unbiased by virtue of Theorem 1 (see also [22]). When
↵Q > 0,↵⇣ > 0, the solutions are in general biased. We summarize the remaining configurations (in
the discounted case) of ↵Q > 0,↵⇣ = 0 and ↵Q = 0,↵⇣ > 0 in the table below. We provide proofs
for the configurations of the shaded cells. Proofs for the rest configurations can be found in [21, 22].

Proof. Under our Assumptions 1 and 2, the strong duality holds for (9). We provide the proofs by
checking the configurations case-by-case.
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Table 1: Optimal solutions for all configurations. Configurations with new proofs are shaded in gray.
Regularizer (w./w.o. �) Case Q⇤(s, a) ⇣⇤(s, a) L(Q⇤, ⇣⇤)

↵R = 1
⇣ free i Q⇡ d⇡

dD
+ ↵Q

(I��P⇡
⇤ )�1

⇣
dD·f0

1(Q
⇡)

⌘

dD

↵R(1 � �) · Eµ0 [Q⇡ ]

+↵QE
(s,a)⇠dD [f1 (Q⇡)]

↵⇣ = 0 ⇣� 0 ii

f⇤0
1

✓
1

↵Q

✓�
↵Qf 0

1 (Q⇡) +

(1��)µ0⇡

dD
�
+ � (1��)µ0⇡

dD

◆◆
1

dD
(I � � · P⇡)�1 ·

dD
⇣
↵Qf 0

1 (Q⇡) +
(1��)µ0⇡

dD

⌘

+

(1 � �) · Eµ0 [Q⇤]

+E
dD [⇣⇤(s, a) · (↵R · r

+�Q⇤(s0, a0) � Q⇤(s, a))]

+↵Q · E
dD [f1(Q

⇤(s, a))]

↵Q > 0 ⇣ free iii

d⇡

dD
[21, 22]

↵R = 0
⇣� 0 iv

f⇤0
1 (0) �↵Qf⇤

1 (0)

↵R = 1
⇣ free v

↵⇣ > 0 ⇣� 0 vi �↵⇣ (I � P⇡)�1 f 0
2(

d⇡

dD
) ↵R · E

(s,a,r,s0)⇠dD [r]

↵Q = 0
↵R = 0

⇣ free vii +↵RQ⇡ [21, 22] �↵⇣ · Df (d⇡kdD) [21, 22]
⇣� 0 viii

• iii)-iv) In this configuration, the regularized Lagrangian (9) becomes
max
⇣�0

min
Q,�

LD(⇣, Q,�) := (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + ↵Q · E(s,a)⇠dD [f1(Q(s, a))] + �

+E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (�Q(s0, a0) � Q(s, a) � �)],

which is equivalent to
max
⇣�0

min
Q

LD(⇣, Q) =
⌦
(1 � �)µ0⇡ + � · P⇡

⇤ ·
�
dD · ⇣

�
� dD · ⇣, Q

↵
+ ↵QEdD [f1 (Q)]

s.t. EdD [⇣] = 1. (17)

Apply the Fenchel duality w.r.t. Q, we have

max
⇣

LD (⇣, Q⇤) = �↵QEdD


f⇤
1

✓
(1��)µ0⇡+�·P⇡

⇤ ·(dD·⇣)�dD·⇣
↵QdD

◆�
(18)

s.t. EdD [⇣] = 1. (19)
If f⇤

1 (·) achieves the minimum at zero, it is obvious that
dD · ⇣⇤ = (1 � �)µ0⇡ + � · P⇡

⇤ ·
�
dD · ⇣⇤

�
) dD · ⇣⇤ = d⇡.

Therefore, we have
L (⇣⇤, Q⇤) = �↵Qf

⇤
1 (0) ,

and
Q⇤ = argmax

Q

⌦
(1 � �)µ0⇡ + � · P⇡

⇤ ·
�
dD · ⇣⇤

�
� dD · ⇣⇤, Q

↵
+ ↵QEdD [f1 (Q)]

= f⇤0
1 (0)

• i)-ii) Following the derivation in case iii)-iv), we have the regularized Lagrangian as almost the
same as (17) but has an extra term ↵REdD [⇣ · R], i.e.

max
⇣

min
Q

LD(⇣, Q) := (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + ↵Q · E(s,a)⇠dD [f1(Q(s, a))]

+E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (↵R · R (s, a) + �Q(s0, a0) � Q(s, a))].

