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Abstract

We develop a new algorithm for online planning in large scale sequential decision
problems that improves upon the worst case efficiency of UCT. The idea is to
augment Monte-Carlo Tree Search (MCTS) with maximum entropy policy opti-
mization, evaluating each search node by softmax values back-propagated from
simulation. To establish the effectiveness of this approach, we first investigate the
single-step decision problem, stochastic softmax bandits, and show that softmax
values can be estimated at an optimal convergence rate in terms of mean squared
error. We then extend this approach to general sequential decision making by de-
veloping a general MCTS algorithm, Maximum Entropy for Tree Search (MENTS).
We prove that the probability of MENTS failing to identify the best decision at the
root decays exponentially, which fundamentally improves the polynomial conver-
gence rate of UCT. Our experimental results also demonstrate that MENTS is more
sample efficient than UCT in both synthetic problems and Atari 2600 games.

1 Introduction

Monte Carlo planning algorithms have been widely applied in many challenging problems [13, 14].
One particularly powerful and general algorithm is the Monte Carlo Tree Search (MCTS) [4]. The
key idea of MCTS is to construct a search tree of states that are evaluated by averaging over outcomes
from simulations. MCTS provides several major advantages over traditional online planning methods.
It breaks the curse of dimensionality by simulating state-action trajectories using a domain generative
model, and building a search tree online by collecting information gathered during the simulations in
an incremental manner. It can be combined with domain knowledge such as function approximations
learned either online [20] or offline [13, 14]. It is highly selective, where bandit algorithm are applied
to balance between exploring the most uncertain branches and exploiting the most promising ones
[10]. MCTS has demonstrated outstanding empirical performance in many game playing problems,
but most importantly, it is provable to converge to the optimal policy if the exploitation and exploration
balanced appropriately [10, 8].

The convergence property of MCTS highly replies on the state value estimations. At each node of the
search tree, the value estimation is also used to calculate the value of the action leading to that node.
Hence, the convergence rate of the state value estimation influences the rate of convergence for states
further up in the tree. However, the Monte Carlo value estimate (average over simulations outcomes)
used in MCTS does not enjoy effective convergence guarantee when this value is back-propagated
in the search tree, since for any given node, the sampling policy in the subtree is changing and the
payoff sequences experienced will drift in time. In summary, the compounding error, caused by the
structure of the search tree as well as the uncertainty of the Monte Carlo estimation, makes that UCT
can only guarantee a polynomial convergence rate of finding the best action at the root.

Ideally, one would like to adopt a state value that can be efficiently estimated and back-propagated in
a search tree. In this paper, we exploit the usage of softmax value estimate in MCTS based on the
maximum entropy policy optimization framework. To establish the effectiveness of this approach,
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we first propose a new stochastic softmax bandit framework for the single-step decision problem,
and show that softmax values can be estimated in a sequential manner at an optimal convergence
rate in terms of mean squared error. Our next contribution is to extend this approach to general
sequential decision making by developing a general MCTS algorithm, Maximum Entropy for Tree
Search (MENTS). We contribute new observations that the softmax state value can be efficiently
back-propagated in the search tree, which enables the search algorithm to achieve faster convergence
rate towards finding the optimal action at the root. Our theoretical analysis shows that MENTS enjoys
an exponential convergence rate to the optimal solution, improving the polynomial convergence
rate of UCT fundamentally. Our experiments also demonstrate that MENTS is much more sample
efficient compared with UCT in practice.

2 Background

2.1 Online Planning in Markov Decision Process

We focus on the episodic Markov decision process (MDP) 1, which is formally defined as a 5-tuple
{S,A, P,R,H}. S is the state space, A is the action space. H is the maximum number of steps at
each episode, P and R are the transition and reward functions, such that P (·|s, a) and R(s, a) give
the next state distribution and reward of taking action a at state s. We assume the transition and
reward functions are deterministic for simplicity, while all of our techniques can easily generalize to
the case with stochastic transitions and rewards, with an appropriate dependence on the variances of
the transition and reward distributions. The solution of an MDP is a policy π that maps any state s to
a probability distribution over actions. The optimal policy maximizes, on expectation, the cumulative
sum of rewards, defined as,

Gt =

H+1∑
k=0

Rt+k, Rt =

{
R(st, at), t ≤ H
ν(sH+1), t = H + 1

where we assume an oracle function ν that assigns stochastic evaluations for states at the end of
episode. We note that this definition can also be used as a general formulation for planning algorithms
in infinite horizon MDP, since H can be considered as the maximum search depth, and a stochastic
evaluation function is applied at the end. We assume ν is subgaussian and has variance σ2.

For policy π, the state value function V π(s), is defined to be the expected sum of rewards from s,
V π(s) = Eπ [Gt|st = s]. The state-action value function, also known as the Q-value, is defined
similarly, Qπ(s, a) = Eπ [Gt|st = s, at = a]. The optimal value functions are the maximum value
achievable by any policy, V ∗(s) = maxπ V

π(s), Q∗(s, a) = maxπ Q
π(s, a). The optimal policy is

defined by the greedy policy with respect to Q∗, π∗(s) = argmaxaQ
∗(s, a). It is well known that the

optimal values can be recursively defined by the Bellman optimality equation,

Q∗(s, a) = R(s, a) + Es′|s,a [V ∗(s′)] , V ∗(s) = max
a

Q∗(s, a). (1)

We consider the online planning problem that uses a generative model of the MDP to compute
the optimal policy at any input state, given a fixed sampling budget. The generative model is a
randomized algorithm that can output the reward R(s, a) and sample a next state s′ from P (·|s, a),
given a state-action pair (s, a) as the input. For example, in the game of Go, if the rules of the game
are known, the next board state can be predicted exactly after a move. To solve the online planning
problem, an algorithm uses the generative model to sample an episode at each round, and proposes
an action for the input state after the sampling budget is expended. The performance of an online
planning algorithm can be measured by its probability of proposing the optimal action for the state of
interest.

2.2 Monte Carlo Tree Search and UCT

To solve the online planning task, Monte Carlo Tree Search (MCTS) builds a look-ahead tree T
online in an incremental manner, and evaluates states with Monte Carlo simulations [4]. Each node in
T is labeled by a state s, and stores a value estimate Q(s, a) and visit count N(s, a) for each action
a. The estimate Q(s, a) is the mean return of all simulations starting from s and a. The root of T is

1All of our approaches can extend to infinite horizon MDP.
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labeled by the state of interest. At each iteration of the algorithm, one simulation starts from the root
of the search tree, and proceeds in two stages: a tree policy is used to select actions while within the
tree until a leaf of T is reached. An evaluation function is used at the leaf to obtain a simulation return.
Typical choices of the evaluation function include function approximation with a neural network, and
Monte Carlo simulations using a roll-out policy. The return is propagated upwards to all nodes along
the path to the root. T is grown by expanding the leaf reached during the simulation.

