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Abstract
Recently, significant progress has been made on
learning structured predictors via coordinated train-
ing algorithms such as conditional random fields
and maximum margin Markov networks. Unfor-
tunately, these techniques are based on specialized
training algorithms, are complex to implement, and
expensive to run. We present a much simpler ap-
proach to training structured predictors by apply-
ing a boosting-like procedure to standard super-
vised training methods. The idea is to learn a lo-
cal predictor using standard methods, such as lo-
gistic regression or support vector machines, but
then achieve improved structured classification by
”boosting” the influence of misclassified compo-
nents after structured prediction, re-training the lo-
cal predictor, and repeating. Further improvement
in structured prediction accuracy can be achieved
by incorporating ”dynamic” features—i.e. an ex-
tension whereby the features for one predicted
component can depend on the predictions already
made for some other components.
We apply our techniques to the problem of learn-
ing dependency parsers from annotated natural lan-
guage corpora. By using logistic regression as an
efficient base classifier (for predicting dependency
links between word pairs), we are able to efficiently
train a dependency parsing model, via structured
boosting, that achieves state of the art results in En-
glish, and surpasses state of the art in Chinese.

1 Introduction
Recently, a significant amount of progress has been made on
developing training algorithms for learning structured predic-
tors from data [Tsochantaridis et al., 2004; Altun et al., 2003;
Taskar et al., 2003]. Structured prediction learning extends
the standard supervised learning framework beyond the uni-
variate setting, where a single output variable is considered,
to the multivariate setting, where complex, non-scalar pre-
dictions ŷ must be produced for inputs x. The challenge
is that each component ŷi of ŷ should not depend only on
the input x, but instead should take into account correla-
tions between ŷi and its neighboring components ŷj ∈ ŷ.

It has been shown in many application areas that structured
prediction models that directly capture the relationships be-
tween output components perform better than models that do
not directly enforce these relationships [Lafferty et al., 2001;
Tsochantaridis et al., 2004; Altun et al., 2003; Taskar et al.,
2003; 2004]. In particular, these ideas have started to have
a significant impact in the field of natural language pars-
ing [McDonald et al., 2005; McDonald and Pereira, 2006;
Corston-Oliver et al., 2006], where state of the art results
have recently been achieved through the use of structured
training algorithms. Parsing is a large-scale structured pre-
diction problem where multiple predictions must be coordi-
nated to achieve an accurate parse for a given input sentence.
Parsing is a particularly challenging and important task for
machine learning, since it involves complex outputs (parse
trees) and limited training data (manually parsed treebanks),
and yet machine learning methods have proved to provide the
best approach to obtaining robust parsers for real data.

One drawback with current structured prediction training
algorithms, however, is that they involve new, specialized
parameter optimization algorithms, that are complex, non-
trivial to implement, and usually require far more computa-
tion than standard classification learning methods [Lafferty et
al., 2001; Taskar et al., 2003]. The main reason for increased
complexity is the fact that some form of structured prediction
algorithm, such as a parser or a Viterbi decoder, must be con-
sidered in the underlying training principle, which causes the
structured inference of output predictions to be tightly cou-
pled with the parameter optimization process during training.

In this paper, we demonstrate the somewhat surprising re-
sult that state of the art performance on natural language pars-
ing can be achieved through the use of conventional, local
classification methods. In particular, we show how a simple
form of structured boosting can be used to improve the train-
ing of standard local classification methods, in the structured
case, without modifying the underlying training method. The
advantage of this approach is that one can use off-the-shelf
classification techniques, such as support vector machines
or logistic regression, to achieve competitive structured pre-
diction results with little additional effort. We achieve this
through the use of two simple ideas. First, we introduce a
very simple form of “structured boosting”, where a structured
predictor, such as a parser, is used to modify the predictions
of the local, weak learning algorithm, which then influences
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Figure 1: A dependency tree

the example weightings and subsequent hypotheses, implic-
itly encouraging more accurate structured predictions. Sec-
ond, we exploit an old idea from natural language parsing,
but highlight it here more generally, that “dynamic” features
can be used in the local classifiers, which take into account
the previous classifications of a restricted set of neighboring
examples.

