
Gradient-Free Structured Pruning with Unlabeled Data

Azade Nova 1 Hanjun Dai 1 Dale Schuurmans 1 2

Abstract
Large Language Models (LLMs) have achieved
great success in solving difficult tasks across
many domains, but such success comes with a
high computation cost, and inference latency. As
developers and third parties customize these mod-
els, the need to provide efficient inference has
increased. Many efforts have attempted to reduce
inference cost through model compression tech-
niques such as pruning and distillation. However,
these techniques either require labeled data, or are
time-consuming as they require the compressed
model to be retrained to regain accuracy. In this
paper, we propose a gradient-free structured prun-
ing framework that uses only unlabeled data. An
evaluation on the GLUE and SQuAD benchmarks
using BERTBASE and DistilBERT illustrates the
effectiveness of the proposed approach. By only
using the weights of the pre-trained model and
unlabeled data, in a matter of a few minutes on
a single GPU, up to 40% of the original FLOP
count can be reduced with less than a 4% accuracy
loss across all tasks considered.

1. Introduction
Large Language Models (LLMs) have made great strides
in solving difficult tasks across many domains, but this has
come at the cost of high parameter counts and significant
computational overhead. Developers and third parties can
now employ these trained models and create custom ver-
sions tailored to their particular applications. Customization
makes these models applicable to a wider variety of use
cases, but this, even more, highlights the need for efficient
inference models.

Many efforts have been being made to reduce computational
cost through model compression techniques specialized for
Transformers, including structured pruning (Xia et al., 2022;

1Google DeepMind 2University of Alberta. Correspondence to:
Azade Nova <azade@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Hou et al., 2020; Sajjad et al., 2023; Liu et al., 2021a; Xia
et al., 2022), efficient architecture design (Kitaev et al.,
2020; Iandola et al., 2020; Sun et al., 2020; Wang et al.,
2020b), neural architecture search (So et al., 2021; Xu et al.,
2021; Yin et al., 2021), knowledge distillation (Sun et al.,
2020; Jiao et al., 2019; Sanh et al., 2019), quantization (Kim
et al., 2021; Shen et al., 2020; Zadeh et al., 2020; Zafrir
et al., 2019), and hardware-software co-design (Gu et al.,
2022; Ham et al., 2021).

Among these techniques, structured pruning shows promis-
ing results in reducing model size, while also improving
inference time because the resulting model remains compat-
ible with the underlying hardware. However, most existing
approaches are quite complex and require significant en-
gineering effort to implement. Moreover, the process of
compression is time-consuming and requires retraining the
compressed model to regain accuracy. These limitations
make effective compression difficult to realize in practice.
Recently, Kwon et al. (2022) proposed a post-training prun-
ing for Transformers that does not require any retraining
of the model. Even though this approach avoids expensive
retraining, it requires labeled data in the pruning pipeline.

LLMs mainly utilize unlabeled data for training and with
increased use of pre-trained LLMs by developers and third
parties, access to the labeled data is questionable. Espe-
cially with the popularity of in-context learning, where the
user only provides prompts, the purpose of the task is not
necessarily known at compression time. In this scenario,
none of the existing pruning techniques can be applied for
model compression since they all require labeled data. Even
though knowledge distillation (Sun et al., 2020; Jiao et al.,
2019; Sanh et al., 2019) trains a student model with unla-
beled data, it still requires a large amount of unlabeled data
and is expensive to train. This motivates us to investigate
whether one can design a structured pruning method that
does not require retraining nor labeled data, while avoiding
adverse effects on performance.

In this work, we propose Kernelized Convex Mask-
ing (KCM), a gradient-free framework (Figure 1) that only
requires the trained model and sampled raw data to compress
the model. We introduce R2D2 as the core of this frame-
work that combines two ranking techniques Representative
Ranking (R2) and Data-Driven (D2) to estimate the impor-

1

Gradient-Free Structured Pruning with Unlabeled Data

tance of individual neurons. R2 maps our structured pruning
goals into a representative selection problem (Huang et al.,
2018), where the goal is to find a small subset of data points
that can well represent a large dataset. Specifically, R2 con-
siders the filters of a Feed-Forward Network (FFN) in the
trained model as data points in a high-dimensional space,
and ranks these by how well a filter can be represented by
others. D2, on the other hand, ranks the filters based on
statistics gathered from layer-wise model outputs using the
raw sampled data. KCM decides which filter to remove
by merging the R2D2 rankings across all layers. Since
removing filters may still affect accuracy, we apply an exist-
ing scaling transformation method in Kwon et al. (2022) to
mitigate the effect of their removal.

Our main contributions are as follows:

• We Propose Kernelized Convex Masking (KCM) pruning
framework, a gradient-free structured pruning approach
that neither requires labeled data nor retraining.

• As the core of KCM, we propose R2D2 that combines
two ranking techniques Representative Ranking (R2) and
Data-Driven (D2). R2D2 only requires the weights of the
trained model and sampled raw data to rank the neurons.
An ablation study confirms the importance of combining
the two proposed ranking techniques.

• Our evaluation on GLUE and SQuAD benchmarks using
BERTBASE and DistilBERT confirms the effectiveness
of the proposed approach. Compared to when the labeled
data is available, KCM is able to reduce up to 40% of
the original FLOPs with less than 4% accuracy loss, in a
matter of a few minutes on a single GPU.

2. Problem Definition
2.1. Preliminary

In this paper, we focus on pruning the BERT (Devlin et al.,
2018) architecture. BERT is a stack of L homogeneous
Transformer encoder blocks (Vaswani et al., 2017), each
of which consists of a multi-head attention (MHA) layer
followed by a Feed-Forward Network (FFN) layer. Due to
the fact that FFN layers have a huge impact on model size
and inference latency (Ganesh et al., 2021), we focus on the
pruning the filters of the FFN layers. In every transformer
encoder layer `, the FFN `(x) with N filters is parame-
terized with W (1)

` ∈ Rd×N , W (2)
` ∈ RN×d, b(1)` ∈ RN ,

b
(2)
` ∈ Rd, and activation function σ:

FFN`(x) =

N∑
i=1

(σ(xW
(1)
` [:, i] + b

(1)
`)W

(2)
` [i, :]) + b

(2)
`

(1)
For example, BERTBASE has 12 transformer encoder
blocks (L = 12), where the number of filters (N) is 3072,

Figure 1. Kernelized Convex Masking (KCM): A gradient-free
structured pruning framework with R2D2 as a core component.
R2D2 combines the ranks of the Representative Ranking (R2) and
Data-Driven (D2) rank.