Bandit algorithms are used to balance between exploring the most uncertain branches and exploiting
the most promising ones. The UCT algorithm applies UCB1 as its tree policy to balance the growth
of the search tree [10]. At each node of T , its tree policy selects an action with the maximum upper
confidence bound

UCB(s, a) = Q(s, a) + c

√
logN(s)

N(s, a)
,

where N(s) =
∑
aN(s, a), and c is a parameter controlling exploration. The UCT algorithm has

proven to be effective in many practical problems. The most famous example is its usage in AlphaGo
[13, 14]. UCT is asymptotically optimal: the value estimated by UCT converges in probability to the
optimal value, Q(s, a)

p→ Q∗(s, a), ∀s ∈ S,∀a ∈ A. The probability of finding a suboptimal action
at the root converges to zero at a rate of O( 1

t ), where t is the simulation budget [10].

2.3 Maximum Entropy Policy Optimization

The maximum entropy policy optimization problem, which augments the standard expected reward
objective with a entropy regularizer, has recently drawn much attention in the reinforcement learning
community [5, 6, 12]. Given K actions and the corresponding K-dimensional reward vector r ∈ RK ,
the entropy regularized policy optimization problem finds a policy by solving

max
π

{
π · r + τH(π)

}
. (2)

where τ ≥ 0 is a user-specified temperature parameter which controlls the degree of exploration. The
most intriguing fact about this problem is that it has a closed form solution. Define the softmax Fτ
and the soft indmax fτ functions,

fτ (r) = exp{(r−Fτ (r))/τ} Fτ (r) = τ log
∑

a
exp(r(a)/τ).

Note that the softmax Fτ outputs a scalar while the soft indmax fτ maps any reward vector r to a
Boltzmann policy. Fτ (r), fτ (r) and (2) are connected by as shown in [5, 12],

Fτ (r) = max
π

{
π · r + τH(π)

}
= fτ (r) · r + τH(fτ (r)). (3)

This relation suggests the softmax value is an upper bound on the maximum value, and the gap can
be upper bounded by the product of τ and the maximum entropy. Note that as τ → 0, (2) approaches
the standard expected reward objective, where the optimal solution is the hard-max policy. Therefore,
it is straightforward to generalize the entropy regularized optimization to define the softmax value
functions, by replacing the hard-max operator in (1) with the softmax operators [5, 12],

Q∗sft(s, a) = R(s, a) + Es′|s,a [V ∗sft(s
′)] , V ∗sft(s) = τ log

∑
a

exp
{
Q∗sft(s, a)/τ

}
. (4)

Finally, according to (3), we can characterize the optimal softmax policy by,

π∗sft(a|s) = exp
{

(Q∗sft(s, a)− V ∗sft(s)) /τ
}
. (5)

In this paper, we combine the maximum entropy policy optimization framework with MCTS, by esti-
mating the softmax values backpropagated from simulations. Specifically, we show that the softmax
values can be efficiently backpropagated in the search tree, which leads to a faster convergence rate
to the optimal policy at the root.

3 Softmax Value Estimation in Stochastic Bandit

We begin by introducing the stochastic softmax bandit problem. We provide an asymptotical lower
bound of this problem, propose a new bandit algorithm for it and show a tight upper bound on
its convergence rate. Our upper bound matches the lower bound not only in order, but also in the
coefficient of the dominating term. All proofs are provided in the supplementary material.
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3.1 The Stochastic Softmax Bandit

Consider a stochastic bandit setting with arms set A. At each round t, a learner chooses an action
At ∈ A. Next, the environment samples a random reward Rt and reveals it to the learner. Let r(a)
be the expected value of the reward distribution of action a ∈ A. We assume r(a) ∈ [0, 1], and that
all reward distributions are σ2-subgaussian 2. For round t, we define Nt(a) as the number of times a
is chosen so far, and r̂t(a) as the empirical estimate of r(a),

Nt(a) =
∑t

i=1
I{At = a} r̂t(a) =

∑t

i=1
I{Ai = a}Ri/Nt(a),

where I{·} is the indicator function. Let r ∈ [0, 1]K be the vector of expected rewards, and r̂t be the
empirical estimates of r at round t. We denote π∗sft = fτ (r) the optimal soft indmax policy defined
by the mean reward vector r. The stochastic bandit setting can be considered as a special case of an
episodic MDP with H = 1.

In a stochastic softmax bandit problem, instead of finding the policy with maximum expected reward
as in original stochastic bandits [11], our objective is to estimate the softmax value V ∗sft = Fτ (r) for
some τ > 0. We define U∗ =

∑
a exp{r(a)/τ} and Ut =

∑
a exp{r̂t(a)/τ}, and propose to use

the estimator Vt = Fτ (r̂t) = τ logUt. Our goal is to find a sequential sampling algorithm that can
minimize the mean squared error, Et = E[(U∗ − Ut)2]. The randomness in Et comes from both the
sampling algorithm and the observed rewards. Our first result gives a lower bound on Et.
Theorem 1. In the stochastic softmax bandit problem, for any algorithm that achieves Et = O( 1

t ),
there exists a problem setting such that

lim
t→∞

tEt ≥
σ2

τ2

(∑
a

exp(r(a)/τ)

)2

.

Also, to achieve this lower bound, there must be for any a ∈ A, limt→∞Nt(a)/t = π∗sft(a).

Note that in Theorem 1, we only assume Et = O(1/t), but not that the algorithm achieves (asymptot-
ically) unbiased estimates for each arm. Furthermore, this lower bound also reflects the consistency
between the softmax value and the soft indmax policy (3): in order to achieve the lower bound on the
mean squared error, the sampling policy must converge to π∗sft asymptotically.

3.2 E2W: an Optimal Sequential Sampling Strategy

Inspired by the lower bound, we propose an optimal algorithm, Empirical Exponential Weight (E2W),
for the stochastic softmax bandit problem. The main idea is very intuitive: enforce enough exploration
to guarantee good estimation of r̂, and make the policy converge to π∗ asymptotically, as suggested
by the lower bound. Specifically, at round t, the algorithm selects an action by sampling from the
distribution

πt(a) = (1− λt)fτ (r̂)(a) + λt
1

|A|
. (6)

In (6), λt = ε|A|/ log(t+ 1) is a decay rate for exploration, with exploration parameter ε > 0. Our
next theorem provides an exact convergence rate for E2W.
Theorem 2. For the softmax stochastic bandit problem, E2W can guarantee,

lim
t→∞

tEt =
σ2

τ2

(∑
a

exp(r(a)/τ)

)2

.

Theorem 2 shows that E2W is an asymptotically optimal sequential sampling strategy for estimating
the softmax value in stochastic multi-armed bandits. The main contribution of the present paper is
the introduction of the softmax bandit algorithm for the implementation of tree policy in MCTS. In
our proposed new algorithm, softmax bandit is used as the fundamental tool both for estimating each
state’s softmax value, and balancing the growth of the search tree.

