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Abstract

Latent-state environments with long horizons, such as
those faced by recommender systems, pose significant
challenges for reinforcement learning (RL). In this work,
we identify and analyze several key hurdles for RL in
such environments, including belief state error and small
action advantage. We develop a general principle called
advantage amplification that can overcome these hurdles
through the use of temporal abstraction. We propose
several aggregation methods and prove they induce am-
plification in certain settings. We also bound the loss
in optimality incurred by our methods in environments
where latent state evolves slowly and demonstrate their
performance empirically in a stylized user-modeling task.

1 Introduction
Long-term value (LTV) estimation and optimization is of
increasing importance in the design of recommender sys-
tems (RSs), and other user-facing systems. Often the prob-
lem is framed as a Markov decision process (MDP) and
solved using MDP algorithms or reinforcement learning (RL)
[Shani et al., 2005; Taghipour et al., 2007; Choi et al., 2018;
Zhao et al., 2017; Archak et al., 2012; Mladenov et al., 2017].
Typically, actions are the set of recommendable items1; states
reflect information about the user (e.g., static attributes, past
interactions, context/query); and rewards measure some form
of user engagement (e.g., clicks, views, time spent, purchase).
Such event-level models have seen some success, but current
state-of-the-art is limited to very short horizons.

When dealing with long-term user behavior, it is vital to
consider the impact of recommendations on user latent state
(e.g., satisfaction, latent interests, or item awareness) which
often governs both immediate and long-term behavior. In-
deed, the main promise of using RL/MDP models for RSs
is to (a) identify latent state (e.g., uncover topic interests via
exploration) and (b) influence the latent state (e.g., create new
interests or improve awareness and satisfaction). That said,
evidence is emerging that at least some aspects of user latent
state evolve very slowly. For example, Hohnhold et al. [2015]
show that varying ad quality and ad load induces slow, but

1Item slates are often recommended, but we ignore this here.

inexorable (positive or negative) changes in user click propen-
sity over a period of months, while Wilhelm et al. [2018] show
that explicitly diversifying recommendations in YouTube in-
duces similarly slow, persistent changes in user engagement
(see such slow “user learning” curves in Fig. 1).

Event-level RL in such settings is challenging for several
reasons. First, the effective horizon over which an RS policy
influences the latent state can extend up to O(104–105) state
transitions. Indeed, the cumulative effect of recommendations
is vital for LTV optimization, but the long-term impact of
any single recommendation is often dwarfed by immediate
reward differences. Second, the MDP is partially observable,
requiring some form of belief state estimation. Third, the
impact of latent state on immediate observable behavior is
often small and very noisy—the problems have a low signal-to-
noise ratio (SNR). We detail below how these factors interact.

Given the importance of LTV optimization in RSs, we pro-
pose a new technique called advantage amplification to over-
come these challenges. Intuitively, amplification seeks to
overcome the error induced by state estimation by introducing
(explicit or implicit) temporal abstraction across policy space.
We require that policies take a series of actions, thus allowing
more accurate value estimation by mitigating the cumulative
effects of state-estimation error. We first consider temporal
aggregation, where an action is held fixed for a short hori-
zon. We show that this can lead to significant amplification of
the advantage differences between abstract actions (relative
to event-level actions). This is a form of MDP/RL temporal
abstraction as used in hierarchical RL [Sutton et al., 1999;
Barto and Mahadevan, 2003] and can be viewed as options
or macros designed for the purpose of allowing distinction of
good and bad behaviors in latent-state domains with low SNR
(rather than, say, for subgoal achievement). We generalize this
by analyzing policies with (artificial) action switching costs,
which induces similar amplification with more flexibility.

Limiting policies to temporally abstract actions induces po-
tential sub-optimality [Parr, 1998; Hauskrecht et al., 1998].
However, since the underlying latent state often evolves slowly
w.r.t. the event horizon in RS settings, we identify a “smooth-
ness” property that is used to bound the induced error of
advantage amplification.

Our contributions are as follows. We introduce a stylized
model of slow user learning in RSs (Sec. 2) and formalize
this as a POMDP (Sec. 3), defining several novel concepts,
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Figure 2: ŨCCD
CTR (d) for a grid of 10 di↵erent system pa-

rameter changes for mobile devices. The dashed lines give a
simple exponential learning model, see Equation (4).

ing lagged-start measurements in order to track user learning
while it happens. In fact, we construct daily measurements
by essentially using a di↵erent lagged-start cohort for every
treatment day.

Cookie-day experiments. We obtain such cohorts by
using an experimental unit that is a combination of the
cookie and the date, so that cookies are re-randomized into
experiments daily. Experiments based on such experimental
units are called cookie-day experiments.

In practice, we start with a large pool of cookies, and on
each day we randomly assign a fraction of these cookies to
the experiment. If the cookie pool is su�ciently large, each
cookie will only be assigned to the experiment on very few
days so that, in essence, we treat a di↵erent cookie cohort
on any given day. In particular, each cookie will not receive
consistent enough exposure to the experiment treatment to
accumulate any learned e↵ect.

The Cookie–Cookie-Day comparison. In the Cookie–
Cookie-Day (CCD) method, we compare cookie and cookie-
day experiments receiving the same treatment e.6 In the
cookie experiment, cohort E receives the treatment e ev-
ery day and experiences user learning. In parallel, we run
a cookie-day experiment where a di↵erent cohort Ed is ex-
posed to e on any given day d. On all other days, Ed receives
the control treatment c.7 As in the lagged-start setting, user
learning can be measured on day d by comparing the metrics
of E to Ed: this is the CCD comparison (see Figure 1C).

The main advantage of CCD is that learning can be tracked
continuously while it is happening: the daily measurements
ŨCCD

CTR (d) = �CTR(E, Ed, d) fit together to yield a time
series describing learning over time. This can help inform
the length of the study: if learning is still going strong, one
might want to extend the experiments, whereas if no e↵ect

6
Within a single layer, for those familiar with the Overlapping Ex-

periments framework [18].
7
In our actual implementation, in order to manage experiment tra�c

more e�ciently, the cookie-day cohorts Ed may not receive c on every
day d0 6= d. Rather, they see a mix of treatments that, on average,
is very similar to c and so the learning e↵ects are approximately the
same. We usually also run a cookie-day version of the control (on day
d cohort Cd will get the the control treatment); by comparing Cd to
a control cookie cohort C we can check that cookies in the cookie-day
space do not accumulate a learned e↵ect.

User Learning Measured in the Post Period

Days In Post Period

e: fewer ads
e: more ads

0%

2%

-2%

Ũ
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Figure 3: Two Post-Period comparisons to the control.

is visible after two months, chances may be slim to observe
anything even when running longer. The time series of learn-
ing measurement can also be useful in estimating learning
rates and detecting issues in the experiment set-up.

Another upside of CCD is that learning can be measured
over a longer period of time than in the PP method since
unlearning is not a concern. Such extended measurement
periods can significantly reduce noise. The main disadvan-
tages of CCD are the increased infrastructure complexity
and the need for a large cookie pool that provides tra�c for
the cookie-day experiment.