W
(1)
` ∈ R768×3072 with the GELU activation (Hendrycks

& Gimpel, 2016), and W (2)
` ∈ R3072×768.

2.2. Structured Pruning by Masking

Masking: Given an integer n < N , reducing the number of
filters from N to n can be considered as introducing a mask
variable m ∈ RN (with n non-zero elements) associated
with the outputs of the filters.

F̂FN `(x) =

N∑
i=1

(σ(xW
(1)
` [:, i] + b

(1)
`)W

(2)
` [i, :] ◦mi) + b

(2)
`

(2)
where ◦ is Hadamard product.

Objective: Transformer pruning can be formulated as a
constrained optimization problem on the maskM∈ RL×N

that represents the mask m of all layers L. There are LN fil-
ter mask variables which is much less than the total number
of parameters in the model. For example BERTBASE with
110M parameters needs only 36k mask variables (0.03%).

Optimal structural pruning is usually defined (Kwon et al.,
2022) in the supervised setting with respect to minimizing
the accuracy loss of the original model:

argmin
M

L(M) s.t. Cost(M) ≤ C (3)

Cost(M) is the floating point operations (FLOPs) of the
pruned model determined by the mask M. In this work,
since only unlabeled data is available, the supervised loss
L(M) can not be evaluated. Similar to distillation, we
consider minimizing the Feature Map Loss (Sun et al., 2020)
LFMT for each FFN in layer `.

L(`)FMT
(m) = ‖FFN(`)(x)− F̂FN (`)(x)‖2 (4)

Given a trained model Model, unlabeled dataset D, and a
cost constraint C, find the maskM ∈ RL×N for every N

2

Gradient-Free Structured Pruning with Unlabeled Data

Algorithm 1 Kernelized Convex Masking (KCM)
1: Input: Trained model: Model, FLOPs constraint C, Gaussian

Kernel K, convergence rate α
2: Output: MaskM
3: Initialize maskM as 0

//Call Representative Ranking (R2) Algorithm 2
4: SR2 = R2(Model, K, α)

// Data-Driven (D2) Ranking
5: for batch in sample-data do
6: for each layer ` in Model collect H(1)

`

7: SD2[`] = average over H(1)
` for each filter

8: end for
9: SR2D2[`] = SR2[`] ∗ normalized(SD2[`])

10: k = Number of neurons to satisfy FLOPs constraint C
11: Candidates = top-k filters of the sorted SR2D2

12: M[Candidates] = 1.0
13: return M

Algorithm 2 Representative Ranking (R2)
1: Input: Trained model: Model, Gaussian Kernel K with

width σ, convergence rate α
2: Output: SR2 that represents importance of Filters in all

layers.
3: for layer ` in layers of the Model do
4: W

(2)
` ∈ RN×d of FFN`

5: Initialize coefficient matrix: C0 ∈ RN×N = 1
N

6: repeat

7: Ci+1 = Ci ◦
√

K(W
(2)
`

,W
(2)
`

)

K(W
(2)
`

,W
(2)
`

)Ci

8: δ =
(Ci+1−Ci).sum()

Ci.sum

9: Ci = Ci+1

10: until convergence i.e. δ ≤ α
11: SR2[`]= diagonal(Ci)
12: end for
13: return SR2

filters of all L transformer layers such thatCost(M) be less
than C and the loss LFMT (M) =

∑L
`=1 L(`)

FMT (M`,:)
is minimized.

argmin
M

LFMT (M) s.t. Cost(M) ≤ C (5)

One way to tackle this problem would be to consider it as a
version of the distillation problem, where the goal is to find
the optimal mask under the sparsity constraint. However,
distillation methods require large amounts of unlabeled data
and are very expensive to train (Xia et al., 2022).

3. Proposed Approach
Instead, in this work, we propose a gradient-free approach
that only uses the weights of the trained model and statistics
on layer-wise outputs using the unlabeled data to implicitly
minimizes the feature map loss in each layer.

3.1. Framework Overview

Figure 1 shows the overview of our framework, called Ker-
nelized Convex Masking (KCM). KCM takes the trained
model Model, sampled unlabeled dataset D and a cost con-
straint C, and returns a maskM ∈ RL×N that represents
the mask of the N filters of all layers L.

We introduce R2D2 that combines ranking techniques Rep-
resentative Ranking (R2) and Data-Driven (D2) to estimate
the importance of the filters. As shown in Figure 1, these
two approaches independently rank N filters based on the
weights and output of the activation function of the FFNs in
all layers L. Then KCM merges the results of R2D2 across
all layers. The top k filters are selected and the rest will be
masked to zero. Note that given a FLOPs constraint C, k is
the total number of filters that satisfies constraint C. Finally,
we apply a scaling transformation in Kwon et al. (2022)
over the selected filters to recover the accuracy drop and
reduce the feature map loss in Equation 4. Next, we discuss
our framework in more detail.

3.2. Kernelized Convex Masking(KCM)

Algorithm 1 illustrates the end-to-end approach. We first
present the details of the proposed R2D2. Then, we discuss
how we use these rankings for the final masking.

3.2.1. REPRESENTATIVE RANKING (R2)

By considering H(1)
` = σ(xW

(1)
` + b

(1)
`), Equation 1 can

be written as FFN`(H
(1)
`) = H

(1)
` W

(2)
` + b

(2)
` . Our filter

Representative Ranking assumes H(1)
` is unknown and only

uses the weights W (2)
` to rank the N filters.

From the computational geometry perspective the filters in
W

(2)
` ∈ RN×d can be considered as N data points in a

d dimensional space. The structured pruning goal can be
translated as selecting a subset of data points (filters) to
be used as representatives that can describe any data point
(filter) in the dataset. There has been a lot of work on finding
such a representative set (Kazemi et al., 2022; Killamsetty
et al., 2021; You et al., 2020). However, for linear functions,
this problem can be reduced to finding a convex hull. The
convex hull is a subset of data points that can be used to
find the maxima of any linear function. Since FFN`(H

(1)
`)

is, in fact, a linear function, the convex hull of W (2)
` can be

considered as a representative of the filters that produce the
maxima of FFN` regardless of the input H(1)

` .

The challenge is that in a d dimensional space finding the
exact convex hull is in order of O(Nd/2) time, which can
be very expensive (e.g. in BERTBASE , d=768). Moreover,
the number of convex hull data points radically increases
with the number of dimensions. To address these limitations,

3

Gradient-Free Structured Pruning with Unlabeled Data

Table 1. Comparison of the different structured pruning methods studied in this work. 7, and Xshow if a method has the specific feature or
not. N/A means not applicable. To simplify notation, we show gradient-free with (!∇). Supervision-free indicates not using labeled data.