We first consider the case where the ⇣ is free and the normalization constraint is not enforced.

After applying the Fenchel duality w.r.t. Q, we have

max
⇣

LD (⇣, Q⇤) = ↵R

⌦
dD · ⇣, R

↵
� ↵QEdD


f⇤
1

✓
dD·⇣�(1��)µ0⇡��·P⇡

⇤ ·(dD·⇣)
↵QdD

◆�
. (20)

We denote

⌫ =
dD · ⇣ � (1 � �)µ0⇡ � � · P⇡

⇤ ·
�
dD · ⇣

�

dD

) dD · ⇣ = (I � � · P⇡
⇤ )

�1 �(1 � �)µ0⇡ + dD · ⌫
�
,
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and thus,

LD (⇣⇤, Q⇤) = max
⌫

D
(I � � · P⇡

⇤ )
�1 �(1 � �)µ0⇡ + dD · ⌫

�
,↵RR

E
� ↵QEdD


f⇤
1

✓
⌫

↵Q

◆�

= ↵R (1 � �)Ea0⇠⇡(s0)
s0⇠µ0

[Q⇡ (s0, a0)] + max
⌫

EdD [⌫ · (Q⇡)] � ↵QEdD


f⇤
1

✓
⌫

↵Q

◆�
,

= ↵R (1 � �)Ea0⇠⇡(s0)
s0⇠µ0

[Q⇡ (s0, a0)] + ↵QEdD [f1 (Q
⇡)]

where the second equation comes from the fact Q⇡ = (I � � · P⇡)�1 R and last equation comes
from Fenchel duality with ⌫⇤ = ↵Qf 0

1 (Q
⇡).

Then, we can characterize

⇣⇤ =
(I � � · P⇡

⇤ )
�1 ((1 � �)µ0⇡)

dD
+ ↵Q

(I � � · P⇡
⇤ )

�1 �dD · f 0
1 (Q

⇡)
�

dD

=
d⇡

dD
+ ↵Q

(I � � · P⇡
⇤ )

�1 �dD · f 0
1 (Q

⇡)
�

dD
,

and

Q⇤ = (f 0
1)

�1

 
dD · ⇣⇤ � (1 � �)µ0⇡ � � · P⇡

⇤ ·
�
dD · ⇣⇤

�

↵QdD

!
= Q⇡.

If we have the positive constraint, i.e., ⇣ � 0, we denote

exp (⌫) =
(I � � · P⇡

⇤ )
�
dD · ⇣

�

dD
) dD · ⇣ = (I � � · P⇡

⇤ )
�1 dD · exp (⌫) ,

then,

LD (⇣⇤, Q⇤) = max
⌫

EdD [exp (⌫) · Q⇡] � ↵QEdD


f⇤
1

✓
1

↵Q

✓
exp (⌫) � (1 � �)µ0⇡

dD

◆◆�
.

By first-order optimality condition, we have

exp (⌫⇤)

✓
Q⇡ � f⇤0

1

✓
1

↵Q

✓
exp (⌫) � (1 � �)µ0⇡

dD

◆◆◆
= 0

= exp (⌫⇤) =

✓
↵Qf

0
1 (Q

⇡) +
(1 � �)µ0⇡

dD

◆

+

) dD · ⇣⇤ = (I � � · P⇡)�1 · dD
✓
↵Qf

0
1 (Q

⇡) +
(1 � �)µ0⇡

dD

◆

+

) ⇣⇤ =
1

dD
(I � � · P⇡)�1 · dD

✓
↵Qf

0
1 (Q

⇡) +
(1 � �)µ0⇡

dD

◆

+

. (21)

For Q⇤, we obtain from the Fenchel duality relationship,

Q⇤ = f⇤0
1

✓
1

↵Q

✓
exp (⌫⇤) � (1 � �)µ0⇡

dD

◆◆

= f⇤0
1

 
1

↵Q

 ✓
↵Qf

0
1 (Q

⇡) +
(1 � �)µ0⇡

dD

◆

+

� (1 � �)µ0⇡

dD

!!
. (22)

Then, the LD (⇣⇤, Q⇤) can be obtained by plugging (⇣⇤, Q⇤) in (21) and (22). Obviously, in this
case, the estimators are all biased.