To illustrate the e�cacy of the CCD method, Figure 2
shows a time series of learned changes in CTR, i.e. ŨCCD

CTR (d),
for a grid of ten settings of a system parameter over six
months, along with exponential trends fit to the data.

As a best practice, we recommend combining both meth-
ods: run a CCD setup and also take a PP measurement on
the cookie cohort E after the treatment period is over. We
have generally found the measurements ŨPP

CTR, ŨLS
CTR, and

ŨCCD
CTR to produce consistent results.

3.2 Ads Blindness Studies
Since 2007, we have run hundreds of experiments to quan-

tify ads blindness and sightedness. The main output from
this work is an OEC that depends only on short-term met-
rics but predicts the long-term impact (see Section 4). Using
this OEC to make launch decisions has improved the ads we
show to users. Here we summarize some of the major steps
in collecting the data necessary to build these models.

3.2.1 Initial Experiments
The goal of our initial user learning experiments was to

explore the magnitude of treatments needed to induce mea-
surable learning e↵ects and to see how long learning takes.
These experiments were run before we developed the CCD
method, so we used a combination of the PP and lagged-
start methods to obtain user learning measurements.

We used two di↵erent experimental treatments. One treat-
ment increased the ad load, and the other reduced it. Since
we are always trying to show the best ads to our users, any
additional ads will have slightly lower quality so that the
average quality of ads decreases as the ad load increases.
In particular, these treatments conflate ads quality and ad
load, something we tried to disentangle in later experiments.

Ads blindness can be measured. This basic result
can be seen in Figure 3, which shows the relative change
in CTR of the cohorts exposed to the two treatments rela-
tive to the control cohort in the post-period. Showing fewer
but higher quality ads resulted in ads sightedness (positive
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Figure 5: Although diversi�cation did little to increase in-
teractions directly on the homepage, it did increase the to-
tal originating from the homepage (taking the related video
panel into account). Error bars represent 95% con�dence in-
tervals.

Figure 6: Evidence of a long-term “learning e�ect” as seen in
the number of people watching videos from the homepage.
The implication is a much more useful and satisfying prod-
uct experience.

feed. Cumulatively, it suggests that users �nd more videos that they
enjoy compared to before.

Moreover, we have been able to observe a long-term “learning
e�ect” [17] from diversifying users’ feeds. That is, diversi�cation
results in users returning to and enjoying our service more as time
goes on. We measured this e�ect by running two sets of long-term
holdback experiments2. In the �rst holdback condition, users do
not get DPP-diversi�ed feeds, but that subset of the user popula-
tion changes every day (these users are normally exposed to the
diversi�ed feed, except on the rare day that they end up in this
holdback set). In the second holdback condition, a consistent set
2A holdback is simply an A/B experiment where users in group B do not receive the
launched treatment.

of users do not see DPP-diversi�ed feeds. We can then observe
whether DPP diversi�cation results in a long-term improvement
in user experience by observing the di�erence between the two
holdbacks when compared to their respective control groups. As
we can see in Figure 6, which shows the increase in number of
users watching at least one video from the homepage against these
two holdback groups, users who have been exposed to diversi�ed
feeds more often realize that they can �nd videos of interest on
YouTube’s homepage. Therefore, we can say that diversi�ed feeds
lead to increased user satisfaction in the immediate term, and that
this e�ect becomes even more pronounced over time.

6 CONCLUSIONS AND FUTURE WORK
Researchers realized well over a decade ago that diversi�cation
is an important problem for recommendation systems, and for in-
formation retrieval in general. Signi�cant research e�orts have
invested in approaches that use a taxonomic or category-based
approach, often combined with a variety of heuristics. In contrast,
we propose using a method based on determinantal point processes
(DPPs). Our approach performs set-wise optimization of recom-
mendations. Since this approach naturally factors the problem into
one of estimating item quality, and another of estimating repulsive
e�ects between pairs of items, our stacked architecture allows us
to leverage existing sophisticated investments in pointwise scoring
and item analysis.

In this paper, we discussed the challenges of applying DPPs in a
large-scale video recommendation system. We considered several
parameterizations of the DPP kernel as well as learning methods
for computing the value of the kernel parameters from positive
user interactions with videos. Finally, we presented live experiment
results on this large-scale system, showing both an immediate short-
term lift in user utility, as well as long-term e�ects—users looked
to YouTube more often to satisfy their needs.

Our work is not without limitations. First, the DPP we trained
is non-personalized in that the parameters such as � are learned
from training on a large population of user data, not on a single
user’s data. In the near future, we hope to develop new approaches
to understand each individual user’s short-term and long-term di-
versi�cation needs. We also do not fully understand how di�erent
domains or genres might a�ect diversi�cation policy. For instance,
users might prefer music videos to stay within a certain boundary
(no vocals, for instance), as they might be enjoyed somewhat more
passively, while genres like comedy might need more diversity.
Additionally, we do not have a good model that takes time into
account, such as understanding weekday vs. weekend diversity pref-
erences. We would like to explore the connection of diversi�cation
methods with reinforcement learning, so that we can learn a good
control policy for diversi�cation. Given the multitude of directions
for future work, we feel that our current work simply “scratches the
surface” of the possibilities available to improve user experiences by
moving away from pointwise estimators in recommender systems.
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Figure 1: Gradual user response: (a) ad load/quality [Hohnhold et al., 2015]; (b) YouTube recommendation diversity [Wilhelm et al., 2018].

and show how low SNR interacts poorly with belief-state ap-
proximation (Sec. 4.1). We develop advantage amplification
as a principle and prove that action aggregation (Sec. 4.2)
and switching cost regularization (Sec. 4.3) provide strong
amplification guarantees with minimal policy loss under suit-
able conditions. Experiments with stylized models show the
effectiveness of these techniques.2

2 User Satisfaction: An Illustrative Example
Before formalizing our problem, we describe a stylized model
reflecting the dynamics of user satisfaction as a user inter-
acts with an RS. The model is intentionally stylized to help
illustrate key concepts underlying the formal model and anal-
ysis developed in the sequel (hence ignores much of the true
complexity of user satisfaction). Though focused on user-RS
engagement, the principles apply more broadly to any latent-
state system with low SNR and slowly evolving latent state.

Our model captures the relationship between a user and an
RS over an extended period (e.g., a content recommender of
news, video, or music) through overall user satisfaction, which
is not known to the RS. We hypothesize that satisfaction is one
(of several) key latent factors that impacts user engagement;
and since new treatments often induce slow-moving or delayed
effects on user behavior, we assume this latent variable evolves
slowly as a function of the quality of the content consumed
[Hohnhold et al., 2015] (and see Fig. 1 (left)). Finally, the
model captures the tension between (often low-quality) content
that encourages short-term engagement (e.g., manipulative,
provocative or distracting content) at the expense of long-term
engagement; and high-quality content that promotes long-term
usage but can sacrifice near-term engagement.

