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Abstract

We consider maximum likelihood estimation of linear dynamical systems with
generalized-linear observation models. Maximum likelihood is typically considered
to be hard in this setting since latent states and transition parameters must be
inferred jointly. Given that expectation-maximization does not scale and is prone
to local minima, moment-matching approaches from the subspace identification
literature have become standard, despite known statistical efficiency issues. In this
paper, we instead reconsider likelihood maximization and develop an optimization
based strategy for recovering the latent states and transition parameters. Key to
the approach is a two-view reformulation of maximum likelihood estimation for
linear dynamical systems that enables the use of global optimization algorithms for
matrix factorization. We show that the proposed estimation strategy outperforms
widely-used identification algorithms such as subspace identification methods, both
in terms of accuracy and runtime.

1 Introduction

Linear dynamical systems (LDS) provide a fundamental model for estimation and forecasting in
discrete-time multi-variate time series. In an LDS, each observation is associated with a latent state;
these unobserved states evolve as a Gauss-Markov process where each state is a linear function of the
previous state plus noise. Such a model of a partially observed dynamical system has been widely
adopted, particularly due to its efficiency for prediction of future observations using Kalman filtering.

Estimating the parameters of an LDS—sometimes referred to as system identification—is a difficult
problem, particularly if the goal is to obtain the maximum likelihood estimate of parameters. Con-
sequently, spectral methods from the subspace identification literature, based on moment-matching
rather than maximum likelihood, have become popular. These methods provide closed form solutions,
often involving a singular value decomposition of a matrix constructed from the empirical moments
of observations (Moonen and Ramos, 1993; Van Overschee and De Moor, 1994; Viberg, 1995;
Katayama, 2006; Song et al., 2010; Boots and Gordon, 2012). The most widely used such algorithms
for parameter estimation in LDSs are the family of N4SID algorithms (Van Overschee and De Moor,
1994), which are computationally efficient and asymptotically consistent (Andersson, 2009; Hsu
et al., 2012). Recent evidence, however, suggests that these moment-matching approaches may suffer
from weak statistical efficiency, performing particularly poorly with small sample sizes (Foster et al.,
2012; Zhao and Poupart, 2014).

Maximum likelihood for LDS estimation, on the other hand, has several advantages. For example, it
is asymptotically efficient under general conditions (Cramér, 1946, Ch.33), and this property often
translates to near-minimax finite-sample performance. Further, maximum likelihood is amenable
to coping with missing data. Another benefit is that, since the likelihood for exponential families
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and corresponding convex losses (Bregman divergences) are well understood (Banerjee et al., 2005),
maximum likelihood approaches can generalize to a broad range of distributions over the observations.
Similarly, other common machine learning techniques, such as regularization, can be naturally
incorporated in a maximum likelihood framework, interpretable as maximum a posteriori estimation.

Unfortunately, unlike spectral methods, there is no known efficient algorithm for recovering pa-
rameters that maximize the marginal likelihood of observed data in an LDS. Standard iterative
approaches are based on EM (Ghahramani and Hinton, 1996; Roweis and Ghahramani, 1999), which
are computationally expensive and have been observed to produce locally optimal solutions that yield
poor results (Katayama, 2006). A classical system identification method, called the prediction error
method (PEM), is based on minimization of prediction error and can be interpreted as maximum
likelihood estimation under certain distributional assumptions (e.g., Ch. 7.4 of Ljung 1999, Åström
1980). PEM, however, is prone to local minima and requires selection of a canonical parameterization,
which can be difficult in practice and can result in ill-conditioned problems (Katayama, 2006).

In this paper, we propose an alternative approach to LDS parameter estimation under exponential
family observation noise. In particular, we reformulate the LDS as a two-view generative model,
which allows us to approximate the estimation task as a form of matrix factorization, and apply recent
global optimization techniques for such models (Zhang et al., 2012; Yu et al., 2014). To extend these
previous algorithms to this setting, we provide a novel proximal update for the two-view approach
that significantly simplifies the algorithm. Finally, for forecasting on synthetic and real data, we
demonstrate that the proposed algorithm matches or outperforms N4SID, while scaling better with
increasing sample size and data dimension.

2 Linear dynamical systems

We address discrete-time, time-invariant linear dynamical systems, specified as

�t+1 = A�t + ⌘t

xt = C�t + ✏t
(1)

where �t 2 Rk is the hidden state at time t; xt 2 Rd is the observation vector at time t; A 2 Rk⇥k is
the dynamics matrix; C 2 Rd⇥k is the observation matrix; ⌘ is the state evolution noise; and ✏ is the
observation noise. The noise terms are assumed to be independent. As is common, we assume that the
state evolution noise is Gaussian: ⌘ ⇠ N (0,⌃⌘). We additionally allow for general observation noise
to be generated from an exponential family distribution (e.g., Poisson). The graphical representation
for this LDS is shown in Figure 1.