We demonstrate these ideas concretely on the problem of
learning natural language dependency parsers from labeled
(treebank) data. Although dependency parsing is a very com-
plex problem, we are able to achieve state of the art results
by training a local “link predictor” that merely attempts to
predict the existence and orientation of a link between two
words given input features encoding context—without wor-
rying about coordinating the predictions in a coherent global
parse. Instead, a wrapper approach, based on structured
boosting, is used to successively modify the training data so
that the training algorithm is implicitly encouraged to facili-
tate improved global parsing accuracy.

The remainder of the paper is organized as follows. First,
in Section 2 we briefly describe the dependency parsing prob-
lem and introduce some of our notation and terminology. We
then explain the relationship between structured prediction
learning and traditional classification learning in Section 3,
and point out opportunities for connecting these problems.
Next, in Section 4 we briefly explain, in general terms, the
idea of “dynamic” features in classification learning and how
these can be used to improve structured prediction. Then in
Section 5 we introduce the main technique proposed in this
paper, structured boosting, and explain its relation to standard
boosting approaches. Finally, in Sections 6 and 7, we de-
scribe our experiments in learning dependency parsers from
treebank data, and show how competitive results can be ob-
tained through the use of standard learning methods. In fact,
our results surpass state of the art accuracy in Chinese pars-
ing, and are competitive with state of the art in English. Sec-
tion 8 concludes the paper with a discussion of future work.

2 Dependency Parsing
Since our main application involves learning dependency
parsers from labeled data, we briefly introduce the problem
and some of the issues it creates. In natural language pars-
ing, a dependency tree specifies which words in a sentence
are directly related. That is, the dependency structure of a
natural language sentence is a directed tree where the nodes
are the words in the sentence and links represent the direct
dependency relationships between the words; see Figure 1.
Generally speaking, a dependency tree is much easier to un-
derstand and annotate than constituency trees that involv-
ing part of speech and phrase labels (e.g., Figure 2). Con-
sequently, there has been a growing interest in dependency
parsing in recent years. Dependency relations have been
playing important roles in machine translation [Fox, 2002;
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Figure 2: A constituency tree

Cherry and Lin, 2003] and information extraction [Culotta
and Sorensen, 2004].

We consider the problem of automatically learning a de-
pendency parser for a given language from a treebank: a col-
lection of manually parsed sentences. Treebanks usually con-
sist of constituency parses, but a dependency parse can be
automatically extracted from a constituency parse by a few
simple rules [Bikel, 2004]. Thus, the training data consists
of a set of sentences, each annotated with a directed spanning
tree over words (Figure 1). For most languages, like English
and Chinese, this tree is planar (often called “projective”).

Although a dependency tree is a complex object, parsing
can conceptually be reduced to a set of local classifications:
each word pair in a sentence can be classified into one of three
categories; no link, left link, or right link. One aspect of the
problem is local: for a given pair of words in a given sentence
context, what should their link label be? The other aspect
of the problem is global: how should the local link predic-
tions be coordinated globally to produce a consistent and ac-
curate dependency tree? Both aspects of the problem—local
link prediction versus global link coordination—are crucial
to achieving a state of the art dependency parser. Locally, the
problem is amenable to standard classification learning ap-
proaches. Globally, the problem requires coordination—that
is, interaction with a parsing algorithm.

3 From Local to Coordinated Training
The problem of learning a structured predictor can generally
be formulated as follows. We are given a set of annotated
objects (s1, t1), ..., (sT , tT ), where each object si consists
of a composite observation (i.e. a sentence consisting of a
word string) and each annotation ti is a complete labeling of
the relevant subcomponents in si (i.e. a link label for every
pair of words in the sentence). Typically, a single composite
example (si, ti) can be broken down into a (coordinated)
set of local examples (si,1, ti,1)|(si,ti), ...(si,N , ti,N )|(si,ti),
where each label tij ∈ ti is an atomic classification of a sub-
component si,j ∈ si, taken in context (si, ti). For example,
a sentence si = wi,1...wi,n and a dependency tree labeling
ti = ti,1,2...ti,n−1,n can be decomposed into local examples
(wi,1, wi,2; ti,1,2)|(si,ti), ...(wi,n−1, wi,n; ti,n−1,n)|(si,ti),
consisting of arbitrary (not necessarily adjacent) word pairs
and their link label (none, left, right) in context (si, ti).
The context is important because accurately predicting a
component label, even locally, requires the consideration of
more than just the subcomponent (word pair) itself, but also



the surrounding components, and possibly even the labels of
some of the surrounding components. (We will discuss the
latter point in more detail below.)