Our model includes two classes of recommendable items.
Some items induce high immediate engagement, but degrade
user engagement over the long run. We dub these “Choco-
late” (Choc)—immediately appealing but not very “nutri-
tious.” Other items—dubbed “Kale,” less attractive, but more
“nutritious”—induce lower immediate engagement but tend to
improve long-term engagement.3 We call this the Choc-Kale
model (CK). A stationary, stochastic policy can be represented
by a single scalar 0 ≤ π ≤ 1 representing the probability of

2Proofs, auxiliary lemmas and additional experiments are avail-
able in an extended version of the paper.

3Our model allows a real-valued continuum of items (e.g., degree
of Choc between [0, 1] as in our experiments) like measures of ad
quality. We use the binary form to streamline our initial exposition.

taking action Choc. We sometimes refer to Choc as a “nega-
tive” and Kale as a “positive” recommendation.

We use a single latent variable s ∈ [0, 1] to capture a
user’s overall satisfaction with the RS. Satisfaction is driven
by net positive exposure p, which measures total positive-
less-negative recommendations, with a discount 0 ≤ β < 1

applied to ensure that p is bounded: p ∈
[
−1
1−β ,

1
1−β

]
. We view

p as a user’s learned perception of the RS and s as how this
influences gradual changes in engagement.

A user response to a recommendation a is her degree of
engagement g(s, a), and depends stochastically on both the
quality of the recommendation, and her latent state s. g is a
random function, e.g., responses might be normally distributed:
g(s, a) ∼ N(s · µa, σ2

a) for a ∈ {Choc,Kale}. We use g(s, a)
also to denote expected engagement. We require that Choc
results in greater immediate (expected) engagement than Kale,
g(s,Kale) < g(s,Choc), for any fixed s.

The dynamics of p is straightforward. A Kale exposure
increases p by 1 and Choc decreases it by 1 (with discount-
ing): pt+1 ← βpt + 1 with Kale (and −1 with Choc).
Satisfaction s is a user-learned function of p and follows
a sigmoidal learning curve: s(p) = 1/(1 + e−τp), where
τ is a temperature/learning rate parameter. Other learn-
ing curves are possible, but the sigmoidal model captures
both positive and negative exponential learning as hypothe-
sized in psychological-learning literature [Thurstone, 1919;
Jaber, 2006] and as observed in the empirical curves in Fig. 1.4

We compute the Q-values of Choc and Kale for each sat-
isfaction level s and plot them in Fig. 2a. We observe that
when satisfaction is low, Kale is a better recommendation, and
above some level Choc becomes preferable, as expected. We
also see that for any s the difference in Q-values is rather small.
With additional noise, the Q-values become practically indis-
tinguishable for a large range of satisfaction levels (Fig. 2b),
which illustrates the hardness of RL in this setting.

3 Problem Statement
We outline a basic latent-state control problem as a partially ob-
servable MDP (POMDP) that encompasses the notions above.

4Such learning curves are often reflective of aggregate behavior,
obscuring individual differences that are much less “smooth.” How-
ever, unless cues are available that allow us to model such individual
differences, the aggregate model serves a valuable role even when
optimizing for individual users.



(a) event-level, fully observable (b) event-level, noisy (c) aggregated, fully observable (d) aggregated, noisy
Figure 2: Q-values per satisfaction level in the Choc-Kale model.

We highlight several properties that play a key role in the
analysis of latent-state RL we develop in the next section.

We consider environments that can be modeled as a POMDP
M = 〈S,A, T,Z, O,R, b0, γ〉 [Smallwood and Sondik,
1973]. States S reflect user latent state and other observ-
able aspects of the domain: in the CK model, this is simply a
user’s current satisfaction s. Actions A are recommendable
items: in CK, we distinguish only Choc from Kale. The tran-
sition kernel T (s, a, s′) in the CK model is T (s′, a, s) = 1 if
s′ = (1 + exp(β log (1− 1/s) − βτa))−1, where a is 1 (resp.,
-1) for action Kale (resp., Choc).5 Observations Z reflect ob-
servable user behavior and O(s, a, z) the probability of z ∈ Z
when a is taken at state s. In CK, Z is the observed engage-
ment with a recommendation while O reflects the random
realization of g(s, a). The immediate reward R(s, a) is (ex-
pected) user engagement (we let rmax = maxs,aR(s, a)), b0
the initial state distribution, and γ ∈ [0, 1) the discount factor.

In this POMDP, an RS does not have access to the true
state s, but must generate policies that depend only on the
sequence of past action-observation pairs—letH∗ be the set
of all finite such sequences (at, zt)t∈N. Any such history can
be summarized, via optimal Bayes filtering, as a distribution or
belief state b ∈ ∆(S). More generally, this “belief state” can
be any summarization ofH∗ used to make decisions. It may
be, say, a collection of sufficient statistics, or a deep recurrent
embedding of history. Let B denote the set of (realizable)
belief states. We also require a mapping U : B ×A×Z → B
that describes the update U(b, a, z) of any b ∈ B given a ∈
A, z ∈ Z . The pair (B, U) defines our representation.

A (stochastic) policy is a mapping π : B → ∆(A) that
selects an action distribution π(b) for execution given belief
b; we write π(a|b) to indicate the probability of action a.
Deterministic policies are defined in the usual way. The value
of a policy π is given by the standard recurrence:6

V π(b)= E
a∼π(b)

[
R(b, a)+γ

∑
z∈Z

Pr(z|b, a)V π(U(b, a, z))

]
(1)

We define Qπ(b, a) by fixing a in Eq. 1 (rather than tak-
ing an expectation). An optimal policy π∗ = supV π over
B has value (resp., Q) function V ∗ (resp., Q∗). Optimal

5This is easily randomized if desired.
6Here R(b, a) and Pr(z|b, a) are given by expectations of R and

O, respectively, w.r.t. s ∼ b if b ∈ ∆(S). The interpretation for
other representations is discussed below.

policies and values can be computed using dynamic pro-
gramming or learned using (partially observable) RL meth-
ods. When we learn a Q-function Q, whether exactly or
approximately, the policy induced by Q is the greedy pol-
icy π(b) = arg maxaQ(b, a) and its induced value function
is V (b) = maxaQ(b, a) = Q(b, a∗(b)). The advantage
function A(a, b) = V ∗(b)−Q∗(b, a) reflects the difference
in the expected value of doing a at b (and then acting opti-
mally) vs. acting optimally at b [Baird III, 1999]. If a2 is the
second-best action at b, the advantage of that belief state is
A(b) = V ∗(b)−Q∗(b, a2).