An LDS encodes the intuition that a latent state is driving the dynamics, which can significantly
simplify estimation and forecasting. The observations typically contain only partial information
about the environment (such as in the form of limited sensors), and further may contain noisy or
even irrelevant observations. Learning transition models for such observations can be complex,
particularly if the observations are high-dimensional. For example, in spatiotemporal processes, the
data is typically extremely high-dimensional, composed of structured grid data; however, it is possible
to extract a low-rank state-space that significantly simplifies analysis (Gelfand et al., 2010, Chapter
8). Further, for forecasting, iterating transitions for such a low-rank state-space can provide longer
range predictions with less error accumulation than iterating with the observations themselves.

The estimation problem for an LDS involves extracting the unknown parameters, given a time series
of observations x1, . . . ,xT . Unfortunately, jointly estimating the parameters A,C and �t is difficult
because the multiplication of these variables typically results in a nonconvex optimization. Given the
latent states �t, estimation of A and C is more straightforward, though there are still some issues
with maintaining stability (Siddiqi et al., 2007). There are some recent advances improving estimation
in time series models using matrix factorization. White et al. (2015) provide a convex formulation for
auto-regressive moving average models—although related to state-space models, these do not permit
a straightforward conversion between the parameters of one to the other. Yu et al. (2015) factorize the
observation into a hidden state and dictionary, using a temporal regularizer on the extracted hidden
state—the resulting algorithm, however, is not guaranteed to provide an optimal solution.
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Figure 1: Graphical representation for the standard
LDS formulation and the corresponding two-view
model. The two-view formulation is obtained by a lin-
ear transformation of the LDS model. The LDS model
includes only parameters C and A and the two-view
model includes parameters C and E = CA, where A
can be extracted from E after C and E are estimated.

3 Two-view Formulation of LDS

In this section, we reformulate the LDS as a generative two-view model with a shared latent factor. In
the following section, we demonstrate how to estimate the parameters of this reformulation optimally,
from which parameter estimates of the original LDS can be recovered.

To obtain a two-view formulation, we re-express the two equations for the LDS as two equations for
pairs of sequential observations. To do so, we multiply the state evolution equation in (1) by C and
add ✏t+1 to obtain C�t+1 + ✏t+1 = CA�t +C⌘t + ✏t+1; representing the LDS model as

xt+1 = E�t + ✏
0
t+1

xt = C�t + ✏t
(2)

where we refer to E := CA as the factor loading matrix and ✏
0
t+1 := C⌘t + ✏t+1 as the noise of

the second view. We then have a two-view problem where we need to estimate parameters E and C.
Since the noise components ✏t and ✏

0
t are independent, the two views xt and xt+1 are conditionally

independent given the shared latent state �t. The maximum log likelihood problem for the two-view
formulation then becomes

max
C,E,�

log p(x1, . . . ,xT |�0,�1, . . . ,�T ,C,E) = max
C,E,�

TX

t=1

log p(xt|�t�1,�t,C,E) (3)

where, given the hidden states, the observations are conditionally independent. The log-likelihood (3)
is equivalent to the original LDS, but is expressed in terms of the distribution p(xt|�t�1,�t,C,E),
where the probability of an observation increases if it has high probability under both �t�1 and �t.
The graphical depiction of the LDS and its implied two-view model is illustrated in Figure 1.

3.1 Relaxation

To tackle the estimation problem, we reformulate the estimation problem for this equivalent two-view
model of the LDS. Note that according to the two-view model (2), the conditional distribution (3) can
be expressed as p(xt|�t�1,�t,C,E) = p(xt|E�t�1) = p(xt|C�t). Substituting each of these in
the summation (3) would result in a factor loading model that ignores the temporal correlation among
data; therefore, to take the system dynamics into account we choose a balanced averaging of both
as log p(xt|�t�1,�t,C,E) = 1

2 log p(xt|E�t�1) +
1
2 log p(xt|C�t), where the likelihood of an

observation increases if it has high conditional likelihood given both �t�1 and �t.1 With this choice
and the exponential family specified by the log-normalizer (also called potential function) F : Rd !
R, with the corresponding Bregman divergence defined as DF (ẑkz) := F (ẑ)�F (z)� f(z)>(ẑ�z)
using transfer function f = rF ,2 the log-likelihood separates into the two components

argmax
C,E,�

TX

t=1

log p(xt|�t�1,�t,C,E) = argmax
C,E,�

1
2

TX

t=1

log p(xt|E�t�1) + log p(xt|C�t)

= argmin
C,E,�

TX

t=1

DF (E�t�1||f�1(xt)) +DF (C�t||f�1(xt))

1The balanced averaging can be generalized to a convex combination of the log-likelihood which adds a
flexibility to the problem that can be tuned to improve performance. However, we found that the simple balanced
combination renders the best experimental performance in most cases.