2For prudent readers, we follow the finite horizon bandits setting in [11], where the probability space carries
the tuple of random variables ST = {A0, R0, . . . , AT , RT }. For every time step t−1 the historical observation
defines a σ-algebra Ft−1 and At is Ft−1-measurable, the conditional distribution of At is our policy at time πt,
and the conditoinal distribution of the reward RAt − r(At) is a martingale difference sequence.
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4 Maximum Entropy MCTS

We now describe the main technical contributions of this paper, which combine maximum entropy
policy optimization with MCTS. Our proposed method, MENTS (Maximum Entropy for Tree Search),
applies a similar algorithmic design as UCT (see Section 2.2) with two innovations: using E2W as
the tree policy, and evaluating each search node by softmax values back-propagated from simulations.

4.1 Algorithmic Design

Let T be a look-ahead search tree built online by the algorithm. Each node n(s) ∈ T is labeled by a
state s, contains a softmax value estimate Qsft(s, a), and a visit count N(s, a) for each action a. We
use Qsft(s) to denote a |A|-dimensional vector with components Qsft(s, a). Let N(s) =

∑
aN(s, a)

and Vsft(s) = Fτ (Qsft(s)). During the in-tree phase of the simulation, the tree policy selects an
action according to

πt(a|s) = (1− λs)fτ (Qsft(s))(a) + λs
1

|A|
(7)

where λs = ε|A|/ log(
∑
aN(s, a) + 1). Let {s0, a0, s1, a1, . . . , sT } be the state action trajectory in

the simulation, where n(sT ) is a leaf node of T . An evaluation function is called on sT and returns
an estimate R 3. T is then grown by expanding n(sT ). Its statistics are initialized by Qsft(sT , a) = 0
and N(sT , a) = 0 for all actions a. For all nodes in the trajectory, we update the visiting counts by
N(st, at) = N(st, at) + 1, and the Q-values using a softmax backup,

Qsft(st, at) =

{
r(st, at) +R t = T − 1

r(st, at) + Fτ (Qsft(st+1)) t < T − 1
(8)

The algorithm MENTS can also be extended to use domain knowledge, such as function approxi-
mations learned offline. For instance, suppose that a policy network π̃(·|s) is available. Then the
statistics can be initialized by Qsft(sT , a) = log π̃(a|sT ) and N(sT , a) = 0 for all actions a during
the expansion. Finally, at each time step t, MENTS proposes the action with the maximum estimated
softmax value at the root s0; i.e. at = argmaxaQsft(s0, a).

4.2 Theoretical Analysis

This section provides the key steps in developing a theoretical analysis of the convergence property for
MENTS. We first show that for any node in the search tree, after its subtree has been fully explored,
the estimated softmax value will converge to the optimal value at an exponential rate. Recall that in
Theorem 1, an optimal sampling algorithm for the softmax stochastic bandit problem must guarantee
limt→∞Nt(a)/t = π∗sft(a) for any action a. Our first result shows that this holds for true in E2W
with high probability. This directly comes from the proof of Theorem 2.

Theorem 3. Consider E2W applied to the stochastic softmax bandit problem. Let N∗t (a) = π∗sft(a) · t.
Then there exists some constants C and C̃ such that,

P
(
|Nt(a)−N∗t (a)| > Ct

log t

)
≤ C̃|A|t exp

{
− t

(log t)3

}
.

In the bandit case, the reward distribution of each arm is assumed to be subgaussian. However, when
applying bandit algorithms at the internal nodes of a search tree, the payoff sequence experienced
from each action will drift over time, since the sampling probability of the actions in the subtree is
changing. The next result shows that even under this drift condition, the softmax value can still be
efficiently estimated according to the backup scheme (8).

Theorem 4. For any node n(s) ∈ T , define the event,

Es =

{
∀a ∈ A, |N(s, a)−N∗(s, a)| < N∗(s, a)

2

}
3We adapt a similar setting to Section 3, where Rt is replaced by the sample from the evaluation function,

and the martingale assumption is extended to the the selection policy and the evaluation function on the leaves.
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where N∗(s, a) = π∗sft(a|s) ·N(s). For ε ∈ [0, 1), there exist some constant C and C̃ such that for
sufficiently large t,

P
(
|Vsft(s)− V ∗sft(s)| ≥ ε|Es

)
≤ C̃ exp

{
−N(s)τ2ε2

Cσ2

}
.

Without loss of generality, we assume Q∗(s, 1) ≥ Q∗(s, 2) ≥ · · · ≥ Q∗(s, |A|) for any n(s) ∈ T ,
and define ∆ = Q∗(s, 1)−Q∗(s, 2). Recall that by (3), the gap between the softmax and maximum
value is upper bounded by τ times the maximum of entropy. Therefore as long as τ is chosen small
enough such that this gap is smaller than ∆, the best action also has the largest softmax value. Finally,
as we are interested in the probability that the algorithm fails to find the optimal arm at the root, we
prove the following result.
Theorem 5. Let at be the action returned by MENTS at iteration t. Then for large enough t with
some constant C,

P (at 6= a∗) ≤ Ct exp

{
− t

(log t)3

}
.

Remark. MENTS enjoys a fundamentally faster convergence rate than UCT. We highlight two main
reasons behind this success result from the innovated algorithmic design. First, MENTS applies E2W
as the tree policy during simulations. This assures that the softmax value functions used in MENTS
could be effectively estimated in an optimal rate, and the tree policy would converge to the optimal
softmax policy π∗sft asymptotically, as suggested by Theorem 1 and Theorem 2. Secondly, Theorem 4
shows that the softmax value can also be efficiently back-propagated in the search tree. Due to these
facts, the probability of MENTS failing to identify the best decision at the root decays exponentially,
significantly improving the polynomial rate of UCT.

5 Related Work

Maximum entropy policy optimization is a well studied topic in reinforcement learning [5, 6, 12].
The maximum entropy formulation provides a substantial improvement in exploration and robustness,
by adopting a smoothed optimization objective and acquiring diverse policy behaviors. The proposed
algorithm MENTS is built on the softmax Bellman operator (4), which is used as the value propagation
formula in MCTS. To our best knowledge, MENTS is the first algorithm that applies the maximum
entropy policy optimization framework for simulation-based planning algorithms.

Several works have been proposed for improving UCT, since it is arguably “over-optimistic” [3] and
does not explore sufficiently: UCT can take a long time to discover an optimal branch that initially
looked inferior. Previous work has proposed to use flat-UCB, which enforces more exploration, as the
tree policy for action selection at internal nodes [3]. Minimizing simple regret in MCTS is discussed
in [2, 17]. Instead of using UCB1 as the tree policy at each node, these works employ a hybrid
architecture, where a best-arm identification algorithm such as Sequential Halving [7] is applied at
the upper levels, while the original UCT is used for the deeper levels of the tree.