Method Gradient-free (!∇) Retrain/Finetune-free Supervision-free Pruning time ≤ 7min
FLOP (Wang et al., 2019) 7 7 7 7

SLIP (Lin et al., 2020) 7 7 7 7
Sajjad et al. (Sajjad et al., 2023) 7 7 7 7
DynaBERT (Hou et al., 2020) 7 7 7 7

EBERT (Liu et al., 2021b) 7 7 7 7

Mask-Tuning (Kwon et al., 2022) 7 X 7 X
Weight-Magnitude (Li et al., 2016) X X N/A X

Weight-Magnitude-Scale X X X X
KCM (ours) X X X X

rather than finding the exact solution, we propose to assign
a ranking over the filters that represents how well a filter is
representing others.

Convex hull approximation is well-studied area. Among
existing methods Kernelized Convex Hull Approximation
(KCHA) (Huang et al., 2018) is one of the approaches that
can be applied to our problem. Algorithm 2 shows the pro-
posed Representative Ranking based on the KCHA. Specifi-
cally for each layer `, we seek a positive coefficient matrix
C ∈ RN×N that minimizes ‖W (2)

` −W (2)
` C‖2. The diago-

nal elements of C indicate whether the corresponding data
instances are extreme points. Huang et al. (2018) solves this
problem as a Semi-NMF problem (Ding et al., 2008), rather
than a Non-negative Least Square problem, and adopts a
multiplicative updating rule as the solver:

Ci+1 = Ci ◦

√√√√ [W
(2)T

` W
(2)
`]+ + [W

(2)T

` W
(2)
`]−Ci

[W
(2)T

` W
(2)
`]− + [W

(2)T

` W
(2)
`]+Ci

(6)
where [A]+ = A+|A|

2 , [A]− = A−|A|
2 , and |A| is the abso-

lute values of A. Please refer to Huang et al. (2018) for
more detail.

W
(2)T

` W
(2)
` can be considered as K(W

(2)
` ,W

(2)
`). In this

paper, we use a Gaussian kernel. Since the kernel value
is positive and K(W

(2)
` ,W

(2)
`) = 1, the updating rule of

Semi-NMF algorithm can be modified as:

Ci+1 = Ci ◦

√√√√ K(W
(2)
` ,W

(2)
`)

K(W
(2)
` ,W

(2)
`)Ci

(7)

Algorithm 2 illustrates the steps of the Representative Rank-
ing, where for each layer the coefficient matrix C is inde-
pendently calculated using Equation 7. The algorithm then
returns the diagonal of C as the ranking score of the filters.
The width of the Gaussian kernel σ, and the convergence
rate α are hyperparameters. In our experiments, we observe
that setting σ = 1.0 and α = 0.01 works for all tasks con-
sidered. Moreover, on average it takes less than 20 iterations
to converge.

3.2.2. DATA-DRIVEN RANKING (D2)

Representative Ranking (R2) assumes H(1)
` is unknown and

ranks the filters solely based on the weights W (2)
` . One

could imagine using a similar ranking approach over W (1)T

`

to rank the N filters. However, as mentioned, the convex
hull is only a good representative for finding the maxima
of any linear function, and the activation function σ makes
H

(1)
` nonlinear.

Therefore, to incorporate the nonlinearity introduced by the
activation function, Data-Driven (D2) performs a forward
pass using sampled unlabeled data, and gathers statistics
on the output results of each layer H(1)

` . It then uses the
normalized average of these outputs to rank filters in each
layer (Algorithm 1 lines (5 to 7)).

3.2.3. MERGE AND SCALE

Thus far, KCM ranks N filters of each layer independently
by the filter Representative Ranking (R2) and Data-Driven
Ranking (D2). In every layer, R2D2 combines the scores
of R2 and D2 to capture the importance of filters based on
the model weights and the layer outputs of the raw data
(Algorithm 1 line 9). In our experiments, we run an ablation
study to present the importance of these rankings.

Given a FLOPs constraint C, let k be the total number of
filters that satisfy C. In other words, the pruned model
only should have k active filters across all layers and the rest
should be removed. As shown in Algorithm 1, KCM merges
the R2D2 scores (SR2D2) across layers, and the top k filters
are selected to be active in the pruned model (Algorithm 1
lines 10-12).

Since after masking some accuracy drop is inevitable, exist-
ing structured pruning methods have shown that scaling can
be helpful. Thus, similar to Kwon et al. (2022) as shown in
Figure 1, we apply a scaling transformation to the selected
filters. Such scaling uses only the unlabeled data and, based
on the generated mask, aims to reconstruct the layer-wise
outputs by scaling the outputs of the active filters. This, in
fact, reduces the feature map loss in Equation 4.

4

Gradient-Free Structured Pruning with Unlabeled Data

Table 2. Accuracy degradation of pruning BERTBASE using our method and the prior structured pruning methods with different relative
FLOPs. Note that our method is gradient-free (!∇), does not use label of the data and not require retraining (more detail in Table 1)

!∇ Method QQP QNLI SST-2 MRPC
∼60% ∼65% 75% ∼60% ∼65% 75% ∼60% ∼65% 75% ∼60% ∼65% 75%

7 FLOP − − − − -2.6 − − -0.6 − − -2.3 −
7 SLIP -1.7 -0.9 − -2.1 -0.9 − -1.0 -0.9 − -1.0 -2.8 −
7 Sajjad − -0.4 − − -1.4 − − -1.8 − − -8.6 −
7 DynaBERT − − − − − − − − -0.6 − − -1.7
7 EBERT -0.4 − − -1.3 − -1.0 − − − − − −
7 Mask-Tuning -0.65 -0.42 -0.14 -1.35 -0.89 -0.18 -1.08 -0.91 -0.68 -1.72 -0.24 -0.14
X KCM (Ours) -1.85 -.99 -0.35 -3.62 -1.72 -0.78 -2.46 -1.71 -0.68 -1.96 -1.47 -0.71

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

QQP

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

QNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

SST-2

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

STS-B

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

MNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

MRPC

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

SQuAD1.1

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

SQuAD2.0

BERTBASE KCM (Ours) Mask-Tuning Weight-Magnitude-Scale Weight-Magnitude

Figure 2. Performance of our pruning framework KCM against Mask-Tuning (Kwon et al., 2022), Weight-Magnitude (Li et al., 2016),
and Weight-Magnitude-Scale on BERTBASE . Weight-Magnitude-Scale combines (Li et al., 2016) with the scaling approach from (Li
et al., 2016). Mask-Tuning uses labeled data but KCM and Weight-Magnitude-Scale are gradient-free with unlabeled data (Table 1).
KCM outperforms Weight-Magnitude and Weight-Magnitude-Scale which highlights the effectiveness of our approach in the absence of
labeled data. For 70% and 60% FLOPs constraints, Mask-Tuning that uses labeled data performs slightly better than KCM. Table 3 shows
this gap more clearly.