Eq. 1 assumes optimal Bayesian filtering, i.e., the repre-
sentation (B, U) must be such that the (implicit) expectations
overR andO are exact for any history that maps to b. Unfortu-
nately, exact recursive state estimation is intractable, except for
special cases (e.g., linear-Gaussian control). As a consequence,
approximation schemes are used in practice (e.g., variational
projections [Boyen and Koller, 1998]; fixed-length histories,
incl. treating observations as state [Singh et al., 1994]; learned
PSRs [Littman and Sutton, 2002]; recursive policy/Q-function
representations [Downey et al., 2017]). Approximate histories
render the process non-Markovian; as such, a counterfactually
estimated Q-value of a policy (e.g., using offline data) differs
from its true value due to modified latent-state dynamics (not
reflected in the data). In this case, any RL method that treats
b as (Markovian) state induces a suboptimal policy. We can
bound the induced suboptimality using ε-sufficient statistics
[Francois-Lavet et al., 2017]. A function φ : H∗ → B is an
ε-sufficient statistic if, for all Ht ∈ H∗,

|p(st+1|Ht)− p(st+1|φ(Ht))|TV < ε ,

where | · |TV is the total variation distance. If φ is ε-sufficient,
then any MDP/RL algorithm that constructs an “optimal”
value function V̂ over B incurs a bounded loss w.r.t. V ∗
[Francois-Lavet et al., 2017]:∣∣∣V ∗(φ(H))− V̂ (φ(H))

∣∣∣ ≤ 2εrmax

(1− γ)3
. (2)

The errors in Q-value estimation induced by limitations of B
are irresolvable (i.e., they are a form of model bias), in contrast
to error induced by limited data. Moreover, any RL method
relying only on offline data is subject to the above bound,
regardless of whether the Q-values are estimated directly or
not. The impact of this error on model performance can be



related to certain properties of the underlying domain as we
outline below. A useful quantity for this purpose is the signal-
to-noise ratio (SNR) of a POMDP, defined as:

S ,
supbA(b)

supb:A(b)≤2εrmax/(1−γ)2 A(b)
− 1,

(the denominator is treated as 0 if no b meets the condition).
As discussed above, many aspects of user latent state, such

as satisfaction, evolve slowly. We say a POMDP is L-smooth
if, for all b, b′ ∈ B, and a ∈ A s.t. T (b′, a, b) > 0, we have

|Q∗(b, a)−Q∗(b′, a)| ≤ L.

Smoothness ensures that for any state reachable under an
action a, the optimal Q-value of a does not change much.

4 Advantage Amplification
We now detail how low SNR causes difficulty for RL in
POMDPs, especially with long horizons (Sec. 4.1). We in-
troduce the principle of advantage amplification to address it
(Sec. 4.2) and describe two realizations, temporal aggregation
(Sec. 4.2) and switching cost (Sec. 4.3).

4.1 The Impact of Low SNR on RL
The bound Eq. (2) can help assess the impact of low SNR on
RL. Assume that policies, values or Q-functions are learned
using an approximate belief representation (B, U) that is ε-
sufficient. We first show that the error induced by (B, U) is
tightly coupled to optimal action advantages in the domain.

Consider an RL agent that learns Q-values using a behav-
ior (data-generating) policy ρ. The non-Markovian nature of
(B, U) means that: (a) the resulting estimated-optimal policy
π will have estimated values Q̂π that differ from its true values
Qπ; and (b) the estimates Q̂π (hence, the choice of π itself)
will depend on ρ. We bound the loss of π w.r.t. the optimal
π∗ (with exact filtering) as follows. First, for any (belief)
state-action pair (b, a), suppose the maximum difference be-
tween its inferred and optimal Q-values is bounded for any ρ:
|Q∗(b, a)−Qπ(b, a)| ≤ δ. By Eq. (2) we set

δ =
εQmax

1− γ ≤
εrmax

(1− γ)2
. (3)

If b has small advantage A(b) ≤ 2δ, under behavior policy
ρ, the estimate Q̂(b, a2) (the second-best action) can exceed
that of Q̂(b, a∗(b)); hence π executes a2. If π visits b (or
states with similarly small advantages) at a constant rate, the
loss w.r.t. π∗ compounds, inducing O( 2δ

1−γ ) error.
The tightness of the second part of the argument depends

on the structure of the advantage function A(b). To illustrate,
consider two extreme regimes. First, ifA(b) ≥ 2δ at all b ∈ B,
i.e., if SNR S =∞, state estimation error has no impact on
the recovered policy and incurs no loss. In the second regime,
if all A(b) are less than (but on the order of) 2δ, i.e., if S = 0,
then the inequality is tight provided ρ saturates the state-action
error bound. We will see below that low-SNR environments
with long horizons (e.g., practical RSs, the stylized CK model)
often have such small (but non-trivial) advantages across a
wide range of state space.

The latter situation in illustrated on Fig. 2. In Fig. 2a, the
Q-values of the CK model are plotted against the level of sat-
isfaction (as if satisfaction were fully observable). The small
advantages are notable. Fig. 2b shows the Q-value estimates
for 10 independent tabular Q-learning reruns (the thin lines
show the individual runs, the thick lines show the average)
where noise is added to s. The corrupted Q-values at all but
the highest satisfaction levels are essentially indistinguishable,
leading to extremely poor policies.

4.2 Temporal Abstraction: Action Aggregation
There is a third regime in which state error is relatively benign.
Suppose the advantage at each state b is either small, A(b) ≤
σ, or large, A(b) > Σ for some constants σ � 2δ ≤ Σ. The
induced policy incurs a loss of σ at small-advantage states,
and no loss on states with large advantages. This leads to a
compounded loss of at most σ

1−γ , which may be much smaller
than the εrmax

(1−γ)2 error (Eq. 3) depending on σ.
If the environment is smooth, action aggregation can be

used to restructure a problem falling in the second regime
to one in this third regime, with σ depending on the level of
smoothness. This can significantly reduce the impact of esti-
mation error on policy quality by turning the problem into one
that is essentially Markovian. More specifically, if at state b,
we know that the optimal (stationary) policy takes action a for
the next k decision periods, we consider a reparameterization
M×k of the belief-state MDP where, at b, all actions are exe-
cuted k times in a row, no matter what the subsequent k states
are. In this new problem, the Q-value of the optimal repeated
action Q∗(b, a×k) is the same as that of its event-level coun-
terpart Q∗(b, a), since the same sequence of expected rewards
will be generated. Conversely, all suboptimal actions incur a
cumulative reduction in Q-value inM×k since their subopti-
mality compounds over k periods. Thus, inM×k, the optimal
policy π×k∗ generates the same cumulative discounted return
as the event-level optimal policy, while the advantage of a×k
over any other repeated action a′×k at b is larger than that of
a over a′ in the event-level problem.

To derive bounds, note that, for an L-smooth POMDP, at
any state where the advantage is at least 2kL, the optimal ac-
tion persists for the next k periods (its Q-value can decrease by
at most L while that of the second-best can at most increase by
L). If we apply aggregation only at such states, the advantage
increases to some value Σ, putting us in regime 3 (i.e., the
advantage is either less than σ = 2kL or more than Σ). Of
course, we cannot “cherry-pick” only states with high advan-
tage for aggregation; but aggregating over all states induces
some loss due to the inability to switch actions quickly. We
bound that cost in computing σ and Σ. This allows us to first
lower bound the regret of the best k-aggregate policy:

Theorem 1. Let k be a fixed horizon, and let Q∗—the event-
level optimal Q function—be L-smooth. Then for all b,
|V ∗(b) − V ×k∗(b)| ≤ 2kL

1−γ , where V ×k∗(b) is the value of
state b under an optimal k-aggregate policy.7

7The reparameterized problem is also an MDP, so the optimal
value function and deterministic policy are well-defined.