This decomposition facilitates a purely local approach
to the learning problem. Given the original compos-
ite data (s1, t1), ..., (sT , tT ) (e.g. sentences and their
parses) one can first break the data up into local exam-
ples (w1,1, w1,2; t1,1,2)|(s1,t1), ...(wi,j , wi,k; ti,j,k)|(si,ti), ...,
ignore the relationships between examples, and use a stan-
dard supervised learning algorithm to learn a local predictor
wi,j , wi,k 7→ ti,j,k in context (si, ti). For example, if we re-
strict attention to linear predictors (support vector machines
or logistic regression models), we only need to learn a weight
vector θ over a set of features defined on the local examples
f(wi,j , wi,k, ti,j,k; si, ti). Here, each feature fm computes its
value based on the component (wi,j , wi,k), the label ti,j,k, in
their context (si, ti). In this case, a multiclass support vector
machine [Crammer and Singer, 2001] or logistic regression
model [Hastie et al., 2001] could be trained in a conventional
manner to achieve an accurate local prediction model.

The only question that remains is how to perform valid
structured prediction on composite test objects using a lo-
cal prediction model. The problem is that structured clas-
sification requires that constraints be respected between the
classifications of different local components. For example,
in dependency parsing, the predicted word pair labels (no
link, left link, right link) must form a valid directed span-
ning tree, which in the case of some languages like English
and Chinese, should also be a planar tree. This form of
global consistency is achieved in practice simply by combin-
ing a local link classifier with a parsing algorithm. A de-
pendency parsing algorithm is, in effect, a dynamic program-
ming algorithm that has the goal of producing a maximum
weight spanning tree subject to the constraints [Eisner, 1996].
The output of the local predictor can be used as a numerical
weight to score a potential link, in context, which the parser
can then use to make decisions about which link labels to
choose. In this sense, the role of a local predictor is just to
supply a learned scoring function to a pre-existing parsing
algorithm. Exactly this approach to combining local link pre-
dictors with dependency parsing algorithms has been tried,
with some success, by many researchers—using support vec-
tor machines [Yamada and Matsumoto, 2003], logistic regres-
sion (aka. maximum entropy models) [Ratnaparkhi, 1999;
Charniak, 2000], and generative probability models [Collins,
1997; Wang et al., 2005]—to learn local scoring functions.

Unfortunately, these simple local learning strategies have
an obvious shortcoming. The problem is that the training
loss being minimized during local parameter optimization has
nothing directly to do with the parser. Although it is true
that an accurate local predictor is a prerequisite for an ac-
curate parse prediction, the parameters of the local model
are not being trained to directly optimize the global accu-
racy of the parser. That is, a far better choice of parame-
ters might exist within the given space defined by the fea-
tures that leads to better global parsing accuracy. This is
where the advent of recent training algorithms for learning
structured predictors has been helpful. The main idea be-
hind these training algorithms has been to explicitly incor-

porate the effects of the structured predictor directly into the
training algorithm. That is, parameter optimization of a lo-
cal predictor is performed by directly considering the im-
plied effects on the structured (global rather than local) pre-
diction error. The extension to structured training loss has
been developed for both the large margin training princi-
ple of support vector machines [Tsochantaridis et al., 2004;
Altun et al., 2003; Taskar et al., 2003] and the maximum con-
ditional likelihood principle of logistic regression [Lafferty et
al., 2001]. Subsequently, training algorithms based on these
principles have been applied to parsing [Taskar et al., 2004;
Wang et al., 2006], and recently resulted in state of the art
accuracy for English dependency parsing [McDonald et al.,
2005; McDonald and Pereira, 2006]. Unfortunately, the main
drawback with these structured training techniques is that
they are specialized, non-trivial to implement, and require a
great deal of refinement and computational resources to ap-
ply to a significant task like parsing [McDonald et al., 2005;
Corston-Oliver et al., 2006].