Various value back-propagation strategies, particularly back-propagate the maximum estimated value
over the children, were originally studied in [4]. It has been shown that the maximum backup is a
poor option, since the Monte-Carlo estimation is too noisy when the number of simulations is low,
which misguides the algorithm, particularly at the beginning of search. Complex back-propagation
strategies in MCTS have been investigated in [9], where a mixture of maximum backup with the well
known TD-λ operator [16] is proposed. In contrast to these approaches, MENTS exploits the softmax
backup to achieve a faster convergence rate of value estimation.

6 Experiments

We evaluate the proposed algorithm, MENTS, across several different benchmark problems against
strong baseline methods. Our first test domain is a Synthetic Tree environment. The tree has branching
factor (number of actions) k of depth d. At each leaf of the tree, a standard Gaussian distribution is
assigned as an evaluation function, that is each time a leaf is visited, the distribution is used to sample
a stochastic return. The mean of each Gaussian distribution is determined in the following way: when
initializing the environment each edge is assigned a random value, then the mean of the Gaussian
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Figure 1: Evaluation of softmax value estimation in the synthetic tree environment. The x-axis shows
the number of simulations and y-axis shows the value estimation error. The shaded area shows the
standard error. We find that the softmax value can be efficiently estimated by MENTS.

distribution at a leaf is the sum of values along the path from the root to the leaf. This environment
is similar to the P-game tree environment [10, 15] used to model two player minimax games, while
here we consider the single (max) player version. Finally, we normalize all the means in [0, 1].

We then test MENTS on five Atari games: BeamRider, Breakout, Q*bert, Seaquest and SpaceInvaders.
For each game, we train a vanilla DQN and use it as an evaluation function for the tree search as
discussed in the AlphaGo [13, 14]. In particular, the softmax of Q-values is used as the state value
estimate, and the Boltzmann distribution over the Q-values is used as the policy network to assign a
probability prior for each action when expanding a node. The temperature is set to 0.1. The UCT
algorithm adopts the following tree-policy introduced in AlphaGo [14],

PUCT(s, a) = Q(s, a) + cP (s, a)

√∑
bN(s, b)

1 +N(s, a)

where P (s, a) is the prior probability. MENTS also applies the same evaluation function. The prior
probability is used to initialize the Qsft as discussed in Section 4.1. We note that the DQN is trained
using a hard-max target. Training a neural network using softmax targets such as soft Q-learning
or PCL might be more suitable for MENTS [5, 12]. However, in the experiments we still use DQN
in MENTS to present a fair comparison with UCT, since both algorithms apply the exactly same
evaluation function. The details of the experimental setup are provided in the Appendix.

6.1 Results

Value estimation in synthetic tree. As shown in Section 4.2, the main advantage of the softmax
value is that it can be efficiently estimated and back-propagated in the search tree. To verify this
observation, we compare the value estimation error of MENTS and UCT in both the bandit and tree
search setting. For MENTS, the error is measured by the absolute difference between the estimated
softmax value Vsft(s0) and the true softmax state value V ∗sft(s0) of the root s0. For UCT, the error
is measured by the absolute difference between the Monte Carlo value estimation V (s0) and the
optimal state value V ∗(s0) at the root. We report the results in Figure 1. Each data point is averaged
over 5× 5 independent experiment (5 runs on 5 randomly initialized environment). In all of the test
environments, we observe that MENTS estimates the softmax values efficiently. By comparison, we
find that the Monte Carlo estimation used in UCT converges far more slowly to the optimal state
value, even in the bandit setting (d = 1).

Online planning in synthetic tree. We next compare MENTS with UCT for online planning in the
synthetic tree environment. Both algorithms use Monte Carlo simulation with uniform rollout policy
as the evaluation function. The error is evaluated by V ∗(s0) − Q∗(s0, at), where at is the action
proposed by the algorithm at simulation step t, and s0 is the root of the synthetic tree. The optimal
values Q∗ and V ∗ are computed by back-propagating the true values from the leaves when the
environment is initialized. Results are reported in Figure 2. As in the previous experiment, each data
point is averaged over 5× 5 independent experiment (5 runs on 5 randomly initialized environment).
UCT converges faster than our method in the bandit environment (d = 1). This is because that the
main advantage of MENTS is the usage of softmax state values, which can be efficiently estimated
and back-propagated in the search tree. In the bandit case such an advantage does not exist. In the tree
case (d > 0), we find that MENTS significantly outperforms UCT, especially in the large domain.
For example, in synthetic tree with k = 8 d = 5, UCT fails to identify the optimal action at the root
in some of the random environments, result in the large regret given the simulation budgets. However,
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Figure 2: Evaluation of online planning in the synthetic tree environment. The x-axis shows the
number of simulations and y-axis shows the planning error. The shaded area shows the standard error.
We can observe that MENTS enjoys much smaller error than UCT especially in the large domain.

Table 1: Performance comparison of Atari games playing.

Agent BeamRider Breakout Q*bert Seaquest SpaceInvaders

DQN 19280 345 14558 1142 625

UCT 21952 367 16010 1129 656

MENTS 18576 386 18336 1161 1503

MENTS can continuously make progress towards the optimal solution in all random environments,
confirming MENTS scales with larger tree depth.

Online planning in Atari 2600 games. Finally, we compare MENTS and UCT using Atari games.
At each time step we use 500 simulations to generate a move. Results are provided in Table 1, where
we highlight scores where MENTS significantly outperforms the baselines. Scores obtained by DQN
are also provided. In Breakout, Q*bert and SpaceInvaders, MENTS significantly outperforms UCT
as well as the DQN agent. In BeamRider and Seaquest all algorithms performs similarly, since the
search algorithms only use the DQN as the evaluation function and only 500 simulations are applied
to generate a move. We can expect better performance when a larger simulation budget is used.

7 Conclusion

We propose a new online planning algorithm, Maximum Entropy for Tree Search (MENTS), for large
scale sequential decision making. The main idea of MENTS is to augment MCTS with maximum
entropy policy optimization, evaluating each node in the search tree using softmax values back-
proagated from simulations. We contribute two new observations that are essential to establishing the
effectiveness of MENTS: first, we study stochastic softmax bandits for single-step decision making
and show that softmax values can be estimated at an optimal convergence rate in terms of mean
squared error; second, the softmax values can be efficiently back-propagated from simulations in
the search. We prove that the probability of MENTS failing to identify the best decision at the root
decays exponentially, which fundamentally improves the worst case efficiency of UCT. Empirically,
MENTS exhibits a significant improvement over UCT in both synthetic tree environments and Atari
game playing.
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A Experimental Details

We provide the experiment details in this section.