2 Consult Banerjee et al. (2005) for a complete overview of this correspondence.
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Each Bregman divergence term can be interpreted as the fitness measure for each view. For example,
a Gaussian distribution can be expressed by an exponential family defined by F (z) = 1

2kzk
2
2. The

above derivation could be extended to different variance terms for ✏ and ✏
0, which would result in

different weights on the two Bregman divergences above. Further, we could also allow different
exponential families (hence different Bregman divergences) for the two distributions; however, there
is no clear reason why this would be beneficial over simply selecting the same exponential family,
since both describe xt. In this work, therefore, we will explore a balanced loss, with the same
exponential family for each view.

In order to obtain a low rank solution, one can relax the hard rank constraint and employ the block
norm k�k2,1 =

Pk
j=1 k�j:k2 as the rank-reducing regularizer on the latent state.3 This regularizer

offers an adaptive rank reducing scheme that zeros out many of the rows of the latent states and
hence results a low rank solution without knowing the rank a priori. For the reconstruction models
C and E, we need to specify a prior that respects the conditional independence of the views xt and
xt+1 given �t. This goal can be achieved if C and E are constrained individually so that they do not
compete against each other to reconstruct their respective views (White et al., 2012). Incorporating
the regularizer and constraints, the resulting optimization problem has the form

argmin
C,E,�

TX

t=1

L1(E�t�1;xt) + L2(C�t;xt) + �

kX

j=1

k�j:k2 (4)

s.t.kC:jk2  �1, kE:jk2  �2 8j 2 (1, k).

The above constrained optimization problem is convex in each of the factor loading matrices {C,E}
and the state matrix �, but not jointly convex in terms of all these variables. Nevertheless, the
following lemma show that (4) admits a convex reformulation by change of variable.

Lemma 1 Let Ẑ(1) := C� and Ẑ(2) := E� with their concatenated matrix Ẑ :=


Ẑ(1)

Ẑ(2)

�
and

Z(1) := [x1:T�1], Z(2) := [x2:T ]. In addition, let’s define I(1) := diag(

1
0

�
), I(2) := diag(


0
1

�
),

then the multi-view optimization problem (4) can be reformulated in the following convex form

min
kC:jk2�1

kE:jk2�2

min

�:

"
C

E

#
�=Ẑ

L1(C�;Z(1)) + L2(E�;Z(2)) + �k�k2,1

= min
Ẑ

L1(Ẑ
(1);Z(1)) + L2(Ẑ

(2);Z(2)) + � max
0⌘1

kU�1
⌘ Ẑktr

where U⌘ = �1p
⌘ I

(1) + �2p
1�⌘

I(2) and Li(Y; Ŷ) =
PT

t=1 Li(yt; ŷt). Moreover, we can show that

the regularizer term kU�1
⌘ Ẑktr is concave in ⌘. The trace norm induces a low rank result.

Proof: The proof can be readily derived from the results of White et al. (2012). ⌅
In the next section, we demonstrate how to obtain globally optimal estimates of E,C and �.

Remark 1: This maximum likelihood formulation demonstrates how the distributional assumptions
on the observations xt can be generalized to any exponential family. Once expressed as the above
optimization problem, one can further consider other losses and regularizers that may not immediately
have a distributional interpretation, but result in improved prediction performance. This generalized
formulation of maximum likelihood for LDS, therefore, has the additional benefit that it can flexibly
incorporate optimization improvements, such as robust losses.4 Also a regularizer can be designed to
control overfitting to noisy observation, which is an issue in LDS that can result in an unstable latent
dynamics estimate (Buesing et al., 2012a). Therefore, by controlling undesired overfitting to noisy
samples one can also prevent unintended unstable model identification.

3 Throughout this paper, Xi: (X:i) is used to denote the ith row (ith column) of matrix X and also [X;Y]
([x;y]) denotes the matrix (vector) concatenation operator which is equal to [X>

,Y>]> ([x>
,y>]>).

4Thus, we used L1 and L2 in (4) to generally refer to any loss function that is convex in its first argument.
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Remark 2: We can generalize the optimization further to learn an LDS with exogenous input: a
control vector ut 2 Rd that impacts both the hidden state and observations. This entails adding some
new variables to the general LDS model that can be expressed as

�t+1 = A�t +But + ⌘t

xt = C�t +Dut + ✏t

with additional matrices B 2 Rk⇥d and D 2 Rd⇥d. Again by multiplying the state evolution
equation by matrix C the resulting equations are

xt+1 = E�t + Fut +Dut+1 + ✏
0
t+1

xt = C�t +Dut + ✏t

where F := CB. Therefore, the loss can be generally expressed as

L1(E�t�1 + Fut�1 +Dut;xt) + L2(C�t +Dut;xt).

The optimization would now be over the variables C,E,�,D,F, where the optimization could
additionally include regularizers on D and F to control overfitting. Importantly, the addition of these
variables D,F does not modify the convexity properties of the loss, and the treatment for estimating
E,C and � in section 4 directly applies. The optimization problem is jointly convex in D,F and
any one of E, C or � and jointly convex in D and F. Therefore, an outer minimization over D and
F can be added to Algorithm 1 and we will still obtain a globally optimal solution.