In this paper, we pursue a simpler, more general approach
that can be applied to any local prediction learning strategy,
without requiring that the underlying training algorithm be
modified, while still ensuring that the training outcome is di-
rectly influenced by the resulting accuracy of the global struc-
tured predictor (the parser).

4 Dynamic Features

Before describing our general structured boosting method, we
first briefly describe a simple but useful idea for improving
the structured classification accuracy of local predictors. The
idea is to use so-called “dynamic” features; that is, features
that take into account the labels of (some) of the surrounding
components when predicting the label of a target component.
In particular, when predicting the label of a target component
si,j ∈ si from a composite object si, one can assume that
the labels for some other components, say si,j−1 ∈ si, have
already been computed. The only constraint is that the neigh-
boring labels used must always be available before attempting
to label si,j . For supervised training, this is never a problem,
because the labels are always available for every component.
However, the real issue arises during testing—that is, during
the structured classification of a test object. Here the labels
for each component have to be determined in a systematic
order that ensures the required features are always available
when the next component needs to be labeled.

The easiest way to illustrate the concept is in a sequential
labeling task, like part of speech tagging: Given a sentence
s = w1...wn, the goal is to predict the corresponding tag se-
quence t = t1...tn. Here the preceding tags can be used as
features for the current word under consideration—e.g. in
a maximum entropy Markov model (MEMM) [McCallum et
al., 2000]—while still permitting an efficient Viterbi decod-
ing algorithm to be used for structured prediction. Alterna-
tively, one could use the following tags as features or use both
the preceding and following tags [Toutanova et al., 2003].
The idea of dynamic features, however, is more general than
sequence labeling and maximum conditional likelihood train-
ing.



For dependency parsing, dynamic features can also be eas-
ily employed. For example, when considering a possible link
label that connects a head word to a subordinate word, one
will always have access (in any standard parsing algorithm)
to the existing children of the head that occur between the
two words under consideration. In this case, the number and
types of pre-existing subordinate children are valid features
that can be used to predict whether the new head-subordinate
link should occur, which turns out to be a very informa-
tive feature for link prediction in parsing [Collins, 1997;
Wang et al., 2005].

Although the idea of using dynamic features is not new in
some fields like parsing [Collins, 1997; Magerman, 1995], it
is still not as widely appreciated as perhaps it should be. Dy-
namic features are often a trivial way to improve structured
predictors without requiring any modification of the under-
lying training methods. In fact, even still the possibility is
not always used in parsing [McDonald et al., 2005], only to
yield immediate improvements when subsequently reintro-
duced [McDonald and Pereira, 2006]. Below we find that
simple dynamic features easily improve structured prediction
performance.

5 Structured Boosting
Even though dynamic features can significantly improve
the structured prediction performance of local training algo-
rithms, local training is still myopic, and the parameter opti-
mization process remains uninfluenced by the global behav-
ior of the structured predictor. In fact, even though dynamic
features capture some weak aspects of global prediction, we
still expect proper structured training algorithms to yield sig-
nificant global accuracy improvements in structured prob-
lems like parsing. For example, in simpler sequence labeling
tasks, it has already been well observed that structured train-
ing algorithms, like conditional random fields [Lafferty et
al., 2001], outperform their myopic counterparts, maximum
entropy models [McCallum et al., 2000], because MEMM
training still fails to consider global prediction accuracy [Laf-
ferty et al., 2001]. However, by attempting to incorporate
the global predictor directly into local parameter optimiza-
tion, one is inevitably led to design new, complex training
algorithms that require standard local training methods to be
replaced. The problem we seek to avoid is to complicate the
training process in this manner.

We now introduce our main proposal, structured boost-
ing, that provides a straightforward way to combine global
structured prediction (parsing) with local parameter opti-
mization, without modifying the underlying local training
algorithm. In fact, the procedure is a trivial variant of
standard boosting algorithms [Freund and Schapire, 1996;
Schapire and Singer, 1999; Collins et al., 2002], altered to
incorporate a structured prediction algorithm during the clas-
sification phase. The procedure is as follows.

• First, a standard predictor is trained on the local labeled
components, as discussed in Sec. 3, to produce a “weak”
local predictor (e.g. a local link predictor for parsing).