Value estimation in synthetic tree. For all settings, we use τ = 0.01 for the softmax value. The ex-
ploration parameters for both MENTS and UCT are tuned from {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}.
Online planning in synthetic tree. The exploration parameters for MENTS and UCT are tuned
from {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The temperature parameter τ of MENTS is tuned from
{0.5, 0.1, 0.05, 0.01, 0.005}.
Online planning in Atari 2600 games. The exploration parameter for both algorithms are tuned
from {5.0, 2.0, 1.0, 0.5, 0.1} The temperature parameter τ of MENTS is tuned from {0.1, 0.05, 0.01}.
The results is averaged over ten environment restarts.

In games such as BeamRider, one test game will take thousands of environment steps. Therefore, we
only test the algorithms within 10,000 environment steps. The search algorithms are used every 10
steps. For the other steps the agent will use the DQN to select action.

B Proofs for softmax stochastic bandit

We first introduce a Lemma that approximates the exponential function of empirical estimator using
delta method [1]. This Lemma will be used for both lower bound and upper bound analysis.

Lemma 1. Let X1, . . . , Xn be i.i.d. random variables, such that E[Xi] = µ and V [Xi] = σ2 <∞,

X̄n =
∑n
i=1Xi/n. The first two moment of exp

(
X̄n/τ

)
could be approximated by,

E
[
exp

(
X̄n

τ

)]
= eµ/τ +

σ2

2n

(
eµ/τ

τ2

)
+R (n) (9)

V
[
exp

(
X̄n

τ

)]
=
σ2

n

(
eµ/τ

τ

)2

+R′ (n) (10)

where |R(n)| ≤ O
(
n−2

)
, |R′(n)| ≤ O

(
n−2

)
.

Proof. By Taylor’s expansion,

exp

(
X̄n

τ

)
= eµ/τ +

eµ/τ

τ

(
X̄n − µ

)
+
eµ/τ

2τ2

(
X̄n − µ

)2
+
eξ/τ

6τ3

(
X̄n − µ

)3
for some ξ between µ and X̄n. Taking the expectation on both sides,

E
[
exp

(
X̄n

τ

)]
= eµ/τ + 0 +

eµ/τ

2τ2
V
[
X̄n

]
+
eξ/τ

6τ3
E
[(
X̄n − µ

)3]
.

Let R(n) = eξ/τ

6τ3 E
[(
X̄n − µ

)3]
. By Lemma 5.3.1 of [1], |R(n)| ≤ O(n−2), which gives Eq. (9).

Furthermore, note that(
E
[
exp

(
X̄n

τ

)])2

=

(
eµ/τ +

σ2

2n

(
eµ/τ

τ2

)
+R(n)

)2

= e2µ/τ +
σ2

n

(
eµ/τ

τ

)2

+
C1

n2

+ C2R(n) + C3
R(n)

n
for some constant C1, C2, C3. On the other hand, following the same idea of deriving Eq. (9),

E

[(
exp

(
X̄n

τ

))2
]

= e2µ/τ +
2σ2

n

(
eµ/τ

τ

)2

+ R̃(n)

where |R̃(n)| ≤ O(n−2). The proof of Eq. (10) ends by taking the difference of the above two

equations.
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B.1 Proof of Theorem 1

We consider the learning problem in a Bayesian setting. In the stochastic bandit problem, we assume
the expected reward of each action r(a) is independently sampled from a Gaussian prior N (0, σ2

0).
At time step t, for any action a, a reward Xa,t is sampled from N (r(At), σ

2), independently to all
the previous observations. The learner chooses an action At according to some policy and observe
Xt = XAt,t. Without loss of generality, we assume that σ2 = 1 and τ = 1. Our goal is to prove

lim
t→∞

E
[
t
(
U − Ût

)2

− σ2

τ2

(∑
a
er(a)/τ

)2
]
≥ 0 ,

where the expectation is taken on the randomness of the algorithm, the expected rewards r, and the
observation Xa,i given r. Therefore the existence of r that provides the lower bound is guaranteed
since r satisfies the property in expectation.

We define Ũt to be the posterior mean ofU , i.e. the conditional expectation ofU given the observations

Xa,t. Thus, E
[(
U − Ût

)2

−
(
U − Ũt

)2
]
≥ 0. The benefit of considering Ũt is that Ũt can further

be decomposed into the Bayes estimator of each action, even without the assumption that Ût is
decomposable or Ût has (asymptotic) unbiased estimator for each arm.

We next introduce two technical lemmas that are useful to prove the lower bound. The first result
shows that for an algorithm that performs well on all possible environments, it must pull each arm
at least in Ω(log t) in t rounds. Note that unlike in the regret analysis for stochastic multi-armed
bandits, where one only cares about how many times the suboptimal arms are pulled, the Ω(log t)
lower bound on Nt(a) for suboptimal arms is not strong enough to provides a tight lower bound of
Et.

Lemma 2. For any algorithm A such that Et = O( 1
t ), it holds that Nt(a) = Ω(log t) for any arm a.

In the Bayesian learning setting defined above, since exp (Xa,t) has a log-normal distribution with a
Gaussian prior, its posterior estimation is still log-normal. The second result studies the concentration
rate of the posterior estimation.

Lemma 3. Let Φ(a) =
∑Nt(a)
i=1 Xa,i+1/2

τ0+Nt(a) be the posterior estimation of r(a) and define ∆(a) =

er(a) − eΦ(a). We have

E [∆(a)|Nt(a), r] = O

(
1

Nt(a)

)
E
[
∆(a)2

∣∣Nt(a), r
]

= e2r(a)

(
Nt(a)

(Nt(a) + σ0)2
+O

(
1

N2
t (a)

))
.

Now we are ready to present the proof of the lower bound.

Proof of Theorem 1. By the tower rule and the fact that Ũ is the minimizer of the mean squared error,

E
[
t
(
U − Ût

)2
]
≥ E

[
t
(
U − Ũt

)2
]

= E
[
E
[
t
(
U − Ũt

)2
∣∣∣∣ r]] ,

It then suffices to prove that

lim
t→∞

E
[
t
(
U − Ũt

)2
∣∣∣∣ r] ≥ (∑a

er(a)
)2

for any r. The rest of the proof is always conditioned on r. Let Xa,t = Xa,1, . . . , Xa,Nt(a) be the

observations of action a up to time step t. We can decompose Ũ by

Ũt = E [U |Xj,t, j ∈ {1, . . . ,K}] =

K∑
j=1

E
[
er(j)

∣∣∣Xj,t, j ∈ {1, . . . ,K}
]

=

K∑
j=1

E
[
er(j)

∣∣∣Xj,t

]
.
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Therefore, the Bayesian estimator of U is

Ũt =
∑
j

exp

(∑Nt(j)
i=1 Xj,i + 1/2

τ0 +Nt(j)

)
.