As we can see, in both i) and ii), none of the optimal dual solution ⇣⇤ satisfies the normalization
condition. Therefore, with the extra normalization constraint, the optimization will be obviously
biased.

• v)-viii) These cases are also proved in [22] and we provide a more succinct proof here. In these
configurations, whether ↵R is involved or not does not affect the proof. We will keep this component
for generality. We ignore the ⇣� 0 and � for simplicity, the conclusion does not affected, since the
optimal solution ⇣⇤ automatically satisfies these constraints.
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Consider the regularized Lagrangian (9) with such configuration, we have
min
Q

max
⇣

LD(⇣, Q) := (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] � ↵⇣ · E(s,a)⇠dD [f2(⇣(s, a))]

+E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[⇣(s, a) · (↵R · R(s, a) + �Q(s0, a0) � Q(s, a))].(23)

Apply the Fenchal duality to ⇣, we obtain

min
Q

LD (⇣⇤, Q) := (1��)·Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)]+↵⇣EdD


f⇤
2

✓
1

↵⇣
(B⇡ · Q (s, a) � Q (s, a))

◆�
,

(24)
with B⇡ · Q (s, a) := ↵R · R (s, a) + �P⇡Q (s, a). We denote ⌫ (s, a) = B · Q (s, a) � Q (s, a),
then, we have

Q (s, a) = (I � � · P⇡)�1 (↵R · R � ⌫) .
Plug this into (24), we have

LD (⇣⇤, Q⇤) = min
⌫

(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

h⇣
(I � � · P⇡)�1 (↵R · R � ⌫)

⌘
(s0, a0)

i

+↵⇣EdD


f⇤
2

✓
1

↵⇣
⌫ (s, a)

◆�
,

= ↵REd⇡ [R (s, a)] � ↵⇣ max
⌫

✓
Ed⇡


⌫(s0, a0)

↵⇣

�
+ EdD


f⇤
2

✓
1

↵⇣
⌫ (s, a)

◆�◆
,

= ↵REd⇡ [R (s, a)] � ↵⇣Df

�
d⇡||dD

�
(25)

The second equation comes from the fact d⇡ = (I � � · P⇡
⇤ )

�1 (µ0⇡). The last equation is by the
definition of the Fenchel duality of f -divergence. Meanwhile, the optimal 1

↵⇣
⌫⇤ = f 0

2

�
d⇡

dD

�
. Then,

we have
Q⇤ = � (I � � · P⇡)�1 ⌫⇤ + (I � � · P⇡)�1 (↵R · R)

= �↵⇣ (I � � · P⇡)�1 f 0
2

✓
d⇡

dD

◆
+ ↵RQ

⇡,

and
⇣⇤(s, a) = argmax

⇣
⇣ · ⌫⇤(s, a) � ↵⇣f2 (⇣ (s, a))

= f⇤0
2

✓
1

↵⇣
⌫⇤ (s, a)

◆
=

d⇡ (s, a)

dD (s, a)
.

C Recovering Existing OPE estimators

We verify the LSTDQ as a special case of the unified framework if the primal and dual are linearly
parametrized, i.e., Q (s, a) = w>� (s, a) and ⇣ (s, a) = v>� (s, a), from any unbiased estimator
without ⇣� 0 and �. For simplicity, we assume the solution exists.

• When (↵Q = 1,↵⇣ = 0,↵R = 1), we have the estimator as
max

v
min
w

LD(v, w) :=(1 � �) · w>Ea0⇠⇡(s0)
s0⇠µ0

[�(s0, a0)] + ↵Q · E(s,a)⇠dD [f1(w
>�(s, a))]

+ v>E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (↵R · R(s, a) + �w>�(s0, a0) � w>�(s, a))].