• Then the global structured predictor is used to classify
the data using the current weak local predictor. For ex-

ample, a parsing algorithm is used to re-predict the train-
ing labels, in a coordinated global fashion, using the
learned link predictor as an internal scoring function.

• Based on the resulting misclassifications of the struc-
tured predictor (i.e. the parser output), the ensemble
weight for the current weak local predictor is calculated,
and the local example weights are updated, according to
any standard boosting method; for example, either ex-
ponential loss Adaboost [Freund and Schapire, 1996;
Schapire and Singer, 1999] or logistic regression loss
boosting [Collins et al., 2002].

• The above steps are then repeated for some number of
boosting rounds.

The resulting ensemble of weak local predictors then provides
a combined local predictor that can be used for subsequent
global structured prediction on composite test examples.

The advantage of this approach is its simplicity and gener-
ality. It can be applied to any standard local training method
without requiring any modification of the underlying algo-
rithm, yet via structured boosting, the local learning algo-
rithm is forced to respond to the behavior of the global pre-
dictor. In effect, it is a simple training wrapper, where local
examples are reweighted, not based on the predictions of a
current hypothesis, but instead on the predictions that the lo-
cal hypothesis forces the global structured predictor to make.
Below we find that a structured boosting method of this form
can improve the quality of dependency parsers learned from
treebank data. Note that only a few boosting rounds are ever
feasible in our application, because each round requires the
entire corpus to be re-parsed and the local prediction model
re-trained. Nevertheless, we still witness some useful im-
provements and achieve state of the art results.

6 Experimental Design: Dependency Parsing
We applied the above ideas for learning structured predictors
to the challenging problem of learning a dependency parser
from treebank data. In particular, we considered two lan-
guages, English and Chinese.

Data sets We used the English Penn Treebank 3.0 [Mar-
cus et al., 1993] and the Chinese Treebanks 4.0 [Palmer et al.,
2004] and 5.0 [Palmer et al., 2005] for our experiments. For
English, we converted the constituency structures to depen-
dency trees using the same rules as [Yamada and Matsumoto,
2003] and adopted the standard training/development/test
split used throughout the literature. The development and
test sets were tagged with the part of speech tagger of [Ratna-
parkhi, 1996]. For Chinese, we used the rules in [Bikel, 2004]
for conversion and created the same data split as [Wang et al.,
2005] on the Chinese Treebank 4.0 data set, and the same data
split as [Corston-Oliver et al., 2006] on the Chinese Treebank
5.0 data set. Chinese Treebank 5.0 contains Chinese Tree-
bank 4.0 as a subset, but adds approximately 3000 sentences
(100,000 words) of Taiwanese Chinese text.

Static features For both English and Chinese we used a
common set of feature templates. In particular, for the static
features, we used the same set of features described in [Mc-
Donald et al., 2005], except the “In Between POS Features”.



Given a target word pair and their context, these static fea-
tures consisted of indicators of the individual words, their part
of speech tags, and also the part of speech tags of words in
the surrounding context. In addition, to the indicator features
used in [McDonald et al., 2005] we also added a distance
feature that simply measures how far apart the two words are
in the sentence, which is highly predictive of link existence,
since most links in a dependency parse are short range.

Dynamic features For dynamic features, we used the
number of previous children of a candidate head word, and
an indicator of the part of speech, if any, of the previous child
word on the same side of the candidate head word. For En-
glish, we used one special dynamic feature to try to capture
prepositional phrase attachment preference: if a candidate
child is tagged PP, then we use a feature that indicates the
tag and word of the first grandchild (first child of the child).

Local training For the local training algorithm we used
a standard logistic regression model (aka maximum entropy
model) [Hastie et al., 2001] to attempt to learn a predictor for
one of three word pair labels (no link, left link, right link),
given the features described above. To regularize the parame-
ters in the model, we used the linear, non-negative regularizer
described in [Goodman, 2004]. The regularization param-
eter, λ, was set to 0.5 in our experiments. This parameter
was selected with some tuning on the English development
set, and then used without modification on the other data sets.
Unfortunately, the number of features and number of local
examples were both so large that training the logistic regres-
sion model, even once, took more than a day. So to accelerate
the training process, we employed a further trick: We parti-
tioned the set of local examples (determined by word pairs
in each sentence) according to the part of speech tags of the
pair. Within each equivalence class, the number of features
could then be further reduced by dropping those features that
became constant within the class. This partitioning dropped
the overall training cost to a few hours on a few computers,
since the separate partitions could then be trained in paral-
lel. By tagging the test data before parsing, the correct local
model could be used to score a candidate link. Interestingly,
the quality of the learned model was not significantly affected
by this training procedure.