It remains to bound
(
U − Ũt

)2

conditioned on r. Note that

(
U − Ũt

)2

=

∑
j

er(j) − exp

(∑Nt(j)
k=1 Xj,k + 1/2

τ0 +Nt(j)

)2

=
∑
j

∆2
j +

∑
i 6=j

∆j∆i,

where ∆j = er(j) − exp(
∑Nt(j)
k=1 Xj,k+1/2

τ0+Nt(j)
). Finally, define Pt(j) = Nt(j)/t and let τ0 → 0. By

Lemma 3, we have

lim
t→∞

tE
[(
U − Ũt

)2

| r
]

= lim
t→∞

tE
[
E
[(
U − Ũt

)2
∣∣∣∣Nt(1), . . . , Nt(k), r

]]

= lim
t→∞

E

∑
j

e2r(j) +O
(

1
Nt(j)

)
Pt(j)


≥
(∑

a
er(a)

)2

where the last inequality follows by Cauchy-Schwarz inequality and Lemma 2. Note that for the

inequality to hold there must be for all action k ∈ [K], Nt(k) = N∗t (k).

For the general case, where σ, τ 6= 1, we can simply scale the reward by τ , then the variance of Xj,k

is σ2

τ2 . The proof still holds and we obtain the following inequality,

lim
t→∞

tE
[(
U − Ũt

)2

| r
]
≥ σ2

τ2

(∑
a

π̄(a)er(a)/τ

)2

.

B.2 Concentration of Nt(a) in Bandit (Theorem 3)

Define Ñt(a) =
∑
s πs(a), where πs is the policy followed by E2W at time step s. By Theorem 2.3

in [18] or [19], we have the following concentration result.

P
(
|Nt(a)− Ñt(a)| > ε

)
≤ 2 exp

(
− ε2

2
∑t
s=1 σ

2
s

)
≤ 2 exp

(
−2ε2

t

)
,

where σ2
s ≤ 1/4 is the variance of Benoulli distribution with p = πs(k) at time step s. Denote the

event
Ẽε = {∀a ∈ A, |Ñt(a)−Nt(a)| < ε}.

Thus we have

P
(
Ẽcε

)
≤ 2|A| exp

(
−2ε2

t

)
.

It remains to bound P
(
|Ñt(a)−N∗t (a)| ≥ ε

)
. To prove Theorem 3, we first introduce two technical

lemmas, which prove the accuracy of our estimate on the reward and connect the convergence of the
reward estimation to the convergence of policy.

12



Lemma 4. For the stochastic softmax bandit problem, E2W can guarantee that, for t ≥ 4,

P
(
‖r− r̂t‖∞ ≥

2σ

log(2 + t)

)
≤ 4|A| exp

(
− t

(log(2 + t))3

)
.

Lemma 5. Given two soft indmax policies, π(1) = fτ (r(1)) and π(2) = fτ (r(2)), we have∥∥∥π(1) − π(2)
∥∥∥
∞
≤
(

1 +
1

τ

)∥∥∥r(1) − r(2)
∥∥∥
∞

Proof of Theorem 3

Proof. We denote the following event,

Ert =

{
‖r− r̂t‖∞ <

2σ

log(2 + t)

}
.

For any time step s and action a, by the definition of πs(a) we have,

|πs(a)− π∗(a)| ≤ |π̂s(a)− π∗(a)|+ λs.

Thus, to bound |Ñt(a)−N∗t (a)|, conditioned on the event ∩ti=1Ert and for t ≥ 4 there is,

|Ñt(a)−N∗t (a)| ≤
t∑

s=1

|π̂s(a)− π∗(a)|+
t∑

s=1

λs

≤
(

1 +
1

τ

) t∑
s=1

‖r̂s − r‖∞ +

t∑
s=1

λs (by Lemma 5)

≤
(

1 +
1

τ

) t∑
s=1

2σ

log(2 + s)
+

t∑
s=1

λs (by Lemma 4)

≤
(

1 +
1

τ

)∫ t

s=0

2σ

log(2 + s)
ds+

∫ t

s=0

|A|
log(1 + s)

ds

≤ Ct

log t
,

for some constant C depending on |A|, σ and τ . Finally,

P
(
|Ñt(a)−N∗t (a)| ≥ Ct

log t

)
≤

t∑
i=1

P
(
Ecrt
)

=

t∑
i=1

4|A| exp

(
− t

(log(2 + t))3

)
≤4|A|t exp

(
− t

(log(2 + t))3

)
.

Therefore,

P
(
|Nt(a)−N∗t (a)| ≥ (1 + C)

t

log t

)
≤P
(
|Ñt(k)−N∗t (k)| ≥ Ct

log t

)
+ P

(
|Nt(k)− Ñt(k)| > t

log t

)
≤4|A|t exp

(
− t

log(2 + t)3

)
+ 2|A| exp

(
− 2t

log(2 + t)2

)
≤O

(
t exp

(
− t

(log t)3

))

13



B.3 Proof of Theorem 2

Proof of Theorem 2. Let δt = Ct/ log t with some constant C. Define the following set

Gt =

{
s

∣∣∣∣s ∈ 1 : t, dN∗t (a) + δte ≥ s ≥ bN∗t (a)− δtc
}
,

and its complementary set Gct = {1, 2, . . . , t} \ Gt.

By Theorem 3, ∀a ∈ {1, . . . ,K}, with probability at least 1−O
(
t exp

(
− t

(log t)3

))
, Nt(a) ∈ Gt.

By law of total expectation and Lemma 1,

E
[
exp

(
r̂t(a)

τ

)]
=

t∑
s=1

P (Nt(a) = s)E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a) = s

]

=

t∑
s=1

P (Nt(a) = s)

(
er(a)/τ +

σ2

2s

(
er(a)/τ

τ2

))
+

t∑
s=1

P (Nt(a) = s)O
(
s−2
)

=

t∑
s=1

P (Nt(a) = s)

(
σ2

2s

(
er(a)/τ

τ2

)
+O

(
s−2
))

+ er(a)/τ

(11)

We divide the summation in two parts. For s ∈ Gct , by Theorem 3,∑
s∈Gc

t

P (Nt(a) = s) ·
(
σ2

2s

(
er(a)/τ

τ2

)
+O

(
s−2
))
≤ O

(
1

t

)
(12)

For s ∈ Gt,∑
s∈Gt

P (Nt(a) = s) ·
(
σ2

2s

(
er(a)/τ

τ2

)
+O

(
s−2
))
≤ O

(
(N∗t (a)− δt)−1

)
(13)

Combine the above together,

t (U − E [Ut])
2

= t

(∑
a

E
[
exp

(
r̂t(a)

τ

)]
− exp

(
rt(a)

τ

))2

= t

(∑
a

O

(
1

t

)
+O

(
(N∗t (a)− δt)−1

))2

.

Thus,

lim
t→∞

t (U∗ − E [Ut])
2

= 0,

i.e. Ut is a consistent estimate for U∗.