4 LDS Estimation Algorithm

To learn the optimal parameters for the reformulated two-view model, we adopt the generalized con-
ditional gradient (GCG) algorithm developed by Yu et al. (2014). GCG is designed for optimization
problems of the form l(x)+f(x) where l(x) is convex and continuously differentiable with Lipschitz
continuous gradient and f(x) is a (possibly non-differentiable) convex function. The algorithm is
computationally efficient, as well providing a reasonably fast O(1/t) rate of convergence to the global
minimizer. Though we have a nonconvex optimization problem, we can use the convex reformulation
for two-view low-rank matrix factorization and resulting algorithm in (Yu et al., 2014, Section
4). This algorithm includes a generic local improvement step, which significantly accelerates the
convergence of the algorithm to a global optimum in practice. We provide a novel local improvement
update, which both speeds learning and enforces a sparser structure on �, while maintaining the
same theoretical convergence properties of GCG.

In our experiments, we specifically address the setting when the observations are assumed to be
Gaussian, giving an `2 loss. We also prefer the unconstrained objective function that can be efficiently
minimized by fast unconstrained optimization algorithms. Therefore, using the well-established
equivalent form of the regularizer (Bach et al., 2008), the objective (4) can be equivalently cast for
the Gaussian distributed time series xt as

min
C,E,�

TX

t=1

kE�t�1 � xtk22 + kC�t � xtk22 + �

kX

j=1

k�j:k2 max( 1
�1
kC:jk2, 1

�2
kE:jk2). (5)

This product form of the regularizer is also preferred over the square form used in (Yu et al., 2014),
since it induces row-wise sparsity on �. Though the square form k�k2F admits efficient optimizers
due to its smoothness, it does not prefer to zero out rows of � while with the regularizer of the form
(5), the learned hidden state will be appropriately projected down to a lower-dimensional space where
many dimensions could be dropped from �, C and E giving a low rank solution. In practice, we
found that enforcing this sparsity property on � significantly improved stability.5 Consequently, we
need optimization routines that are appropriate for the non smooth regularizer terms.

The local improvement step involves alternating block coordinate descent between C,E and �, with
an accelerated proximal gradient algorithm (FISTA) (Beck and Teboulle, 2009) for each descent step.
To use the FISTA algorithm we need to provide a proximal operator for the non-smooth regularizer
in (5).

5This was likely due to a reduction in the size of the transition parameters, resulting in improved re-estimation
of A and a corresponding reduction in error accumulation when using the model for forecasting.

5



Algorithm 1 LDS-DV
Input: training sequence {xt, t 2 [1, T ]}
Output: C,A,�t,⌃⌘,⌃✏

Initialize C0,E0,�0

U1  [C>
0 ; E

>
0 ]

>, V1  �>
0

for i = 1, . . . do
(ui,vi) argminuv>2A

⌦
r`(Ui,Vi),uv

>↵ // compute polar
(⌘i, ✓i)  arg min

0⌘1,✓�0
`((1� ⌘)UiV

>
i + ✓uiv

>
i ) + �((1� ⌘)⇢i + ✓) // partially corrective up-

date (PCU)
Uinit  [

p
1� ⌘iUi,

p
✓iui], Vinit  [

p
1� ⌘iVi,

p
✓ivi]

(Ui+1,Vi+1) FISTA(UinitVinit)
⇢i = 1

2

Pi+1
j=1(k(Ui+1):ik22v + k(Vi+1):ik22)

end for
(C; E) Ui+1, � V>

i+1

A �2:T ⇤ �†
1:T�1

estimate ⌃⌘, ⌃✏ by sample covariances

Let the proximal operator of a convex and possibly non-differentiable function �f(y) be defined as

prox�f (x) = argmin
y

�f(y) + 1
2kx� yk22.

FISTA is an accelerated version of ISTA (Iterative Shrinkage-Thresholding Algorithm) that it-
eratively performs a gradient descent update with the smooth component of the objective, and
then applies the proximal operator as a projection step. Each iteration updates the variable x as
xk+1 = prox�kf

�
xk � �krl(xk)

�
, which converges to a fixed point. If there is no known form for

the proximal operator, as is the case for our non-differentiable regularizer, a common strategy is to
numerically calculate the proximal update. This approach, however, can be prohibitively expensive,
and an analytic (closed) form is clearly preferable. We derive such a closed form for (5) in Theorem 1.

Theorem 1 For a vector v =
h
v1
v2

i
composed of two subvectors v1,v2, define f(v) = �kvk2v :=

�max(kv1k2, kv2k2). The proximal operator for this function is

proxf (v) =

8
>>>><

>>>>:

"
v1 max{1� ↵

kv1k , 0}
v2 max{1� ��↵

kv2k , 0}

#
if kv1k  kv2k

"
v1 max{1� ���

kv1k , 0}
v2 max{1� �

kv2k , 0}

#
if kv2k  kv1k

where ↵ := max{.5(kv1k � kv2k+ �), 0} and � := max{.5(kv2k � kv1k+ �), 0}.