4. Evaluation
4.1. Experimental Setup

We implemented our framework with PyTorch (Paszke et al.,
2019) using the HuggingFace Transformers (Wolf et al.,
2020) library. We evaluate the effectiveness of the proposed
approach using BERTBASE (Devlin et al., 2018) and Distil-
BERT (Sanh et al., 2019) on GLUE (Wang et al., 2018) and
SQuAD (Rajpurkar et al., 2018; 2016) benchmarks.

For the Data-Driven ranking we use 2K raw data from the
training sets. Note that we only use raw input and no label
is used. Figure 6, in Appendix B, shows how sample size
affects our performance. For the Representative Ranking cal-

culation in Algorithm 2, the width of the Gaussian kernel,
σ, and the convergence rate, α, are the hyperparameters. In
our experiments, we set σ = 1.0 and α = 0.01. Moreover,
on average it takes less than 20 iterations to converge. All
results are averaged over the runs with 10 different seeds.
Please refer to Appendix A for more detail on experimental
setup.

Baselines from structured pruning methods: Table 1,
shows the comparison of the different structured pruning
methods specialized for Transformers studied in this work.
We compare these methods by 4 important features, includ-
ing gradient-free (no backward pass), retrain/finetune-free
(no retrain/finetune), supervision-free (no use of labeled
data), and fast pruning-time. We compare our proposed

5

Gradient-Free Structured Pruning with Unlabeled Data

Table 3. Performance of our pruning framework KCM against Mask-Tuning (Kwon et al., 2022) on BERTBASE , for 70% and 60% FLOPs
constraints. Mask-Tuning that uses labeled data performs slightly better than KCM. Unlike Mask-Tuning, KCM is gradient-free(!∇) with
unlabeled data.

!∇ Method QQP MNLI MRPC QNLI
60% 70% 60% 70% 60% 70% 60% 70%

baseline 91.00 84.53 86.27 91.41
7 Mask-Tuning 90.38± 0.07 90.74± 0.07 82.26± 0.21 83.24± 0.16 84.51± 0.63 85.91± 0.40 90.00± 0.26 90.83± 0.16
X KCM (Ours) 89.15± 0.04 90.39± 0.04 77.24± 0.10 81.18± 0.10 84.19± 0.44 84.46± 0.29 87.79± 0.15 90.58± 0.08

!∇ Method SST-2 STS-B SQuAD1.1 SQuAD2.0

60% 70% 60% 70% 60% 70% 60% 70%
baseline 93.57 88.59 88.48 76.82

7 Mask-Tuning 92.47± 0.41 92.92± 0.26 87.95± 0.12 88.40± 0.05 85.77± 0.41 87.57± 0.11 73.86± 0.55 76.00± 0.29
X KCM (Ours) 91.11± 0.23 92.26± 0.09 85.72± 0.12 86.66± 0.05 81.29± 0.06 85.89± 0.04 70.30± 0.13 75.24± 0.10

Table 4. Performance of our pruning framework KCM against Mask-Tuning (Kwon et al., 2022) on DistilBERT, for 70% and 60% FLOPs
constraints. Even though Mask-Tuning uses labeled data, for SQUAD2.0 task, KCM performs better than Mask-Tuning, and the results of
both approaches on QQP, and STS-B are comparable.

!∇ Method QQP MNLI MRPC QNLI
60% 70% 60% 70% 60% 70% 60% 70%

baseline 89.99 82.11 84.80 88.56
7 Mask-Tuning 88.71± 0.22 89.66± 0.06 80.51± 0.19 81.65± 0.09 84.73± 0.71 84.83± 0.35 87.72± 0.38 88.43± 0.07
X KCM (Ours) 88.16± 0.03 89.28± 0.03 78.05± 0.08 80.60± 0.05 79.66± 0.27 83.01± 0.16 85.93± 0.09 86.93± 0.13

!∇ Method SST-2 STS-B SQuAD1.1 SQuAD2.0

60% 70% 60% 70% 60% 70% 60% 70%
baseline 91.40 86.12 85.73 68.84

7 Mask-Tuning 90.44± 0.41 90.93± 0.24 85.73± 0.07 85.96± 0.10 83.20± 0.16 84.64± 0.09 62.36± 1.40 65.32± 0.48
X KCM (Ours) 88.38± 0.25 90.61± 0.25 85.26± 0.02 85.55± 0.03 76.92± 0.11 82.65± 0.06 64.56 ± 0.11 68.19 ± 0.06

method with Flop (Wang et al., 2019), SLIP (Lin et al.,
2020), Sajjad et al. (Sajjad et al., 2023), DynaBERT (Hou
et al., 2020), and EBERT (Liu et al., 2021b). All of these
techniques require retraining of the pruned model and/or
jointly learning the pruning configurations during training,
which leads to high training time, and they are not gradient-
free. Specifically, as shown in Kwon et al. (2022) these
methods require 5 to 33 hours of retraining.

Mask-Tuning (Kwon et al., 2022) is a recent work that does
not need retraining but still relies on the labeled data and
uses gradient computation to evaluate the importance of
each filter. We also compare our method with Weight-
Magnitude (Li et al., 2016), which is a light-structured
pruning method that is gradient-free, does not retrain the
pruned model, and does not use the data at all. We intro-
duce Weight-Magnitude-scale that combines Li et al. (2016)
with the scaling approach from Li et al. (2016). Note that
the scaling step in Li et al. (2016) only needs unlabeled
data, so Weight-Magnitude-scale will have the exact prob-
lem setup as our method 1. We would like to highlight that
our method KCM, Mask-Tuning, Weight-Magnitude, and
Weight-Magnitude-scale finish in less than 7 minutes across
all tasks, which is 2 to 3 orders of magnitude faster than the
other baselines. We evaluate the performance of our method
against all these baselines by the FLOPs-accuracy trade-off
of BERTBASE on the GLUE and SQuAD benchmarks. In
the experimental results, to simplify the notation, we will

indicate gradient-free with (!∇).