Parser There are many dependency parsing algorithms
available with differing computational cost. They range from
Eisner’s O(n3) time parser, where n is the length of the sen-
tence, to an O(n5) time CKY parser [McDonald et al., 2005].
The difference between these algorithms has to do with the
global constraints they can enforce and the types of features
they can use during dynamic programming. Faster algorithms
enforce fewer global constraints and need to use a more re-
stricted class of features. In our experiments, we used a stan-
dard CKY parser [Jurafsky and Martin, 2000]. which allowed
us to use all of the features described above, while also en-
forcing the planarity constraint.

Boosting method We experimented with a few boosting
methods, including a simplified variant where the weights of
each mis-parsed local example were simply increased by an
additive constant, with other weights kept the same, and only
the last hypothesis is kept. In fact, in our experiments below
we obtain state of the art results just using this simplified pro-

Table 1: Boosting with static features

Iter English Chinese (Treebank 4.0)
DA RA CM DA RA CM

1 87.77 89.61 27.44 82.20 88.58 19.38
2 88.08 89.61 28.97 82.33 89.62 19.72
3 88.10 89.74 28.81 82.22 89.97 18.69
4 88.49 90.62 29.04 82.79 89.97 19.38

cedure, and so we focus on these initial results here. Compar-
isons to standard boosting algorithms, such as Adaboost M1,
M2 [Freund and Schapire, 1997] and the logistic regression
form of boosting described in [Collins et al., 2002] are still in
progress.

7 Results
To determine the effectiveness and generality of our approach
we conducted a number of experiments on each of the data
sets (English and Chinese). These results were achieved us-
ing only the simplified boosting procedure mentioned above
(additive weight updates, keeping only the last hypothesis).

First, to determine the effectiveness of the basic structured
boosting idea, we started with a simple local prediction model
(static features only) and measured parsing accuracy on the
held out test set as a function of the number of boosting
rounds. Table 1 shows that parsing accuracy is improved in
each round of boosting with static features, on both English
and Chinese (using Chinese Treebank 4.0). To explain the
improvements more carefully, note that DA (Dependency Ac-
curacy) indicates how many word pairs are correctly linked;
RA (Root Accuracy) measures how many sentence roots are
correctly identified; and CM (Complete Match) is the number
of sentences where the entire tree is correct. Our focus in this
work is on improving the dependency accuracy scores (DA),
rather than the root accuracy and complete match scores.
This fact is reflected in the boosting procedure, since instance
reweighting is based only on whether each candidate link is
predicted correctly, not whether the root is labeled correctly,
nor whether the complete sentence is matched correctly.

Not surprisingly, Table 1 shows that the dependency accu-
racy (DA) improves on each round of boosting for English,
and improves on most rounds (and improves overall) for Chi-
nese; while the RA and CM results fluctuate somewhat. Note
that although the improvements appear small, the observed
DA differences are all statistically significant. For English,
the test corpus consists of 564,848 instances (word pairs oc-
curring in a sentence), and differences of 0.02 in the per-
centages shown in the tables are statistically significant with
greater than 99% confidence. For Chinese, the test corpus
consists of 99,922 instances, and differences of 0.05 in the
percentages shown in the tables are statistically significant
with greater than 99% confidence.

Second, to determine the effectiveness of dynamic fea-
tures, we added these additional features to the local predic-
tion model and repeated the previous boosting experiment.
Table 2 shows a significant further improvement in parsing
accuracy over just using the static features alone (Table 1).
Once again, however, boosting provides further improvement



Table 2: Boosting with dynamic features

Iter English Chinese (Treebank 4.0)
DA RA CM DA RA CM

1 89.10 90.36 33.77 86.08 92.39 25.26
2 89.15 89.65 34.56 86.25 92.39 26.64
3 89.20 89.69 34.31 86.45 91.70 28.72
4 89.22 90.20 34.35 86.58 92.04 28.37

over the base model on both English and Chinese with re-
spect to dependency accuracy. In each case the improvement
is significant.