Then, we have the first-order optimality condition for v as
E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (↵R · R(s, a) + �w>�(s0, a0) � w>�(s, a))] = 0,

) w = E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (�(s, a) � ��(s0, a0))]

| {z }
⌅

�1E(s,a)⇠dD [↵R · R (s, a)� (s, a)] ,

) Q⇤ (s, a) = w>� (s, a) ,
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which leads to
⇢̂Q(⇡) = (1 � �) · Ea0⇠⇡(s0)

s0⇠µ0

[Q̂(s0, a0)]

= (1 � �)Ea0⇠⇡(s0)
s0⇠µ0

[� (s, a)]>⌅�1E(s,a)⇠dD [R (s, a)� (s, a)] .

• When (↵Q = 0,↵⇣ = 1,↵R = {0/1}), we have the estimator as
max

v
min
w

LD(v, w) :=(1 � �) · w>Ea0⇠⇡(s0)
s0⇠µ0

[�(s0, a0)] � ↵⇣ · E(s,a)⇠dD [f2(v
>�(s, a))]

+ v>E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (↵R · R(s, a) + �w>�(s0, a0) � w>�(s, a))].

Then, we have the first-order optimality condition as
v>E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (��(s0, a0) � �(s, a))] + (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[�(s0, a0)] = 0,

which leads to
v = (1 � �) · ⌅�1Ea0⇠⇡(s0)

s0⇠µ0

[�(s0, a0)].

Therefore, the dual estimator is
⇢̂⇣ (⇡) = E(s,a,r)⇠dD [R · � (s, a)]> v

= (1 � �)Ea0⇠⇡(s0)
s0⇠µ0

[� (s, a)]>⌅�1E(s,a)⇠dD [R (s, a)� (s, a)] .

• When (↵Q = 1,↵⇣ = 0,↵R = 0), by the conclusion for (17), we have
v>E(s,a,r,s0)⇠dD

a0⇠⇡(s0)

[�(s, a) · (��(s0, a0) � �(s, a))] + (1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[�(s0, a0)] = 0,

which leads to similar result as above case.

D Alternative Biased Form

Unconstrained Primal Forms When ↵⇣ > 0 and ↵Q = 0, the form of the Lagranian can be
simplified to yield an optimization over only Q. Then, we may simplify,

max
⇣(s,a)

⇣(s, a) · (↵R · R(s, a) + �P⇡Q(s, a) � Q(s, a)) � ↵⇣ · f2(⇣(s, a))

= ↵⇣ · f⇤
2

✓
1

↵⇣
(↵R · R(s, a) + �P⇡Q(s, a) � Q(s, a))

◆
. (26)

So, the Lagrangian may be equivalently expressed as an optimization over only Q:
min
Q

(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + ↵Q · E(s,a)⇠dD [f1(Q(s, a))]

+ ↵⇣ · E(s,a)⇠dD


f⇤
2

✓
1

↵⇣
(↵R · R(s, a) + �P⇡Q(s, a) � Q(s, a))

◆�
. (27)

We call this the unconstrained primal form, since optimization is now exclusively over primal
variables. Still, given a solution Q⇤, the optimal ⇣⇤ to the original Lagrangian may be derived as,

⇣⇤(s, a) = f⇤0
2 ((↵R · R(s, a) + �P⇡Q⇤(s, a) � Q⇤(s, a))/↵⇣). (28)

Although the unconstrained primal form is simpler, in practice it presents a disadvantage, due to
inaccessibility of the transition operator P⇡. That is, in practice, one must resort to optimizing the
primal form as

min
Q

(1 � �) · Ea0⇠⇡(s0)
s0⇠µ0

[Q(s0, a0)] + ↵Q · E(s,a)⇠dD [f1(Q(s, a))]

+ ↵⇣ · E(s,a,r,s0)⇠dD

a0⇠⇡(s0)


f⇤
2

✓
1

↵⇣
(↵R · R(s, a) + �Q(s0, a0) � Q(s, a))

◆�
. (29)

This is in general a biased estimate of the true objective and thus leads to biased solutions, as the
expectation over the next step samples are taken inside a square function (we choose f2 to be the
square function). Still, in some cases (e.g., in simple and discrete environments), the bias may be
desirable as a trade-off in return for a simpler optimization.
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Unconstrained Dual Form We have presented an unconstrained primal form. Similarly, we
can derive the unconstrianed dual form by removing the primal variable with a particular primal
regularization ↵QEdD [f1 (Q)]. Then, we can simplify

min
Q(s0,a0)