4.2. Experimental Results

Table 2 compares the accuracy drop of KCM against prior
structured pruning methods in Table 1. Since the baseline
accuracy differs slightly from paper to paper, we compare
the amount of the accuracy drop from the baseline instead
of the absolute accuracy. Similar to Kwon et al. (2022),
we use the results without knowledge distillation and data
augmentation reported in each paper since these add extra
overhead. As one can see, the highest accuracy drop of
KCM across all task is −3.62 which reduces 40% of the
original FLOPs. Worth mentioning that, while all the base-
lines require labeled data and leverage the backward pass,
our proposed method is gradient-free with unlabeled data.

Next, we perform a more thorough evaluation against Mask-
Tuning (Kwon et al., 2022), Weight-Magnitude (Li et al.,
2016) and Weight-Magnitude-Scale, since their problem
setup is closer to ours (Table 1). Figure 2 shows the results
on BERTBASE as we vary the FLOPs constraint from 90%
to 60%, i.e, reducing 10% to 40% of the original FLOPs.
Clearly, KCM outperforms Weight-Magnitude and Weight-
Magnitude-Scale, highlighting the effectiveness of our ap-
proach in the absence of labeled data. For the 70% and 60%
FLOPs constraints, Mask-Tuning performs slightly better
than ours. Table 3 shows the gap more clearly. This gap can

6

Gradient-Free Structured Pruning with Unlabeled Data

0.60 0.65 0.70 0.75 0.80 0.85 0.90
87

88

89

90

91

Ac
cu

ra
cy

QQP

0.60 0.65 0.70 0.75 0.80 0.85 0.90
40

50

60

70

80

Ac
cu

ra
cy

MNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
30

40

50

60

70

80

Ac
cu

ra
cy

MRPC

0.60 0.65 0.70 0.75 0.80 0.85 0.90

84

86

88

90

92

Ac
cu

ra
cy

QNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

87

88

89

90

91

92

93

94

Ac
cu

ra
cy

SST-2

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

84

85

86

87

88

89
Ac

cu
ra

cy
STS-B

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

65

70

75

80

85

Ac
cu

ra
cy

SQuAD1.1

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

30

40

50

60

70

Ac
cu

ra
cy

SQuAD2.0

KCM R2-only D2-only

Figure 3. Ablation Study to investigate the importance of our ranking techniques. D2-only, and R2-only are our KCM that either uses
Data-Driven or Representative Ranking. R2-only performs better than D2-only in all tasks except STS-B. But KCM that combines them
by R2D2 is able to leverage both of these rankings and shows improvement across all tasks considered.

be explained by the fact that, unlike Mask-Tuning, KCM is
gradient-free with unlabeled data.

We further evaluate the performance of KCM against Mask-
Tuning (Kwon et al., 2022) on DistilBERT for the 70% and
60% FLOPs constraints. As shown in Table 4, interest-
ingly, even though Mask-Tuning leverages the backward
pass and labeled data, the proposed KCM performs better
than Mask-Tuning on the SQUAD2.0 benchmark. Moreover
the results of both approaches on QQP, and STS-B are quite
comparable, showing that even without labeled data and no
backward pass the accuracy loss of the pruned model by our
KCM method can be minimal.

4.3. Ablation Studies

Importance of our ranking techniques: R2D2 is the
core component of our proposed approach KCM that com-
bines the ranking of Representative Ranking (R2) and Data-
Driven (D2) (Section 3). We run an ablation study to inves-
tigate the importance of these ranking techniques. Recall
that R2 ranks N filters based on the weights of the FFNs,
while D2 ranks them by the output of the activation function.
Figure 3 illustrates how the performance changes if we only
use one of these in our framework. While D2-only is our
KCM without the R2, R2-only only uses the R2 ranking. As
one can see, except in STS-B where D2-only slightly outper-
forms KCM, using R2-only performs better than D2-only.
More importantly, when R2D2 combines them it allows our
KCM to leverage both rankings and demonstrates improve-

ment across all tasks. Note that the results of D2-only also
confirm that using only the output of the activation func-
tions is not always sufficient for pruning and highlights the
impact of using the trained model weights (More results in
Figure 5).

Dynamic neuron selection: Another important feature of
our KCM is the fact that it dynamically decides how many
neurons from each layer to prune. This feature is an out-
come of merging the result of R2D2 across all L layers.
Figure 4 illustrates how KCM affects different layers of
the BERTBASE . Clearly more pruning occurs over the last
three layers, and more than half of the filters in the first two
layers are pruned. From KCM point of view, the middle
layers seem to be more important across all tasks.

4.4. Discussion

Our KCM is a gradient-free structured pruning framework
that neither requires retraining nor labeled data. Here we
would like to discuss what if we have a limited labeled data
and how our approach can be extended to leverage that.

Recall that R2D2 uses the statistics from the unlabeled data
to rank filters based on layer-wise output. Thus a simple
add-on would be to freeze the trained model, use the limited
labeled data and only do one forward-backward pass and
gather the gradient over the mask variables. Note that unlike
Mask-Tuning (Kwon et al., 2022), we do not calculate the
Fisher information since we just want to use the gradient
as the new signal for the pruning. To do so, for example

7

Gradient-Free Structured Pruning with Unlabeled Data

layer_1 layer_2 layer_3 layer_4 layer_5 layer_6 layer_7 layer_8 layer_9 layer_10 layer_11 layer_12
0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f P
ru

ne
d

Fil
te

rs

QQP
MNLI

QNLI
MRPC

SST-2
STS-B

SQuAD1.1
SQuAD2.0

Figure 4. Ablation Study to investigate how many filters from each layer are pruned by KCM on BERTBASE . While middle layers seems
to less get affected by KCM, many filters from the last three layers and first layer are pruned.

1) the gradient information can be used as a new ranking
criteria that can be combined into our R2D2 or 2) one can
use it to refine the top-k results of our KCM. Specifically,
let us assume fi be the least important filter in top-k result
of the KCM, and fj be the most important one from the
gradient scores. If fj is not already in the top-k results, we
can switch fi with fj if the total gradient of the top-k results
increases.

We implemented this simple greedy solution as an add-on to
our KCM and show that indeed having a limited labeled data
contributes to improve the accuracy drop. Table 5 shows the
result on DistilBERT where only 512 sampled label data is
available. Since this is out of the scope of this work, We
leave a more thorough investigation as a future work.