This theorem is proved by constructing a policy which
switches actions every k events and showing that it has
bounded regret. This policy, at the start of any k-event period,
adopts the optimal action from the unaggregated MDP at the
initiating state. Due to smoothness, Q-values cannot drift by
more than kL during the period, after which the policy cor-
rects itself. This, together with the reasoning abouve, offers
an amplification guarantee:
Theorem 2. In an L-smooth MDP, let k be a fixed repetition
horizon. For any belief state where A(b) ≥ 2kL, the k-
aggregate-horizon advantage is bounded below:

Q×k∗(b, a×k)−Q×k∗(b, a′×k)

≥ A(b)
1− γk

1− γ − 2L
γ − (1 + k − γk)γk+1

(1− γ)2
− 2kL

1− γ .

This result is especially useful when the event-level advan-
tage is more than σ = 2kL

1−γ . In this case, an aggregation
horizon of k can mitigate the adverse effects of approximating
belief state with an ε-sufficient statistic for for an ε up to:

εmax ≤ L
k(γ − γk)− γ(1− (1 + k − γk)γk)

rmax

at the cost of the aggregation loss of 2kL
1−γ .

Figs. 2c and 2d illustrate the benefit of action aggregation:
they show the Q-values of the k-aggregated CK model with
k = 5 with both perfect and imperfect state estimation, respec-
tively (the amount of noise is the same as inFig. 2b). As we
show Sec. 4.4, the recovered policies incur very little loss due
to state estimation error.

We conclude with the following observation.
Corollary 1. Optimal repeating policies are near-optimal for
the event-level problem as L→ 0 and amplification at every
state is guaranteed.

4.3 Temporal Regularization: Switching Cost
As discussed above, temporal aggregation is guaranteed to im-
prove learning in slow environments. It has, however, certain
practical drawbacks due to its inflexibility. One such drawback
is that, in the non-Markovian setting induced by belief-state ap-
proximation, training data should ideally be collected using a
k-aggregated behavior policy.8 Another drawback arises if the
L-smoothness assumption is partially violated. For example,
if certain rare events cause large changes in state or reward for
short periods, the changes in Q-values may be abrupt, but are
harmless from an SNR perspective if they induce large advan-
tage gaps. An agent “committed” to a constant action during
an aggregation period is unable to react to such events. We
thus propose a more flexible advantage amplification mecha-
nism, namely, a switching-cost regularizer. Intuitively, instead
of fixing an aggregation horizon, we impose a fictitious cost
(or penalty) T on the agent whenever it changes its action.

More formally, the goal in the switching-cost (belief-state)
MDP is to find an optimal policy defined as:

π∗ = arg max
π

∑
t

γtEπ (Rt − T · 1[at 6= at−1]) . (4)

8This is unnecessary if the system is Markovian, since (s, a, r, s′)
tuples may be reordered to emulate any behavioral policy.

This problem is Markovian in the extended state space B ×
A representing the current (belief) state and the previously
executed action. This state space allows the switching penalty
to be incorporated into the reward function as R(b, at−1, at) =
R(b, at)− T · 1[at 6= at−1].

The switching cost induces an implicit adaptive action ag-
gregation—after executing action a, the agent will keep repeat-
ing a until the cumulative advantage of switching to a different
action exceeds the switching cost T . We can use this insight
to bound the maximum regret of such a policy (relative to the
optimal event-level policy) and also provide an amplification
guarantee, as in the case with action aggregation.

In the case of problems with 2 actions, we can analyze
the action of the switching cost regularizer in a relatively
intuitive way. As with Thm. 1, we bound the regret induced
by the switching cost by constructing a policy that behaves
as if it had to pay T with every action switch. In particular,
the optimal policy under this penalty adopts the action of the
event-level optimal policy at some state bt, then holds it fixed
until its expected regret for not switching to a different action
dictated by the event-level optimal policy exceeds T . Suppose
the time at which this switch occurs is (t + ω). The regret
of this agent is no more than the regret of an agent with the
option of paying T upfront in order to follow the event-level
optimal policy for ω steps. We can show that the same regret
bound holds if the agent were paying to switch to the best
fixed action for ω steps instead of following the event-level
optimal policy. This allows derivation of the following bound:
Theorem 3. The regret of the optimal switching cost policy
for a 2-action MDP is less than 2κL

1−γ , where

κ =
log γ + (γ − 1)W

(
γ1/(1−γ)
γ−1

(
(1−γ)2
2γL

T − 1
)

log γ
)

(γ − 1) log γ
,

and where W is the Lambert W-function [Corless et al., 1996].
This leads to an amplification result, analogous to Thm. 2:

Theorem 4. Let κ be as in Thm. 3. Any state whose advantage
in the event-level optimal policy is at least (1 + 1

1−γ )2κL has
an advantage of at least 2T in the switching-cost regularized
optimal policy.

4.4 Empirical Illustration
We experiment with synthetic models to demonstrate the the-
oretical results above. In a first experiment, we apply both
action aggregation and switching cost regularization to the
simple Choc-Kale POMDP, with parameters β = 0.9, τ =
0.25, µChoc = 8, µKale = 2, and σChoc = σKale = 0.5. To
illustrate the effects of faulty state estimation, we corrupt the
satisfaction level s with noise drawn from a Gaussian (mean
0, stdev. σN ), truncated on [−1, 1]. As we increase σN , state
estimation becomes worse. To mitigate this effect, we apply
aggregations of 3, 5 actions at discounts of γ = 0.95 and 0.99
(Fig. 3a,b) and switching costs of 1, 2, 3 (Fig. 3c). For each
parameter setting, we train 10 tabular policies withQ-learning,
discretizing state space into 50 buckets. For each training run,
we roll-out 30000 event-level transitions, exploring using ac-
tions taken uniformly at random—aggregated actions in the
aggregation setting—then evaluate the discounted return of
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Figure 3: Experimental results.

each policy using 100 Monte Carlo rollouts of length 1000.
Figs.3a, b and c show the average performance across the 10
training runs (with the 95% confidence interval) as a function
of the σN . We see that action aggregation has a profound
effect on solution quality, improving the performance of the
policy up to a factor of almost 2 (for γ = 0.99). Switch-
ing cost regularization has a more subtle effect, providing
more modest improvements in performance. We observe that
over-regularized policies actually perform worse than the un-
regularized policy. We conjecture that this stark difference
in performance is due to action aggregation having a double
effect on the value estimates—apart from amplification, it also
provides a more favorable behavioral policy.