1

dD (s0, a0)
(1 � �)µ0(s

0)⇡ (a0|s0) · Q (s0, a0) + ↵Qf1 (Q)

+
1

dD (s0, a0)

✓
�

Z
P⇡ (s0, a0|s, a) dD · ⇣ (s, a) dsda � dD (s0, a0) ⇣ (s0, a0)

◆
· Q (s0, a0)

= �↵Q · f⇤
1

 
dD · ⇣ � (1 � �)µ0⇡ � �

�
P⇡
⇤ · dD

�
⇣

↵QdD

!
, (30)

with Q⇤ = f⇤0
1

✓
dD·⇣�(1��)µ0⇡��(P⇡

⇤ ·dD)⇣
↵QdD

◆
.

So, the regularized Lagrangian can be represented as
max

d
↵REdD [⇣ · R]

� ↵QEdD

"
f⇤
1

 
dD · ⇣ � (1 � �)µ0⇡ � �

�
P⇡
⇤ · dD

�
⇣

↵QdD

!#
� ↵⇣EdD [f2 (⇣)] . (31)

Similarly, to approximate the intractable second term, we must use
max

d
↵REdD [⇣ · R]

� ↵QE(s,a,r,s0)⇠dD

a0⇠⇡(s0)


f⇤
1

✓
⇣ (s0, a0) � (1 � �)µ0(s0)⇡(a0|s0) � �⇣ (s, a)

↵QdD

◆�
� ↵⇣EdD [f2 (⇣)] ,

which will introduce bias.

E Undiscounted MDP

When � = 1, the value of a policy is defined as the average per-step reward:

⇢(⇡) := lim
tstop!1

E
"

1

tstop

tstopX

t=0

R(st, at)

����� s0 ⇠ µ0, 8t, at ⇠ ⇡(st), st+1 ⇠ T (st, at)

#
. (32)

The following theorem presents a formulation of ⇢(⇡) in the undiscounted case:

Theorem 3. Given a policy ⇡ and a discounting factor � = 1, the value ⇢ (⇡) defined in (32) can be

expressed by the following d-LP:

maxd:S⇥A!R Ed [R (s, a)] , s.t., d(s, a) = P⇡
⇤ d(s, a) and

P
s,a d(s, a) = 1. (33)

The corresponding primal LP under the undiscounted case is

minQ:S⇥A!R �, s.t., Q(s, a) = R(s, a) + P⇡Q(s, a) � �. (34)

Proof. With the additional constraint
P

s,a d(s, a) = 1 in (33), the Markov chain induced by ⇡ is
ergodic with a unique stationary distribution d⇤ = d⇡ , so the dual objective is still ⇢ (⇡) by definition.
Unlike in the discounted case, any optimal Q⇤ with a constant offset would satisfy (34), so the optimal
solution to (34) is independent of Q.

F Experiment Details

F.1 OPE tasks

For all tasks, We use � = 0.99 in all experiments except for the ablation study of normalization
constraint where � = 0.995 and � = 1 are also evaluated. We collect 400 trajectories for each of the
tasks, and the trajectory length for Grid, Reacher, and Cartpole are 100, 200, and 250 respectively
for � < 1, or 1000 for � = 1. We run each experiment on 10 seeds and plot the mean and standard
deviation of the results.
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Grid. We use a 10 ⇥ 10 grid environment where an agent can move left/right/up/down. The
observations are the x, y coordinates of this agent’s location. The reward of each step is defined
as exp(�0.2|x � 9| � 0.2|y � 9|). The target policy is taken to be the optimal policy for this task
(i.e., moving all the way right then all the way down) plus 0.1 weight on uniform exploration. The
behavior policies ⇡1 and ⇡2 are taken to be the optimal policy plus 0.7 and 0.3 weights on uniform
exploration respectively.

Reacher. We train a deterministic policy on the Reacher task from OpenAI Gym [3] until conver-
gence, and define the target policy to be a Gaussian with the pre-trained policy as the mean and 0.1
as the standard deviation. The behavior policies ⇡1 and ⇡2 have the same mean as the target policy
but with 0.4 and 0.2 standard deviation respectively.