To bound Et, it remains to bound the variance of Ut since it is unbiased. By the law of total variance,

V
[
exp

(
r̂t(a)

τ

)]
= E

[
V
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
+ V

[
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
(14)

Note that by Lemma 1, the first term is

E
[
V
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
=

t∑
s=1

P (Nt(a) = s)V
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a) = s

]

=

t∑
s=1

P (Nt(a) = s)

(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))
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Using the same idea in Eq. (12) and Eq. (13), we consider the summation in two parts. For s ∈ Gct ,

∑
s∈Gc

t

P (Nt(a) = s) ·

(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))
≤ O

(
1

t

)

For s ∈ Gt,

∑
s∈Gt

P (Nt(a) = s) ·

(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))
≤ σ2

τ2
· e2r(a)/τ

N∗t (a)− δt
+O

(
(N∗t (a)− δt)−

3
2

)
Put these together we have,

E
[
V
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
≤ O

(
1

t

)
+
σ2

τ2
· e2r(a)/τ

N∗t (a)− δt
+O

(
(N∗t (a)− δt)−

3
2

)
(15)

For the second term of Eq. (14) we have,

V
[
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
= E

[(
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2
]
−
(
E
[
exp

(
r̂t(a)

τ

)])2

For the first term, by Lemma 1,

E

[(
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2
]

=

t∑
s=1

P (Nt(a) = s)

(
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2

=

t∑
s=1

P (Nt(a) = s)

(
e2r(a)/τ +

σ2

s

(
er(a)/τ

τ

)2
)

+O
(
s−3/2

)
≤ e2r(a)/τ +O

(
1

t

)
+
σ2

τ2
· e2r(a)/τ

N∗t (a)− δt
+O

(
(N∗t (a)− δt)−

3
2

)
where the last inequality follows by the same idea of proving (15). For the second term, combining

Eqs. (11) to (13),(
E
[
exp

(
r̂t(a)

τ

)])2

= exp

(
2r(a)

τ

)
+O

(
1

t

)
+O

(
(N∗t (a)− δt)−1

)
Then we have,

V
[
E
[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]]
≤ O

(
1

t

)
+
σ2

τ2
· e2r(a)/τ

N∗t (a)− δt
+O

(
(N∗t (a)− δt)−1

)
(16)

Note that

lim
t→∞

t · σ
2

τ2
· e2r(a)/τ

N∗t (a)− δt
= lim
t→∞

σ2

τ2
· e2r(a)/τ

π∗(a)− δt
t

=
σ2

τ2
· e

r(a)/τ

π̄(a)
·

(∑
a

π̄(a) exp(r(a)/τ)

)
(17)
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Combine Eq. (15), Eq. (16) and Eq. (17) together,

lim
t→∞

tV
[
Ût

]
= lim
t→∞

t

(∑
a

π̄2(a)V
[
exp

(
r̂t(a)

τ

)])

≤ lim
t→∞

t
∑
a

π̄2(a)

(
O

(
1

t

)
+
σ2

τ2
· e2r(a)/τ

N∗t (a)− δt

)
+ t
∑
a

π̄2(a)O
(

(N∗t (a)− δt)−1
)

=
σ2

τ2

(∑
a

π̄(a)er(a)/τ

)2

which ends the proof.

B.4 Technical Lemmas

Proof of Lemma 2. Consider two gaussian environments ν1 and ν2 with unit variance. The vector of

means of the reward per arm in ν1 is (r(1), . . . , r(K)) and (r(1) + 2ε, r(2), . . . , r(K)) in ν2. Define

U1 =
∑K

i=1
eri , U2 = er1+2ε +

∑K

i=2
eri

Let P1 and P2 be the distribution induced by ν1 and ν2 respectively. Denote the event,

E =
{
|Ût − U1| > er1ε

}
,

By definition, the error Et,ν1 under ν1 satisfies

Et,ν1 ≥ P1 (E)E
[
(U1 − Ût)2 |E

]
≥ P1 (E) e2r1ε2,

and the error Et,ν2 under ν2 satisfies

Et,ν2 ≥ P2 (Ec)E
[
(U2 − Ût)2 |Ec

]
≥ P2 (Ec) e2r1ε2.

Therefore, under the assumption that the algorithm suffers O( 1
t ) error in both environments,

O(
1

t
) = Et,P1

+ Et,P2
≥ P1 (E) e2r1ε2 + P2 (Ec) e2r1ε2

= e2r1ε2 (P1 (E) + P2 (Ec)) ≥ 1

2
e2r1ε2e−2Nt(k)ε2 .

where the last inequality follows by Pinsker’s inequality and Divergence decomposition Lemma [11].

Therefore Nt(k) = Ω(log(t)).

Proof of Lemma 3. Define

Γ(a) = Φ(a)− r(a) =
Nt(a)

Nt(a) + τ0
(r̂(a)− r(a)) +

1/2− τ0r(a)

τ0 +Nt(a)
.

By the fact that the variance of Xa,t given r is 1,

E [Γ(a) |Nt(a), r] =
1/2− τ0r(a)

τ0 +Nt(a)
.

E
[
Γ(a)2

∣∣Nt(a), r
]

=
σ2Nt(a)

(Nt(a) + τ0)2
+O

(
1

N2
t (a)

)
,
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Then we have

E [∆(a)|Nt(a), r] = er(a) − E
[
eΦ(a)|Nt(a), r

]
= er(a)

(
1− E

[
eΓ(a)|Nt(a), r

])
= O

(
1

Nt(a)

)
Similarly,

E
[
∆(a)2

∣∣Nt(a), r
]

= e2r(a)

(
Nt(j)

(Nt(j) + σ0)2
+O

(
1

N2
t (j)

))
.

Proof of Lemma 4. By the choice of λs = |A|
log(1+s) , it follows that for all a and t ≥ 4,

Ñt(a) =
∑t

s=1
πs(a) ≥

∑t

s=1

1

log(1 + s)

≥
∑t

s=1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2

≥
∫ 1+t

1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2
ds

=
1 + t

log(2 + t)
− 1

log 2

≥ t

2 log(2 + t)

Conditioned on the event Ẽε where we set ε = t
4 log(2+t) , it follows that Nt(a) ≥ t

4 log(2+t) . Then,

for any action a by the definition of sub-gaussian,

P

|r(a)− r̂t(a)| >

√
8σ2 log( 2

δ ) log(2 + t)

t


≤P

|r(a)− r̂t(a)| >

√
2σ2 log( 2

δ )

Nt(a)

 ≤ δ.
Let δ satisfy that log(2/δ) = t

(log(2+t))3 ,

P
(
|r(a)− r̂t(a)| > 2σ

log(2 + t)

)
≤ 2 exp

(
− t

(log(2 + t))3

)
Therefore for t ≥ 2

P
(
‖rt − r̂t‖∞ ≥

2σ

log(2 + t)