Proof: See Appendix A. ⌅
This result can be further generalized to enable additional regularization components on C and E,
such as including an `1 norm on each column to further enforce sparsity (such as in the elastic net).
There is no closed form for the proximal operator of the sum of two functions in general. We prove,
however, that for special case of a linear combination of the two-view norm with any norms on the
columns of C and E, the proximal mapping reduces to a simple composition rule.

Theorem 2 For norms R1(v1) and R2(v2), the proximal operator of the linear combination
Rc(v) = �kvk2v + ⌫1R1(v1) + ⌫2R2(v2) for ⌫1, ⌫2 � 0 admits the simple composition

proxRc
(v) = prox�k.k2v

✓
prox⌫1R1

(v1)
prox⌫2R2

(v2)

�◆
.

Proof: See Appendix A. ⌅

4.1 Recovery of the LDS model parameters

The above reformulation provides a tractable learning approach to obtain the optimal parameters for
the two-view reformulation of LDS; given this optimal solution, we can then estimate the parameters
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to the original LDS. The first step is to estimate the transition matrix A. A natural approach is to
use (2), and set Â = Ĉ†Ê for pseudoinverse Ĉ†. This Â, however, might be sensitive to inaccurate
estimation of the (effective) hidden state dimension k. We found in practice that modifications from
the optimal choice of k might result in unstable solutions and produce unreliable forecasts. Instead,
a more stable Â can be learned from the hidden states themselves. This approach also focuses
estimation of A on the forecasting task, which is our ultimate aim.

Given the sequence of hidden states, �1, . . . ,�T , there are several strategies that could be used to
estimate A, including simple autoregressive models to more sophisticated strategies (Siddiqi et al.,
2007). We opt for a simple linear regression solution Â = argminA

PT�1
t=1 k�t+1 �A�tk22 which

we found produced stable Â.

To estimate the noise parameters ⌃⌘,⌃✏, recall ⌘t = �t+1� Â�t, ✏t = xt�C�t. Having obtained
Â, therefore, we can estimate the noise covariance matrices by computing their sample covariances
as ⌃̂⌘ = 1

T�1

PT
t=1 ⌘t⌘

>
t , ⌃̂✏ =

1
T�1

PT
t=1 ✏t✏

>
t . The final LDS learning procedure is outlined in

Algorithm 1. For more details about polar computation and partially corrective subroutine see (Yu
et al., 2014, Section 4).

5 Experimental results

We evaluate the proposed algorithm by comparing one step prediction performance and computation
speed with alternative methods for real and synthetic time series. We report the normalized mean
square error (NMSE) defined as NMSE =

PTtest
t=1 kyt�ŷtk2

PTtest
t=1 kyt�µyk2

where µy = 1
Ttest

PTtest

t=1 yt.

Algorithms: We compared the proposed algorithm to a well-established method-of moment-based
algorithm, N4SID (Van Overschee and De Moor, 1994), Hilbert space embeddings of hidden Markov
models (HSE-HMM) (Song et al., 2010), expectation-maximization for estimating the parameters of
a Kalman filter (EM) (Roweis and Ghahramani, 1999) and PEM (Ljung, 1999). These are standard
baseline algorithms that are used regularly for LDS identification. The estimated parameters by
N4SID were used as the initialization point for EM and PEM algorithms in our experiments. We used
the built-in functions, n4sid and pem, in Matlab, with the order selected by the function, for the
subspace identification method and PEM, respectively. For our algorithm, we select the regularization
parameter � using cross-validation. For the time series, the training data is split by performing the
learning on first 80% of the training data and evaluating the prediction performance on the remaining
20%.

Real datasets: For experiments on real datasets we select the climate time series from IRI data
library that recorded the surface temperature on the monthly basis for tropical Atlantic ocean (ATL)
and tropical Pacific ocean (CAC). In CAC we selected first 30 ⇥ 30 grids out of the total 84 ⇥ 30
locations with 399 monthly samples, while in ATL the first 9 ⇥ 9 grids out of the total 38 ⇥ 25
locations are selected each with timeseries of length 564. We partitioned each area to smaller areas
of size 3⇥ 3 and arrange them to vectors of size 9, then seasonality component of the time series are
removed and data is centered to have zero mean. We ran two experiments for each dataset. For the
first, the whole sequence is sliced into 70% training and 30% test. For the second, a short training set
of 70 samples is selected, with a test sequence of size 50.