Cartpole. We modify the Cartpole task from OpenAI Gym [3] to infinite horizon by changing the
reward to �1 if the original task returns termination and 1 otherwise. We train a deterministic policy
on this task until convergence, and define the target policy to be the pre-trained policy (weight 0.7)
plus uniform random exploration (weight 0.3). The behavior policies ⇡1 and ⇡2 are taken to be the
pre-trained policy (weight 0.55 and 0.65) plus uniform random exploration (weight 0.45 and 0.35)
respectively.

F.2 Linear Parametrization Details

To test estimation robustness to scaling and shifting of MDP rewards under linear parametrization, we
first determine the estimation upper bound by parametrizing the primal variable as a linear function
of the one-hot encoding of the state-action input. Similarly, to determine the lower bound, we
parametrize the dual variable as a linear function of the input. These linear parametrizations are
implemented using feed-forward networks with two hidden-layers of 64 neurons each and without
non-linear activations. Only the output layer is trained using gradient descent; the rest layers are
randomly initialized and fixed. The true estimates where both primal and dual variables are linear
functions are verified to be between the lower and upper bounds.

F.3 Neural Network Details

For the neural network parametrization, we use feed-forward networks with two hidden-layers of 64
neurons each and ReLU as the activation function. The networks are trained using the Adam optimizer
(�1 = 0.99, �2 = 0.999) with batch size 2048. The learning rate of each task and configuration is
found via hyperparameter search, and is determined to be 0.00003 for all configurations on Grid,
0.0001 for all configurations on Reacher, and 0.0001 and 0.00003 for dual and primal regularization
on Cartpole respectively.

G Additional Results

G.1 Comparison to unregularized Lagrangian

We compare the best performing DICE estimator discovered in our unified framework to directly
solving the Lagrangian without any regularization or redundant constraints, i.e., DR-MWQL as
primal, MWL as dual, and their combination [28]. Results are shown in Figure 5. We see that the
BestDICE estimator outperforms the original primal, dual and Lagrangian both in terms of training
stability and final estimation. This demonstrates that regularization and redundant constraints are
crucial for optimization, justifying our motivation.

G.2 Primal Estimates with Target Networks

We use target networks with double Q-learning [11] to improve the training stability of primal
variables, and notice performance improvements in primal estimates on the Reacher task in particular.
However, the primal estimates are still sensitive to scaling and shifting of MDP rewards, as shown
in Figure 6.
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Figure 5: Primal (orange), dual (green), and Lagrangian (gray) estimates by solving the original
Lagrangian without any regularization or redundant constraints, in comparison with the best DICE
estimates (blue).
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Figure 6: Primal (red) and Lagrangian (orange) estimates under the neural network parametrization
with target networks to stabilize training when rewards are transformed during training. Estimations
are transformed back and plotted on the original scale. Despite the performance improvements on
Reacher compared to Figure 2, the primal and Lagrangian estimates are still sensitive to the reward
values.

G.3 Additional Regularization Comparison

In addition to the two behavior policies in the main text (i.e., ⇡1 and ⇡2), we show the effect of
regularization using data collected from a third behavior policy (⇡3). Similar conclusions from the
main text still hold (i.e., dual regularizer is generally better; primal regularizer with reward results in
biased estimates) as shown in Figure 7.
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Figure 7: Dual estimates when ↵R = 0 (dotted line) and ↵R = 1 (solid line) on data collected
from a third behavior policy (⇡3). Regularizing the dual variable (blue) is better than or similar to
regularizing the primal variable (orange).

G.4 Additional Ablation Study

We also conduct additional ablation study on data collected from a third behavior policy (⇡3). Results
are shown in Figure 8. Again we see that the positivity constraint improves training stability as well
as final estimates, and unconstrained primal form is more stable but can lead to biased estimates.
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Figure 8: Apply positive constraint and unconstrained primal form on data collected from a third
behavior policy (⇡3). Positivity constraint (row 1) improves training stability. The unconstrained
primal problem (row 2) is more stable but leads to biased estimates.
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