5. Related Work
There has been a lot of work on efficient transformers that
improve inference speed and reduce memory usage, includ-
ing efficient architecture design (Kitaev et al., 2020; Ian-
dola et al., 2020; Sun et al., 2020; Wang et al., 2020b; Wu
et al., 2020; Fakoor et al., 2020a; Lan et al., 2019; Lee et al.,
2022), neural architecture search (So et al., 2021; Chen et al.,
2020a; So et al., 2019; Wang et al., 2020a; Xu et al., 2021;
Yin et al., 2021), knowledge distillation (Sun et al., 2020;
Jiao et al., 2019; Sanh et al., 2019; Sun et al., 2019; Fakoor
et al., 2020b), quantization (Kim et al., 2021; Shen et al.,
2020; Zadeh et al., 2020; Zafrir et al., 2019), and hardware-
software co-design (Ham et al., 2021; Tambe et al., 2021;
Wang et al., 2021; Gu et al., 2022; Shi et al., 2018).

Pruning is an important area of research for model spar-
sity that removes insignificant weights in neural networks.
While Kurtic et al. (2022); Sanh et al. (2020); Gale et al.
(2019); Zhang et al. (2022) proposed second-order, first-

order, and magnitude-based pruning methods for Transform-
ers, Chen et al. (2020b;c); Prasanna et al. (2020) explored
the lottery ticket hypothesis. These methods can signifi-
cantly reduce the model size; however, they might not offer
significant inference speedup since the hardware and cannot
efficiently utilize the unstructured sparse patterns.

Structured pruning methods, on the other hand, target re-
moving groups of parameters. For example, low-rank fac-
torization (Gu et al., 2022; Wang et al., 2019), corsets based
techniques (Mussay et al., 2021; 2019; Liebenwein et al.,
2019; Baykal et al., 2018), block-wise sparsity (Li et al.,
2020), and tile-wise sparsity (Guo et al., 2020a) prune struc-
tured sets of parameters in weight matrices. Additionally,
attention head pruning (Michel et al., 2019; Voita et al.,
2019) and layer dropping (Fan et al., 2019; Sajjad et al.,
2023; Peer et al., 2022) have been commonly used as more
coarse-grained methods. Recent research has also explored
combining different pruning granularity and principles to
maximize model efficiency in all dimensions (Chen et al.,
2021; Khetan & Karnin, 2020; Lagunas et al., 2021; Lin
et al., 2020; Liu et al., 2021a; Xia et al., 2022; Yao et al.,
2021). Another approach is to dynamically prune Trans-
formers during inference time (Fan et al., 2019; Hou et al.,
2020; Liu et al., 2021b; Xin et al., 2020; Zhou et al., 2020).

Even though structured pruning methods can be effective
for compression and speedup, they can be difficult to im-
plement in practice due to the high computational cost and
complexity of the process. Additional training during or
after pruning can be up to 10 times more expensive than
original model training (Lagunas et al., 2021; Xia et al.,
2022), and the pruning pipeline often requires rewriting the
training code and involves many additional hyperparameters
to adjust (Hou et al., 2020; Lan et al., 2019; Liu et al., 2021a;
Yao et al., 2021).

8

Gradient-Free Structured Pruning with Unlabeled Data

Table 5. How few labeled data improves accuracy of our pruning framework KCM on DistilBERT.

!∇ Method QQP MNLI MRPC QNLI
60% 70% 60% 70% 60% 70% 60% 70%

baseline 89.99 82.11 84.80 88.56
7 Mask-Tuning 88.71± 0.22 89.66± 0.06 80.51± 0.19 81.65± 0.09 84.73± 0.71 84.83± 0.35 87.72± 0.38 88.43± 0.07
X KCM 88.16± 0.03 89.28± 0.03 78.05± 0.08 80.60± 0.05 79.66± 0.27 83.01± 0.16 85.93± 0.09 86.93± 0.13
7 Extension(512 labeled data) 88.76± 0.25 89.45± 0.07 80.02± 0.25 81.37± 0.11 83.70± 1.40 84.49± 0.49 87.21± 0.54 88.21± 0.15
7 Extension(1k labeled data) 88.92± 0.20 89.53± 0.08 80.41± 0.11 81.50± 0.12 84.17± 0.45 84.68± 0.49 87.60± 0.31 88.29± 0.16

!∇ Method SST-2 STS-B SQuAD1.1 SQuad2.1
60% 70% 60% 70% 60% 70% 60% 70%

baseline 91.40 86.12 85.73 68.84
7 Mask-Tuning 90.44± 0.41 90.93± 0.24 85.73± 0.07 85.96± 0.10 83.20± 0.16 84.64± 0.09 62.36± 1.40 65.32± 0.48
X KCM 88.38± 0.25 90.61± 0.25 85.26± 0.02 85.55± 0.03 76.92± 0.11 82.65± 0.06 64.56± 0.11 68.19± 0.06
7 Extension(512 labeled data) 89.32± 0.54 90.38± 0.35 85.83± 0.11 86.02± 0.07 81.41± 0.26 83.30± 0.09 66.51± 0.24 67.72± 0.18
7 Extension(1k labeled data) 89.86± 0.56 90.62± 0.40 85.90± 0.11 86.04± 0.06 81.16± 0.22 83.34± 0.11 66.35± 0.32 67.74± 0.18

To tackle this, post-training model compression has been
recently studied in Kwon et al. (2022); Hubara et al. (2021);
Frantar & Alistarh (2022). While Hubara et al. (2021; 2020);
Banner et al. (2019) improves post training neural quantiza-
tion, Kwon et al. (2022) proposed a fast post-training struc-
tured pruning framework for Transformers. Even though
this approach avoids expensive retraining, it requires labeled
data in the pruning pipeline.

Pruning in an unsupervised setting has been studied in Guo
et al. (2020b); Browne et al. (2020; 2021) for spiking neural
networks and fully-connected layers; however, the pruning
either happens during training or still requires retraining
of the pruned model. In contrast, our structured pruning
method neither requires retraining nor labeled data.

nsupervised: (Guo et al., 2020b) proposed an unsupervised
online adaptive weight pruning method that dynamically
removes non-critical weights from a spiking neural network
(SNN). (Browne et al., 2020; 2021) uses unsupervised k-
means clustering to detect clusters of similar filters, and
nodes in fully-connected layers, and prunes those that are
redundant. (Aghasi et al., 2020): convex post-processing
module, which prunes (sparsifies) a trained network layer
by layer, while preserving the internal responses.

representative selection problem, low rank decomposition:
There has been a lot of work on finding such a representative
set (Kazemi et al., 2022; Killamsetty et al., 2021; You et al.,
2020) that require training. However since W (2)

` H
(1)
` + b

(2)
`

is a linear function this problem can be reduced to finding
convex hull over W (2)

` .