Synthetic datasets: In the synthetic experiments, the datasets are generated by an LDS model (1) of
different system orders, k, and observation sizes, d. For each test case, 100 data sequences of length
200 samples are generated and sliced to 70%, 30% ratios for training set and test set, respectively. The
dynamics matrix A is selected to produce a stable system: {|�i(A)| = s : s  1, 8i 2 (1, k)} where
�i(A) is the ith eigen value of matrix A. The noise components are drawn from Gaussian distributions
and scaled so that p⌘ := E{⌘>⌘}/m and p✏ := E{✏>✏}/n. Each test is repeated with the following
settings: {S1: s = 0.970, p⌘ = 0.50 and p✏ = 0.1}, {S2: s = 0.999, p⌘ = 0.01 and p✏ = 0.1}.
Results: The NMSE and run-time results obtained on real and synthetic datasets are shown in Table
1 and Table 2, respectively. In terms of NMSE, LDS-DV outperforms and matches the alternative
methods. In terms of algorithm speed, the LDS-DV learns the model much faster than the competitors
and scales well to larger dimension models. The speed improvement is more significant for larger
datasets and observations with higher dimensions.
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Table 1: Real time series
ATL(Long) ATL(Short) CAC(Long) CAC(Short)

NMSE Time NMSE Time NMSE Time NMSE Time
LDS-MV 0.45±0.03 0.26 0.54±0.05 0.22 0.58±0.02 0.28 0.63±0.03 0.14
N4SID 0.52±0.04 2.34 0.59±0.05 0.95 0.61±0.02 1.23 0.84±0.07 1.08
EM 0.64±0.04 7.87 0.88±0.07 3.92 0.81±0.02 5.70 1.02±0.08 4.12
HSE-HMM 675.87±629.46 0.79 0.97±0.01 0.16 11.24±8.23 0.39 2.82±1.60 0.17
PEM-SSID 0.71±0.08 20.00 1.52±0.66 16.38 1.38±0.15 19.67 2.68±0.78 20.58

Table 2: Synthetic time series
(S1) d=5 , k=3 (S2) d=5 , k=3 (S1) d=8 , k=6 (S2) d=8 , k=6 (S1) d=16 , k=9 (S2) d=16 , k=9

NMSE Time NMSE Time NMSE Time NMSE Time NMSE Time NMSE Time
LDS-MV 0.12±0.01 0.49 0.17±0.02 0.36 0.08±0.00 0.66 0.04±0.00 0.52 0.07±0.00 1.01 0.03±0.00 1.72
N4SID 0.12±0.01 0.81 0.42±0.04 0.76 0.11±0.00 1.45 0.39±0.04 1.38 0.10±0.00 4.29 0.42±0.04 4.40
EM 0.18±0.01 4.99 0.15±0.02 4.62 0.14±0.01 6.01 0.04±0.00 5.03 0.13±0.00 19.21 0.03±0.00 19.83
HSE-HMM 2.4e+4±1.7e+4 0.48 2.2e+7±2.2e+7 0.50 7.8e+03±7.7e+03 0.49 0.65±0.02 0.55 22.92±21.83 0.53 0.71±0.01 0.61
PEM-SSID 0.14±0.01 10.72 0.25±0.03 9.08 0.12±0.01 15.22 0.08±0.01 13.97 0.09±0.01 38.39 0.06±0.02 41.10

Results for real and synthetic datasets are listed in Table 1 and Table 2, respectively. The first column of each
dataset is the average normalized MSE with standard error and the second column is the algorithm runtime in
CPU seconds. The best NMSE according to pairwise t-test with significance level of 5% is highlighted.
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Figure 2: a) NMSE of the LDS-DV for increasing length of training sequence. The difference between LDS-DV
and N4SID is more significant in shorter training length, while both converge to the same accuracy in large
T . HSE-HMM is omitted due to its high error. b) Runtime in CPU seconds for increasing length of training
sequence. LDS-DV scales well with large sample length. c) MSE of the LDS-DV versus MSE of N4SID. In
higher values of MSE, the points are below identity function line and LDS-DV is more likely to win.

For test cases with |�i(A)| ' 1, designed to evaluate the prediction performance of the methods for
marginally stable systems, LDS-DV still can learn a stable model while the other algorithms might
not learn a stable model. The proposed LDS-DV method does not explicitly impose stability, but the
regularization favors A that is stable. The regularizer on latent state encourages smooth dynamics
and controls overfitting: overfitting to noisy observations can lead to unstable estimate of the model
(Buesing et al., 2012a), and a smooth latent trajectory is a favorable property in most real-world
applications.

Figure 2(c) shows the MSE of LDS-DV versus N4SID, for all the CAC time-series. This figure
illustrates that for easier problems, LDS-DV and N4SID are more comparable. However, as the
difficulty increase, and MSE increases, LDS-DV begins to consistently outperform N4SID.

Figures 2(a) and 2(b) illustrate the accuracy and runtime respectively of the algorithms versus training
length. We used the synthetic LDS model under condition S1 with n = 8, m = 6. Values are
averaged over 20 runs with a test length of 50 samples. LDS-DV has better early performance, for
smaller sample sizes. At larger sample sizes, they reach approximately the same error level.

6 Conclusion

In this paper, we provided an algorithm for optimal estimation of the parameters for a time-invariant,
discrete-time linear dynamical system. More precisely, we provided a reformulation of the model as a
two-view objective, which allowed recent advances for optimal estimation for two-view models to be
applied. The resulting algorithm is simple to use and flexibly allows different losses and regularizers
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to be incorporated. Despite this simplicity, significant improvements were observed over a widely
accepted method for subspace identification (N4SID), both in terms of accuracy for forecasting and
runtime.