)
≤P
(
‖rt − r̂t‖∞ ≥

2σ

log(2 + t)

∣∣∣∣ Ẽε)+ P
(
Ẽcε

)
≤
∑
k

P
(
|r(a)− r̂t(a)| > 2σ

log(2 + t)

∣∣∣∣ Ẽε)+ P
(
Ẽcε

)
≤2|A| exp

(
− t

(log(2 + t))3

)
+ 2|A| exp

(
− t

2(log(t+ 2))2

)
≤4|A| exp

(
− t

(log(2 + t))3

)
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Proof of Lemma 5. Note that

∥∥∥π(1) − π(2)
∥∥∥
∞
≤
∥∥∥log π(1) − log π(2)

∥∥∥
∞

≤ 1

τ

∥∥∥r(1) − r(2)
∥∥∥
∞

+
∣∣∣Fτ (r(1))−Fτ (r(2))

∣∣∣
The proof ends by using the fact

∣∣Fτ (r(1))−Fτ (r(2))
∣∣ ≤ ∥∥r(1) − r(2)

∥∥
∞, which follows Lemma 8

of [12].

C Proofs for Tree

This section contains the detailed proof for theorems in the tree setting, in particular, Theorem 4 and
Theorem 5.

C.1 Proof of Theorem 4

Proof. We prove this using induction on the depth D of tree. For the base case (D=0), the result

directly follows by the fact ν is sub-gaussian. Now, at some internal node n(s) ∈ T , assume the

result holds for all its children, we prove the result still holds.

For any state s, we define EV(s) = exp(Vsft(s)/τ) and EV∗(s) = exp(V ∗sft(s)/τ). Note that

EV− EV∗ ≥ εEV∗ ⇔ V ≥ τ log(1 + ε) + V ∗

EV∗ − EV ≥ εEV∗ ⇔ V ≤ τ log(1− ε) + V ∗

Therefore it is equivalent to prove for any node in tree,

P (|EV(s)− EV∗(s)| ≥ εEV∗(s)|Es) ≤ C̃ exp

{
−ε

2N(s)

Cσ2

}

for some constant C and C̃. Note that by the definition of U we have

EV(s) =
∑
a

exp(Qsft(s, a)/τ) =
∑
a

exp{(r(s, a) + Vsft(sa))/τ}

where sa is the state reached by taking action a at state s. Since the reward is deterministic and

bounded which only affects the scale, we can then only consider the convergence of Vsft(sa). Consider

a decompose vector α such that
∑
a αaEV∗(sa) = εEV∗(s).

P (|EV(s)− EV∗(s)| ≥ εEV∗(s) |Es) ≤
∑
a

P (|EV(sa)− EV∗(sa)| ≥ αaEV∗(sa) |Es)

≤
∑
a

C̃a exp

(
−α

2
aN(s)π∗sft(a|s)

2Caσ2

)
,
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where the last inequality is by the induction hypothesis. Let α2
aπ
∗
sft(a|s) = M where

√
M =

εEV∗(s)∑
a EV∗(sa)/

√
π∗sft(a|s)

. One can verify that
∑
a αaEV∗(sa) = εEV∗(s). Therefore,

P (|EV(s)− EV∗(s)| ≥ εEV∗(s)) ≤
∑
a

C̃a exp

− N(s)

2Caσ2

(
εEV∗(s)∑

a EV∗(sa)/
√
π∗sft(a|s)

)2


≤|A|C̃ exp

−ε2N(s)

2Cσ2

EV∗(s)2(∑
a

√
EV∗(s)EV∗(sa)

)2


≤|A|C̃ exp

−ε2N(s)

2Cσ2

EV∗(s)(∑
a

√
EV∗(sa)

)2


≤|A|C̃ exp

(
− 1

|A|
ε2N(s)

2Cσ2

)
≤C̃1 exp

(
−ε

2N(s)

C̃2σ2

)
.

Picking C̃ = max{C̃1, C̃2} leads to the conclusion.

C.2 Proof of Theorem 5

Proof. Let a∗ be the action with largest softmax value and s be the root state. Moreover, let

U(sa) = exp (Qsft(s, a)/τ) and U∗(sa) = exp (Q∗sft(s, a)/τ). The event Es is defined as in

Theorem 4. The probability that MENT selects an sub-optimal arm at s is,

P (∃a ∈ A, U(sa) > U(sa∗)) ≤P (∃a ∈ A, U(sa) > U(sa∗) |Es) + P (Ecs)

≤
∑
a

P (U(sa) > U(sa∗) |Es) + P (Ecs) .

Since we can upper bound P (Ecs) by Theorem 3, it remains to bound P (U(sa) > U(sa∗) |Es).

P (U(sa) > U(sa∗) |Es)

=P (U(sa)− U(sa∗)− U∗(sa) + U∗(sa∗) > U∗(sa∗)− U∗(sa) |Es)

≤P (|U(sa∗)− U∗(sa∗)| > αU∗(sa∗) |Es) + P (|U(sa)− U∗(sa)| > βU∗(sa) |Es)

≤C̃a∗ exp

{
−N

∗(s, a∗)α2

2Ca∗σ2

}
+ C̃a exp

{
−N

∗(s, a)β2

2Caσ2

}
where αU∗(sa∗) + βU∗(sa) = U∗(sa∗)− U∗(sa). The last inequality follows by Theorem 4, since

U(sa)−U∗(sa) = exp(r(s, a)) (exp (Vsft(s
′))− exp (V ∗sft(s

′))), where s′ is the state of the child of

n(s) taking action a. Recall that for any action a, N∗(s, a) = t · π∗sft(a|s). We can choose α and β

similarly as in the proof,

α =
(U∗(sa∗)− U∗(sa))/

√
π∗sft(a

∗|s)
U∗(s, a)/

√
π∗sft(a|s) + U∗(s, a∗)/

√
π∗sft(a

∗|s)

β =
(U∗(sa∗)− U∗(sa))/

√
π∗sft(a|s)

U∗(s, a)/
√
π∗sft(a|s) + U∗(s, a∗)/

√
π∗sft(a

∗|s)
.

Then, there exists some constant Ca and C ′a such that

P (U(sa) > U(sa∗) |Es) ≤ C ′a exp

(
− t

2Caσ2

(U∗(sa∗)− U∗(sa))2

U∗(s)(
√
U∗(s, a) +

√
U∗(s, a∗))2

)
.
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We can omit the terms depending on U∗ since they only affect the scale (we can switch to a new

constant C ′a.) Finally, by Theorem 3,

P (∃a ∈ A, U(sa) > U(sa∗)) ≤
∑
a

P (U(sa) > U(sa∗) |Es) + P (Ecs)

≤
∑
a

C ′a exp

{
− t

2Caσ2

}
+ C ′t exp

{
− t

(log t)3

}
≤ Ct exp

{
− t

(log t)3

}
for some constant C not depending on t.
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