A second experiment takes a more “options-oriented” per-
spective on the problem. Here, recommendable items have
a continuous “kaleness” score between 0 and 1, with item
i’s score denoted v(i). At each time step, a set of 7 items is
drawn from a [0, 1]-truncated Gaussian with mean equal to
the kaleness score of the previously consumed item. The RL
agent sets a target kaleness score θ ∈ {0, 0.25, 0.5, 0.75, 1}
(its action space). This translates to a specific “presentation”
of the 7 items to the user such that the user is nudged to
consume an item whose score is closer to the target. Specifi-
cally, the user chooses an item i using a softmax distribution:
P (i) ∝ exp(−|v(i)− θ|/λ), with temperature λ = 0.2. The
results are shown in Fig. 3d and exhibit a comparable level of
improvement as in the binary-action case.

5 Related Work
The study of time series at different scales of granularity has a
long-standing history in econometrics, where the main object
of interest seems to be the behavior of various autoregressive
models under aggregation [Silvestrini and Veredas, 2008],
however, the behavior of aggregated systems under control
does not seem to have been investigated in that field.

In RL, time granularity arises in several contexts. Classical
semi-MDP/options theory employs temporal aggregation to or-
ganize the policy space into a hierarchy, where a pre-specified
sub-policy, or option is executed for some period of time (ter-
mination is generally part of the option specification) [Sutton
et al., 1999]. That options might help with partial observability
(“state noise”) has been suggested—e.g., Daniel et al. [2016],
who also informally suggest that reduced control frequency
can improve SNR; however the task of characterizing this phe-
nomenon formally has not been addressed to the best of our

knowledge. The learning to repeat framework (see [Sharma
et al., 2017] and references therein) provide a modeling per-
spective that allows an agent to choose an action-repetition
granularity as part of the action space itself, but does not study
these models theoretically. SNR has played a role in RL, but
in different ways than studied here, e.g., as applied to policy
gradient (rather than as a property of the domain) [Roberts
and Tedrake, 2009].

The effect of the advantage magnitude (also called action
gap) on the quality and convergence of reinforcement learning
algorithms was first studied by Farahmand [?]. Bellemare
et al. [?] observed that the action gap can be manipulated to
improve the quality of learned polices by introducing local
policy consistency constraints to the Bellman operator. Their
considerations are, however, not bound to specific environment
properties.

Finally, our framework is closely related with the study
of regularization in RL and its benefits when dealing with
POMDPs. Typically, an entropy-based penalty (or KL-
divergence w.r.t. to a behavioral policy) is added to the reward
to induce a stochastic policy. This is usually justified in one
of several ways: inducing exploration [Nachum et al., 2017];
accelerating optimization by making improvements monotone
[Schulman et al., 2015]; and smoothing the Bellman equation
and improving sample efficiency [Fox et al., 2016]. Of special
relevance is the work of Thodoroff et al. [2018], who, akin
to this work, exploit the sequential dependence of Q-values
for better Q-value estimation. In all this work, however, regu-
larization is simply a price to pay to achieve a side goal (e.g.,
better optimization/statistical efficiency). While stochastic
policies often perform better than deterministic ones when
state estimation is deficient [Singh et al., 1994], and meth-
ods that exploit this have been proposed in restricting settings
(e.g., corrupted rewards [Everitt et al., 2017]), the connection
to regularization has not been made explicitly to the best of
our knowledge.

6 Concluding Remarks
We have developed a framework for studying the impact of
belief-state approximation in latent-state RL problems, espe-
cially suited to slowly evolving, highly noisy (low SNR) do-
mains like recommender systems. We introduced advantage
amplification and proposed and analyzed two conceptually
simple realizations of it. Empirical study on a stylized domain
demonstrated the tradeoffs and gains they might offer.



There are a variety of interesting avenues suggested by this
work: (i) the study of soft-policy regularization for amplifica-
tion (preliminary results are presented in the long version of
this paper); (ii) developing techniques for constructing more
general “options” (beyond aggregation) for amplification; (iii)
developing amplification methods for arbitrary sources of mod-
eling error; (iv) conducting more extensive empirical analysis
on real-world domains.
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A Technical Results and Additional Material
A.1 Analysis of Action Aggregation
We start with an observation that frames the subsequent analy-
sis.
Lemma 1 (Counterfactual Q-values). Let π and ρ be two de-
terministic policies and let the Q-function of π, Qπ be known.
Then, for any state b ∈ B:

V π(b)−V ρ(b)

= Qπ(b, π(b))−Qρ(b, ρ(b))

= E
ρ

[∑
i=0

γi (Qπ(bi, π(bi))−Qπ(bi, ρ(bi)))

]
,

where Eρ the expectation is over trajectories (bi)i∈N gener-
ated by ρ starting at b (b0 = b).

Proof. Let ρπ be a non-stationary policy that starting at b
executes ρ(b) exactly once, then follows π forever. Then,

Qπ(b, π(b))−Qρ(b, ρ(b))

= Qπ(b, π(b))−Qρπ(b, ρπ(b))

+Qρπ(b, ρπ(b))−Qρ(b, ρ(b))

= Qπ(b, π(b))−Qπ(b, ρ(b))

+Qπ(b, ρ(b))−Qρ(b, ρ(b))

= Qπ(b, π(b))−Qπ(b, ρ(b))

+ γ E
b′∼ρ

[Qπ(b′, π(b′))−Qρ(b′, ρ(b′))].

Linearity of expectation and the boundedness of both Q func-
tions ensures that recursive application to Qπ(b′, π(b′)) −
Qρ(b′, ρ(b′)) converges to the desired quantity.

This allows us to measure the behavior of k-aggregate poli-
cies (in terms of advantages) relative to atomic ones.
Lemma 2. Let b be a state for which the optimal action a does
not change within k steps. In other words, for all b′ ∈ B×k(b),
π∗(b′) = a, where B×k(b) denotes all states reachable from
b in k steps under some action sequence. Then for any other
action a′,

Q∗(b, a×k)−Q∗(b, a′×k)

= E

[
k∑
i=0

γi
(
Q∗(ba

′
i , a)−Q∗(ba

′
i , a

′)
)]

where the expectation is over the trajectory ba
′

1 , . . . , b
a′
k of

states that follow after b when taking action a′ and ba
′

0 = b
for notational convenience.

Proof. Let π be a policy that executes a for k steps and then
reverts to the optimal policy and ρ be a policy that executes
b for k steps and then reverts to the optimal policy. We apply
Lemma 1 noting that π coincides with the optimal policy,
hence Qπ = Q∗.

Lemma 2 establishes that advantage of k-aggregate actions
is the compound discounted advantage of the atomic ones.
This, combined with the smoothness of the optimalQ-function

allows us to analyze the effects of action aggregation. In
particular, suppose that we have found a state b such that
A(b) = Q∗(b, a)−maxa′ 6=aQ∗(b, a′) ≥ 2kL. The smooth-
ness of the Q-function allows us to infer that for any action
taken, the advantage at the next state will be at least 2kL−2L,
2kL− 4L after 2 steps and so on (this guarantees the advan-
tage gap can’t close in less than k steps). Hence if we were to
replace atomic actions with k-repeated actions at states with
advantage of more than 2kL, the following can be observed:

Lemma 3. Consider an MDP with an L-smooth optimal Q-
function Q∗, and the reparametrization by holding actions
fixed for k steps whenever the advantage gap is greater than
2kL. Then, at each state, either:

A×k(b) := Q∗(b, a×k)−Q∗(b, a′×k)

≥ A(b)
1− γk

1− γ

− 2γL
1− (1 + k − γk)γk

(1− γ)2
,

or A(b) ≤ 2kL.