The focus in this work was on forecasting, therefore on optimal estimation of the hidden states and
transition matrices; however, in some settings, estimation of noise parameters for LDS models is
also desired. An unresolved issue is joint optimal estimation of these noise parameters. Though
we do explicitly estimate the noise parameters, we do so only from the residuals after obtaining the
optimal hidden states and transition and observation matrices. Moreover, consistency of the learned
parameters by the proposed procedure of this paper is still an open problem and will be an interesting
future work.

The proposed optimization approach for LDSs should be useful for applications where alternative
noise assumptions are desired. A Laplace assumption on the observations, for example, provides a
more robust `1 loss. A Poisson distribution has been advocated for count data, such as for neural
activity, where the time series is a vector of small integers (Buesing et al., 2012b). The proposed
formulation of estimation for LDSs easily enables extension to such distributions. An important next
step is to investigate the applicability to a wider range of time series data.
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A Proof of Theorems 1 and 2

Proof: [Theorem 1] Let x = [x1;x2] y = [v1;v2] then the proximal operator of f(x) =
�max(kx1k2, kx2k2) can be expressed as

u = proxf(v) = argmin
x

1

2
kx� yk22 + f(x)

= arg min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+ �max(kx1k2, kx2k2). (6)
Now, splitting the search space into two subspace S1 = {x|kx1k2 � kx2k2} and its complement
space S2 = {x|kx2k2 � kx1k2}. If we confine our search to subspace S1 the optimization problem
(6) can be reformulated as the following convex constraint problem

min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22 + �kx1k2.

subject to kx1k2 � kx2k2 (7)

According to KKT optimality conditions for convex problem (Boyd and Vandenberghe, 2004), a point
x
⇤ = [x⇤

1;x
⇤
2] is optimal point of this optimization problem if the following conditions are satisfied:

(x⇤
2 � v2) + ⌫x

⇤
2/kx⇤

2k2 = 0

(x⇤
1 � v1) + �x

⇤
1/kx⇤

1k2 � ⌫x
⇤
1/kx⇤

1k2 = 0

kx⇤
1k2 � kx⇤

2k2 � 0

⌫(kx⇤
1k2 � kx⇤

2k2) = 0

⌫ � 0 (8)
where ⌫ is the Lagrange multiplier for the inequality constraint. Solving (8) for x⇤

1, x
⇤
2 and ⌫ one can

readily obtain
"
x
⇤
1 = v1 ⇤max{1� ⌫

kv1k , 0}
x
⇤
2 = v2 ⇤max{1� ��⌫

kv2k , 0}

#
(9)

According to the slackness condition () if kx⇤
1k2 � kx⇤

2k2 � 0 then ⌫ = 0 or if ⌫ > 0 then
kx⇤

1k2 = kx⇤
2k2. Therefore the optimal ⌫ can be obtained as

(
⌫ = 0 if kv1k+ � < kv2k
⌫ = .5(kv1k � kv2k+ �) if kv1k  kv2k  kv1k+ �

Hence, the optimum solution under S1 is
8
>>>><

>>>>:

"
x
⇤
1 = v1

x
⇤
2 = v2 ⇤max{1� �

kv2k , 0}

#
if kv1k+ � < kv2k

"
x
⇤
1 = v1 ⇤max{1� ⌫

kv1k , 0}
x
⇤
2 = v2 ⇤max{1� ��⌫

kv2k , 0}

#
if kv1k  kv2k  kv1k+ �

(10)

We can repeat the same approach to obtain the optimal solution for the complement subspace S2. ⌅

Lemma 2 Let G�f (x, v) :=
1
2kx� vk22 + �f(x) therefore the Moreau envelope of function �f is

defined as M�f (v) := minx G�f (x, v) (Parikh and Boyd, 2013).
a) M�f (v) = G�f (prox�f(v), v)
b) If f(x) = kxk2v = max(kx1k2, kx2k2) we have

M�k.k2v
(v) = max

0�1
M��k.k2

(v1) +M�(1��)k.k2
(v2) (11)

Proof: a) This is simply follows from the definition of proximal operator.
b) We can simply show that

kxk2v = max
0�1

(�kx1k2 + (1� �)kx2k2)
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then its Moreau envelop is

MRc(v)(v) = min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+� max
0�1

(�kx1k2 + (1� �)kx2k2)

= max
0�1

min
x1

1

2
kx1 � v1k22 + ��kx1k2

+min
x2

1

2
kx2 � v2k22 + (1� �)�kx2k2

= max
0�1

M��k.k2
(v1) +M�(1��)k.k2

(v2)

⌅
Proof: [Theorem 2] The Moreau envelope of Rc(v) is

MRc(v)(v) = min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+ � max
0�1

(�kx1k2 + (1� �)kx2k2) + ⌫1R1(v1) + ⌫2R2(v2)