Finally, we compare the final results we were able to
achieve to the state of the art. Table 3 shows the best results
achieved by our method and other researchers on English and
Chinese data. Once again, all of the results on English are ob-
tained on the same standard training and test set splits on the
English Penn Treebank 3.0 [Marcus et al., 1993]. The results
on Chinese are obtained on two different data sets, Chinese
Treebank 4.0 [Palmer et al., 2004] and Chinese Treebank 5.0
[Palmer et al., 2005] as noted. In the table, Y&M03 refers
to [Yamada and Matsumoto, 2003], N&S04 refers to [Nivre
and Scholz, 2004], WSL05 refers to [Wang et al., 2005],
MIRA05 refers to [McDonald et al., 2005], MIRA06 refers
to [McDonald and Pereira, 2006], BPM06 refers to [Corston-
Oliver et al., 2006]. From Table 3 we can see that on English,
the results we are able to achieve through the simple boost-
ing method are competitive with the state of the art, but are
still behind the best results of [McDonald and Pereira, 2006].
However, perhaps surprisingly, Table 3 shows that the tech-
nique we have proposed in this paper actually achieves state
of the art accuracy on Chinese parsing for both treebank col-
lections.1 2

Computational complexity Clearly, there is some compu-
tational overhead associated with training by boosting, since
each round requires the base learning algorithm to be re-
trained on the re-weighted training data. The training cost
scales up proportional to the number of boosting iterations
however, and reasonable improvements can be achieved with
a small number of rounds. Interestingly, we have found for
test complexity, the computational cost of using a compos-
ite hypothesis for scoring the local predictions does not add
much overhead to the parsing complexity (although we report
only single hypothesis results here).

8 Conclusion
We have addressed the problem of learning structured predic-
tors by using a simple form of boosting to augment the train-
ing of standard local predictors. The procedure is general, and

1The results on Chinese Treebank 5.0 are generally worse than
on Chinese Treebank 4.0, since the former is a superset of the lat-
ter, and moreover the additional sentences come entirely from a Tai-
wanese Chinese source that is more difficult to parse than the rest of
the data [Palmer et al., 2005; 2004].

2In fact, MIRA has been tried on Chinese Treebank 4.0 with the
same data split reported above, obtaining a dependency accuracy
score of 82.5, which does not match the 86.6 percent dependency
accuracy achieved by the boosting technique on this data (Ryan Mc-
Donald, personal communication).

Table 3: Comparison with state of the art

Model English Chinese
DA RA CM DA RA CM

Y&M03 90.3 91.6 38.4 - - -
N&S04 87.3 84.3 30.4 - - -
WSL05 - - - 79.9* - -

MIRA05 90.9 94.2 37.5 - - -
MIRA06 91.5 - 42.1 - - -
BPM06 90.8 93.7 37.6 73.3† 66.2† 18.2†

our model 89.2 90.2 34.4 77.6† 60.6† 13.5†
86.6* 92.0* 28.4*

∗ Obtained with Chinese Treebank 4.0 using the data split reported
in [Wang et al., 2005].
† Obtained with Chinese Treebank 5.0 using the data split reported
in [Corston-Oliver et al., 2006].

allows one to improve performance at structured prediction
without modifying the underlying training algorithm, nor im-
plementing a complex training algorithm. Further improve-
ments in structured prediction accuracy are easily obtained
by using dynamic features that consider the labels of some
neighboring examples. Although our results are very promis-
ing, and in fact provide the new state of the art result in Chi-
nese parsing, there remain many directions for future work.
One obvious direction is to investigate the effect of using al-
ternative boosting algorithms, and also to investigate the the-
oretical nature of applying these algorithms to the structured
boosting case: under what circumstances do the algorithms
converge, and what guarantees can be made about their per-
formance. We would also like to explore further ideas about
useful features for parsing, and additional smoothing and reg-
ularization techniques for local training.
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