Proof. As established, A×k(b) = E[
∑k
i=0 γ

iA(ba
′
i )].

Smoothness of the Q-function guarantees that A(ba
′
i+1) ≥

A(ba
′
i )− 2L, resp. A(ba

′
k ) ≥ A(b)− 2kL as discussed above.

Hence

A×k(b) = E

[
k∑
i=0

γiA(bbi )

]
(5)

≥ E

[
k∑
i=0

γi(A(b)− 2iL)

]
(6)

= A(b)
1− γk

1− γ
− 2L

γ − (1 + k − γk)γk+1

(1− γ)2
. (7)

Here, the first expression comes from the finite sum geometric
series formula, and the second term reflects the fact that

k∑
i=0

iγi =
γ − (1 + k − γk)γk+1

(1− γ)2
.

We have thus far considered the situation where aggregation
is state-dependent, based on the knowledge of the advantage
amplitude. A more realistic implementation of aggregation
would be to fix some global static k apriori. While the reason-
ing is similar to the above, there is an added complexity that
the aggregation itself comes at a price – the values of certain
states will be reduced (relative to the best atomic policy) due
to the inability to rapidly switch actions. This additional cost
must then be factored into the bounds.

We first bound the cost of the best slow policy under smooth
Q assumptions.

Theorem 1. Let k be a fixed horizon and Q∗, the event-level
optimal Q-function be L-smooth. Then for all b, |V ∗(b) −



V ×k∗(b)| ≤ 2kL
1−γ , where V ×k∗(b) is the value of state b under

an optimal k-aggregate policy9.

Proof. We lower bound the return of the optimal k-aggregate
policy by exhibiting a (not-necessarily optimal) k-aggregate
policy with sufficient returns. In particular, let π be a deter-
ministic optimal atomic policy, and ρ be the policy that at state
bt executes π(bt) for the next k steps, then executes π(bt+k),
etc. Following Lemma 1, we have that

V π(b)−V ρ(b)

= E
ρ

[∑
i=0

γi (Qπ(bi, π(bi))−Qπ(bi, ρ(bi)))

]
.

Let (bik)i∈N be the states at which ρmay switch actions. At
any bik, if A(bik) ≥ 2kL, due to smoothness of Q∗, we know
that a remains optimal for the next k steps thus ρ(bik+j) =
π(bik+j) and Q∗(bik+j , π(bik+j))−Q∗(bik+j , ρ(bik+j)) =
0 until the next decision point for ρ (i.e. for j ≤ k − 1).
Conversely, ifA(bik) < 2kL, then in the worst case, assuming
that the Q-value of the optimal action Q∗(bik+j , a) decreases
by L with every step j and the Q-value of a suboptimal action
Q∗(bik+j , a′) increases respectively by L, then for any of the
next k steps, Q∗(bik+j , a)−Q∗(bik+j , a′) ≥ −2kL. Hence,
for all i, |Q∗(bi, π(a))−Q∗(bi, ρ(a)))| is either 0 or less than
2kL, leading to

V π(b)− V ρ(b) ≤
∑
i=0

γi2kL =
2kL

1− γ
.

We now factor in the aggregation loss from Thm. 1 into
Lemma 3, which together characterize the amplification prop-
erties of action aggregation.
Theorem 2. In an L smooth MDP, let k be a fixed repetition
horizon. For any state where the advantage gap A(b) greater
than 2kL, the fixed-horizon advantage is lower-bounded as
follows:

A(b)×k

≥ A(b)
1− γk

1− γ
− 2L

γ − (1 + k − γk)γk+1

(1− γ)2

− 2kL

1− γ
.

Proof. Let Q̄×k∗ be the losslessly amplified Q-function as
in Lemma 3. Since A(b) ≥ 2kL, action a is optimal under
an atomic optimal policy for the next k periods and due to
Thm. 1,

Q×k∗(b, a×k) ≥ Q∗(b, a)− 2kL

1− γ
= Q̄×k∗(b, a×k)− 2kL

1− γ
.

Moreover, for any a′ 6= a

Q×k∗(b, a′×k) ≤ Q̄×k∗(b, a′×k),

9Note that the reparametrized problem in which a decision can
be made every k atomic steps is also an MDP, so the notion of an
optimal value function (one that provides the largest possible value
at every state) resp. optimal deterministic policy is well-defined.

as the expected return following the aggregation period of
k can only be lower than the one of the losslessly amplified
problem. Thus:

Q×k∗(b, a×k)−Q×k∗(b, a′×k)

≥ E

[
k∑
i

γi (Q∗(bi, a)−Q∗(bi, a′))

]
− 2kL

1− γ
.

The bound from the expectation term comes from Lemma 3.

A.2 Analysis of Switching Cost
Let Q∗ be an L-smooth optimal Q-function of a POMDP with
an optimal deterministic policy π∗ and T be a switching cost.
Consider the following policy ρ: at b0, ρ adopts the optimal
atomic action a0 = ρ0(b0) = π∗(b0). Also at t = 0, ρ
calculates the time until its regret for repeating a0 relative to
following the optimal policy exceeds, T , i.e.

ω0 =

arg min
t

{
t :

t∑
i=0

γiE [Q∗(bi, π
∗(bi))

−Q∗(bi, a0)|b0] ≥ T

}
,

(where the expectation is, as before, over trajectories of belief
sates generated by executing a0, conditioned on the realization
of b0) and then repeats a0 until t = ω0. At t = ω0, ρ queries
the optimal policy for aω0 = π∗(bω0), executes it until time
ω1 and so on. In other words, ρ repeats an action adopted from
the optimal policy until its regret for not having followed the
optimal policy exceeds T and then switches.

The return of ρ is equivalent to the return of a policy that
would pay T upfront to switch to and follow the optimal
policy for ω steps. We first bound the loss of this policy and
then argue that it also upper-bounds the loss of the optimal
switching cost policy.
Lemma 4. The total regret of ρ relative to π∗ is no more than

2L

1− γ

log γ + (γ − 1)W
(
γ1/(1−γ)

γ−1

(
(1−γ)2
2γL T − 1

)
log γ

)
(γ − 1) log γ

.

Proof. Starting from Lemma 1, the total loss of ρ relative to
π∗ is ∑

i=0

γiEbi∼ρ [Q∗(bi, π
∗(bi))−Q∗(bi, ρi)] .

We now argue that Ebi∼ρ [Q∗(bi, π∗(bi))−Q∗(bi, ρi)] is
bounded at any step i. Observe that the action taken by the
policy at time i depends only on the belief state realization
bω−1 , ω−1 being the most recent time point at which the pol-
icy was allowed to switch actions. Thus, by the law of total
probability,

Ebi∼ρ [Q∗(bi, π
∗(bi))−Q∗(bi, ρi)]

= Ebω−1
∼ρEbi∼ρ

[
Q∗(bi, π

∗(bi))−Q∗(bi, ρi)|bω−1

]
.