= max
0�1

min
x1

1

2
kx1 � v1k22 + ��kx1k2 + ⌫1R1(v1)

+ min
x2

1

2
kx2 � v2k22 + (1� �)�kx2k2 + ⌫2R2(v2)

= max
0�1

M��k.k2+⌫1R1
(v1) +M�(1��)k.k2+⌫2R2

(v2)

(12)

Let h1(v1) := ��kv1k2 + ⌫1R1(v1) and h2(v) := �(1 � �)kv2k2 + ⌫2R2(v2). From (Haeffele
et al., 2014, Theorem 3), we know that proxh1

(v1) = prox��k.k2
(prox⌫1R1

(v1)) and proxh2
(v2) =

prox�(1��)k.k2
(prox⌫2R2

(v2)), and so

Mh1(v1) = M��k.k2
(prox⌫1R1

(v1))

Mh2(v2) = M�(1��)k.k2
(prox⌫2R2

(v2)) (13)

Then based on (12) and (13), we obtain

MRc(v)(v) = max
0�1

M��k.k2
(prox⌫1R1

(v1))

+M�(1��)k.k2
(prox⌫2R2

(v2)) (14)

Finally, based on above equation and (11), we conclude the following composition rule for

MRc(v)(v) = M�k.k2v
([prox⌫1R1

(v1); prox⌫2R2
(v2)])

and according to Lemma 1 the proximal operator is

proxRc
(v) = prox�k.k2v

([prox⌫1R1
(v1); prox⌫2R2

(v2)]).

⌅
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Table 3: Synthetic time series

Bernoulli d=5 , k=3 Bernoulli d=8 , k=6 Bernoulli d=16 , k=9 Poisson d=5 ,k=3 Poisson d=8 , k=6
GOFb Time GOFb Time GOFb Time GOFp Time GOFp Time

LDS-MV 0.66±0.01 3.03 0.59±0.01 2.40 0.51±0.01 2.52 0.59±0.02 0.61 0.51±0.02 1.70
N4SID 0.77±0.01 1.01 0.82±0.01 1.68 0.75±0.01 4.63 1.40±0.21 0.36 1.59±0.33 0.49
EM 0.75±0.01 2.46 0.67±0.01 4.61 0.63±0.01 24.17 1.60±0.34 1.83 2.53±0.60 2.48

The first column of each dataset is the average goodness-of-fit (GOF) for one step prediction with standard error
and the second column is the algorithm runtime in CPU seconds. The best GOF according to pairwise t-test with
significance level of 5% is highlighted.

B Experimental results for discrete value time series

One of the major advantages of formulation (4) is its natural flexibility to encompass any convex
loss function such as the Bregman divergences that associate with exponential family distributions
and can express a broad range of data property with non-linear transfers. An application that gains
benefits from the aforementioned property is to model the count data process with generalized LDS
model and consequently adopting the two view formulation to identify the model parameters. An
integer-valued stochastic process, that explains the number of occurrence of one phenomenon, can
be properly modeled by Poisson distribution (Macke et al., 2015). Therefore, the LDS with Poisson
distributed observation can be expressed as:

�t+1 = A�t + ⌘t

zt = f(C�t)

P(xi,t|zi,t) =
1

xi,t!
(zi,t)

xi,t exp(�xi,t) (15)

where f(✓) = exp(✓). The exponential mapping is not only a natural choice in applications
such as neural spike-rate modeling, as explained in (Macke et al., 2015), it also matches with the
transfer function associated with the Poisson distribution. Therefore, the negative log-likelihood
loss for this model can be characterized by the Bregman divergence, defined as DF (ẑkz) :=
F (ẑ) � F (z) � f(z)>(ẑ � z) where F (✓) = 1> exp(✓) (f(✓) = exp(✓)) is potential (transfer)
function corresponding to Poisson distribution.

In Table 3, we compare the performance of the LDS-DV method against the standard N4SID and EM
for synthetic time series setting.

For boolean setting, data are sampled from Bernoulli distribution whose mean is changed according
to non-linear transfer function of the LDS model where sigmoid transfer function f(✓) = (1 +
exp(�✓))�1 is used (Banerjee et al., 2005). Each test case is averaged over 100 data sequences
where data are generated similar to synthetic setting S1 of section 5. For Poisson setting, data are
sampled based on model (15) where the final results averaged over 30 data sequences.

Goodness-of-fit for the Bernoulli distribution is the misclassification error: GOFb =
1
Td

PTtest

t=1 kyt 6=
g(ẑt)k1 , g(✓) = I✓�0.5. And for the Poisson distribution, we define goodness-of-fit as GOFp =
1
Td

PTtest

t=1 kyt � h(ẑt)k1 , h(ẑ) = mode(P (ẑ)) = maxx p(x|µ = ẑ).

This results are just some primitive results to show the capability of the proposed method in modeling
generalized-LDS models.
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