In the above, we have just rewritten the loss relative to the
last switching point ω−1. We now show that the condi-
tional expectation Ebi∼ρ

[
Q∗(bi, π∗(bi))−Q∗(bi, ρi)|bω−1

]
is bounded for any realization bω−1

. Recall that at time
ω−1, ρ picks the action aω−1 = π∗(ω−1) and executes
it until time ω, the time when its expected regret ex-
ceeds T , and then switches. Thus, the highest achiev-
able per-event expected regret conditioned on bω−1

occurs
when at time ω−1, there exists an alternative action a′ 6=
aω−1 having the same Q-value, i.e. Q∗(bω−1 , aω−1) =
Q∗(bω−1 , a

′), and then, in subsequent time steps, the ex-
pected Q-value of a′, Ebi∼ρ

[
Q∗(bi, a′)|bω−1

]
, starts in-

creasing at the maximum rate of L while the Q-value of
aω−1

starts decreasing at the same rate. The maximum
rate of increase of the expectation is justified since if the
Q-value of a′ is L-smooth over individual sample paths,
i.e. |Q∗(bi, a) − Q∗(bi+1, a)| ≤ L, the sequence of
expectations is also L-smooth, |Ebi∼ρ

[
Q∗(bi, a)|bω−1

]
−

Ebi+1|bω−1
∼ρ
[
Q∗(bi+1, a)|bω−1

]
| ≤ L). By the same rea-

soning as in Lemma 3 (but this time for the sequence of
expectations, rather than the sequence of realizations), the
regret for not following π∗ after k steps is bounded by
2γL1+kγk−(1+k)γk

(1−γ)2 . Let us calculate the minimum k (un-
der assumptions of monotone regret increase at the maximum
rate) for which this regret exceeds T as dκe, where κ is the
solution of 2γL1+kγk−(1+k)γk

(1−γ)2 = T .

2γL
1 + kγk+1 − (1 + k)γk

(1− γ)2
= T

→kγk+1 − (1 + k)γk =
(1− γ)2

2γL
T − 1

→(γ − 1)kγk − γk =
(1− γ)2

2γL
T − 1

→k =
log γ + (γ − 1)W

(
γ1/(1−γ)

γ−1

(
(1−γ)2
2γL T − 1

)
log γ

)
(γ − 1) log γ

,

where W is the Lambert W-function. Knowing κ, we
can deduce that the maximum per-event expected regret,
Esi∼ρ

[
Q∗(si, π∗(si))−Q∗(si, ρi)|bω−1

]
is no more than

ε = 2L


log γ + (γ − 1)W

(
γ1/(1−γ)

γ−1

(
(1−γ)2
2γL T − 1

)
log γ

)
(γ − 1) log γ

 ,
under worst-case assumptions. This leads to an overall regret
bound of ε/(1− γ).

So far, we have produced an agent that pays a cost T to
switch to the optimal policy for some time-specific horizon ωt
and bounded its regret. This is not quite what we need, since
ρ gets more than one action switch for free within the horizon
over which it is allowed to follow the optimal policy. We now
argue that for a slow environment, this bound also holds for
an agent which pays on every switch. To do so, we need to
produce a reasonable policy that pays for every action switch.

Let A(b, π∗, a×k) be the advantage of following the opti-
mal policy for k turns over repeating a for the same time and

then switching to the optimal policy (resp. the regret for repeat-
ing a over following the optimal policy). That is, following
Lemma 1,

A(b, π∗, a×k) =

Eb0,...,bk

[
k∑
i=0

γi(Q∗(bi, π
∗(bi))−Q∗(bi, a))

]
,

where the expectation is over trajectories generated by taking
action a and b0 = b.

Furthermore, let ω(b) = arg mink mina′∈A k s.t.
A(b, π∗, a×k0 ) − A(b, π∗, a′×k) ≥ T if the former is feasi-
ble, else∞. In words, ω(b) is the shortest time until the regret
of having repeated the current action a0 exceeds the regret of
having repeated some other action a′ by T . Note that this does
not need to be finite, since in some state, repeating any action
for any amount of time might yield similar returns.

Based on this, we construct a policy σ that behaves as if it
would pay T on every switch. At b0, σ executes the atomic
optimal action π∗(b0). At the next state, b1, if ω(b1) is infinite,
σ repeats a0 once. Otherwise, σ repeats a0 ω(b1) times and
then switches to a′, the action whose regret exceeds T after
ω(b1) steps. This policy can do no better than a policy that
pays T upfront to switch to a′ and maintain it for ω(b1) steps.
By extension, σ can generate no more return than the best
switching cost policy. Now we can bound its loss.
Theorem 3. The regret of the optimal switching cost policy
for a 2-action MDP is less than 2κL

1−γ , where κ is the same as
in the previous theorem.

Proof. Again we must scrutinize the sequence
(Ebi∼σ [Q∗(bi, π∗(bi))−Q∗(bi, σi)])i∈N showing that
it is bounded at any step i. We consider the contrapositive:
suppose there existed i, such that

Ebi∼σ [Q∗(bi, π
∗(bi))−Q∗(bi, σi)] > 2κL

with κ as in the previous theorem. By the law of total proba-
bility,

Ebi∼σ [Q∗(bi, π
∗(bi))−Q∗(bi, σi)]

= Ebi−κEbi∼σ [Q∗(bi, π
∗(bi))−Q∗(bi, σi)|bi−κ] > 2κL.

The expectation over bi−κ in the second line above im-
plies that for at least one possible realization of bi−κ, the
expected Q difference after κ periods exceeds 2κL, i.e.
Ebi∼σ [Q∗(bi, π∗(bi))−Q∗(bi, σi)|bi−κ] ≥ 2κL. Let b̂
be such a realization of bi−κ and let a∗ = π∗(bi) resp.
a = σ(bi) . Due to the L-smoothness of the sequences of ex-
pected Q-values

(
Ebj∼ρ

[
Q∗(bj , a∗)|bi−κ = b̂

])
j∈[i−κ,...,i]

,(
Ebj∼ρ

[
Q∗(bj , a)|bi−κ = b̂

])
j∈[i−κ,...,i]

, we know that

for all j ∈ [i− κ, . . . , i], Ebj∼ρ
[
Q∗(bj , a∗)|bi−κ = b̂

]
≥

Ebj∼ρ
[
Q∗(bj , a)|bi−κ = b̂

]
. It is straightforward to ver-

ify that for any L-smooth sequences of real numbers
(Ai)i∈[1,...,k] ≥ (Bi)i∈[1,...,k] of length κ, such that Aκ −
Bκ > 2κL, the discounted sum

∑κ
i=1 γ

i−1(Ai − Bi) must



be greater than T . Hence, the cumulative expected regret of
taking a∗ vs. a following state b̂ must exceed T and σ must
have switched by time i, which is a contradiction with the
assumption that σ executes a.
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