6. Conclusion
In this work, we studied the problem of structured pruning
with unlabeled data and no backward pass. We proposed a
gradient-free structured pruning framework that prunes the
filters with the help of our proposed R2D2 that combines
two ranking techniques called Representative Ranking (R2)
and Data-Driven (D2). We empirically evaluated our frame-

work on GLUE and SQuAD benchmarks using BERTBASE

and DistilBERT. Compared to when the labeled data is avail-
able, our approach achieved up to 40% FLOPs reduction
with less than 4% accuracy loss over all tasks considered.

References
Aghasi, A., Abdi, A., and Romberg, J. Fast convex pruning

of deep neural networks. SIAM Journal on Mathematics
of Data Science, 2(1):158–188, 2020.

Banner, R., Nahshan, Y., and Soudry, D. Post training
4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019.

Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman,
D., and Rus, D. Data-dependent coresets for compress-
ing neural networks with applications to generalization
bounds. arXiv preprint arXiv:1804.05345, 2018.

Browne, D., Giering, M., and Prestwich, S. Pulsenetone:
fast unsupervised pruning of convolutional neural net-
works for remote sensing. Remote Sensing, 12(7):1092,
2020.

Browne, D., Giering, M., and Prestwich, S. Unsupervised
pulsenet: Automated pruning of convolutional neural net-
works by k-means clustering. In International Conference
on Machine Learning, Optimization, and Data Science,
pp. 172–184. Springer, 2021.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. Semantic textual similarity-multilingual and cross-
lingual focused evaluation. In Proceedings of the 2017
SEMVAL International Workshop on Semantic Evaluation
(2017). https://doi. org/10.18653/v1/s17-2001, 2017.

Chen, D., Li, Y., Qiu, M., Wang, Z., Li, B., Ding, B.,
Deng, H., Huang, J., Lin, W., and Zhou, J. Adabert:
Task-adaptive bert compression with differentiable neural
architecture search. arXiv preprint arXiv:2001.04246,
2020a.

9

Gradient-Free Structured Pruning with Unlabeled Data

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang,
Z., and Carbin, M. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural information
processing systems, 33:15834–15846, 2020b.

Chen, T., Cheng, Y., Gan, Z., Yuan, L., Zhang, L., and
Wang, Z. Chasing sparsity in vision transformers: An
end-to-end exploration. Advances in Neural Information
Processing Systems, 34:19974–19988, 2021.

Chen, X., Cheng, Y., Wang, S., Gan, Z., Wang, Z., and Liu,
J. Earlybert: Efficient bert training via early-bird lottery
tickets. arXiv preprint arXiv:2101.00063, 2020c.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine Learning
Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entail-
ment: First PASCAL Machine Learning Challenges Work-
shop, MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, pp. 177–190. Springer, 2006.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Ding, C. H., Li, T., and Jordan, M. I. Convex and semi-
nonnegative matrix factorizations. IEEE transactions on
pattern analysis and machine intelligence, 32(1):45–55,
2008.

Dolan, B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Third International
Workshop on Paraphrasing (IWP2005), 2005.

Fakoor, R., Chaudhari, P., Mueller, J., and Smola, A. J.
Trade: Transformers for density estimation. arXiv
preprint arXiv:2004.02441, 2020a.

Fakoor, R., Mueller, J. W., Erickson, N., Chaudhari, P., and
Smola, A. J. Fast, accurate, and simple models for tabu-
lar data via augmented distillation. Advances in Neural
Information Processing Systems, 33:8671–8681, 2020b.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556, 2019.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. arXiv preprint arXiv:2208.11580, 2022.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Ganesh, P., Chen, Y., Lou, X., Khan, M. A., Yang, Y., Sajjad,
H., Nakov, P., Chen, D., and Winslett, M. Compressing
large-scale transformer-based models: A case study on
bert. Transactions of the Association for Computational
Linguistics, 9:1061–1080, 2021.

Gu, J., Keller, B., Kossaifi, J., Anandkumar, A., Khailany,
B., and Pan, D. Z. Heat: Hardware-efficient automatic
tensor decomposition for transformer compression. arXiv
preprint arXiv:2211.16749, 2022.

Guo, C., Hsueh, B. Y., Leng, J., Qiu, Y., Guan, Y., Wang,
Z., Jia, X., Li, X., Guo, M., and Zhu, Y. Accelerating
sparse dnn models without hardware-support via tile-wise
sparsity. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–15. IEEE, 2020a.

Guo, W., Fouda, M. E., Yantir, H. E., Eltawil, A. M., and
Salama, K. N. Unsupervised adaptive weight pruning
for energy-efficient neuromorphic systems. Frontiers in
Neuroscience, 14:598876, 2020b.

Ham, T. J., Lee, Y., Seo, S. H., Kim, S., Choi, H., Jung, S. J.,
and Lee, J. W. Elsa: Hardware-software co-design for
efficient, lightweight self-attention mechanism in neural
networks. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 692–
705. IEEE, 2021.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., and
Liu, Q. Dynabert: Dynamic bert with adaptive width
and depth. Advances in Neural Information Processing
Systems, 33:9782–9793, 2020.

Huang, C., Wu, Y., Min, G., and Ying, Y. Kernelized convex
hull approximation and its applications in data description
tasks. In 2018 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2018.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Improving post training neural quantization: Layer-
wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J., and
Soudry, D. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems, 34:
21099–21111, 2021.

Iandola, F. N., Shaw, A. E., Krishna, R., and Keutzer,
K. W. Squeezebert: What can computer vision teach
nlp about efficient neural networks? arXiv preprint
arXiv:2006.11316, 2020.

10

Gradient-Free Structured Pruning with Unlabeled Data

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Kazemi, S. M., Tsitsulin, A., Esfandiari, H., Bateni, M., Ra-
machandran, D., Perozzi, B., and Mirrokni, V. Tackling
provably hard representative selection via graph neural
networks. arXiv preprint arXiv:2205.10403, 2022.

Khetan, A. and Karnin, Z. schubert: Optimizing elements
of bert. arXiv preprint arXiv:2005.06628, 2020.

Killamsetty, K., Zhao, X., Chen, F., and Iyer, R. Retrieve:
Coreset selection for efficient and robust semi-supervised
learning. Advances in Neural Information Processing
Systems, 34:14488–14501, 2021.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization. In
International conference on machine learning, pp. 5506–
5518. PMLR, 2021.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M.,
Fineran, B., Goin, M., and Alistarh, D. The optimal bert
surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259,
2022.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. arXiv preprint arXiv:2204.09656,
2022.

Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. M.
Block pruning for faster transformers. arXiv preprint
arXiv:2109.04838, 2021.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Lee, M., Han, K., and Shin, M. C. Littlebird: Efficient
faster & longer transformer for question answering. arXiv
preprint arXiv:2210.11870, 2022.

Levesque, H., Davis, E., and Morgenstern, L. The winograd
schema challenge. In Thirteenth international confer-
ence on the principles of knowledge representation and
reasoning, 2012.

Li, B., Kong, Z., Zhang, T., Li, J., Li, Z., Liu, H., and
Ding, C. Efficient transformer-based large scale language

representations using hardware-friendly block structured
pruning. arXiv preprint arXiv:2009.08065, 2020.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Liebenwein, L., Baykal, C., Lang, H., Feldman, D., and Rus,
D. Provable filter pruning for efficient neural networks.
arXiv preprint arXiv:1911.07412, 2019.

Lin, Z., Liu, J. Z., Yang, Z., Hua, N., and Roth, D.
Pruning redundant mappings in transformer models
via spectral-normalized identity prior. arXiv preprint
arXiv:2010.01791, 2020.

Liu, Y., Lin, Z., and Yuan, F. Rosita: Refined bert compres-
sion with integrated techniques. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 8715–8722, 2021a.

Liu, Z., Li, F., Li, G., and Cheng, J. Ebert: Efficient bert
inference with dynamic structured pruning. In Findings
of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 4814–4823, 2021b.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? Advances in neural information
processing systems, 32, 2019.

Miller, J., Krauth, K., Recht, B., and Schmidt, L. The effect
of natural distribution shift on question answering models.
In International Conference on Machine Learning, pp.
6905–6916. PMLR, 2020.

Mussay, B., Osadchy, M., Braverman, V., Zhou, S., and
Feldman, D. Data-independent neural pruning via core-
sets. arXiv preprint arXiv:1907.04018, 2019.

Mussay, B., Feldman, D., Zhou, S., Braverman, V., and
Osadchy, M. Data-independent structured pruning of
neural networks via coresets. IEEE Transactions on Neu-
ral Networks and Learning Systems, 33(12):7829–7841,
2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peer, D., Stabinger, S., Engl, S., and Rodrı́guez-Sánchez, A.
Greedy-layer pruning: Speeding up transformer models
for natural language processing. Pattern Recognition
Letters, 157:76–82, 2022.

Prasanna, S., Rogers, A., and Rumshisky, A. When bert
plays the lottery, all tickets are winning. arXiv preprint
arXiv:2005.00561, 2020.

11

Gradient-Free Structured Pruning with Unlabeled Data

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t
know: Unanswerable questions for squad. arXiv preprint
arXiv:1806.03822, 2018.

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. On the ef-
fect of dropping layers of pre-trained transformer models.
Computer Speech & Language, 77:101429, 2023.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. Advances in Neural Informa-
tion Processing Systems, 33:20378–20389, 2020.

Shankar, I., Nikhil, D., and Kornel, C. First quora
dataset release: question pairs (2017). URL https://www.
quora. com/q/quoradata/First-Quora-Dataset-Release-
Question-Pairs, 2017.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 8815–8821, 2020.

Shi, Y., Nguyen, L., Oh, S., Liu, X., Koushan, F., Jameson,
J. R., and Kuzum, D. Neuroinspired unsupervised learn-
ing and pruning with subquantum cbram arrays. Nature
communications, 9(1):1–11, 2018.

So, D., Le, Q., and Liang, C. The evolved transformer.
In International Conference on Machine Learning, pp.
5877–5886. PMLR, 2019.

So, D., Mańke, W., Liu, H., Dai, Z., Shazeer, N., and Le,
Q. V. Searching for efficient transformers for language
modeling. Advances in Neural Information Processing
Systems, 34:6010–6022, 2021.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression. arXiv preprint
arXiv:1908.09355, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984, 2020.

Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.-
Y., Donato, M., Sanh, V., Whatmough, P., Rush, A. M.,
Brooks, D., et al. Edgebert: Sentence-level energy op-
timizations for latency-aware multi-task nlp inference.
In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 830–844, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, H., Wu, Z., Liu, Z., Cai, H., Zhu, L., Gan, C.,
and Han, S. Hat: Hardware-aware transformers for
efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020a.

Wang, H., Zhang, Z., and Han, S. Spatten: Efficient sparse
attention architecture with cascade token and head prun-
ing. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 97–110.
IEEE, 2021.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020b.

Wang, Z., Wohlwend, J., and Lei, T. Structured pruning of
large language models. arXiv preprint arXiv:1910.04732,
2019.

Warstadt, A., Singh, A., and Bowman, S. R. Neural network
acceptability judgments. Transactions of the Association
for Computational Linguistics, 7:625–641, 2019.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-
art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 38–45.
Association for Computational Linguistics, 2020.

12

Gradient-Free Structured Pruning with Unlabeled Data

Wu, Z., Liu, Z., Lin, J., Lin, Y., and Han, S. Lite trans-
former with long-short range attention. arXiv preprint
arXiv:2004.11886, 2020.

Xia, M., Zhong, Z., and Chen, D. Structured pruning
learns compact and accurate models. arXiv preprint
arXiv:2204.00408, 2022.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. Deebert:
Dynamic early exiting for accelerating bert inference.
arXiv preprint arXiv:2004.12993, 2020.

Xu, J., Tan, X., Luo, R., Song, K., Li, J., Qin, T., and Liu,
T.-Y. Nas-bert: task-agnostic and adaptive-size bert com-
pression with neural architecture search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 1933–1943, 2021.

Yao, Z., Ma, L., Shen, S., Keutzer, K., and Mahoney,
M. W. Mlpruning: A multilevel structured pruning
framework for transformer-based models. arXiv preprint
arXiv:2105.14636, 2021.

Yin, Y., Chen, C., Shang, L., Jiang, X., Chen, X., and Liu, Q.
Autotinybert: Automatic hyper-parameter optimization
for efficient pre-trained language models. arXiv preprint
arXiv:2107.13686, 2021.

You, C., Li, C., Robinson, D., and Vidal, R. Self-
representation based unsupervised exemplar selection in
a union of subspaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

Zadeh, A. H., Edo, I., Awad, O. M., and Moshovos, A.
Gobo: Quantizing attention-based nlp models for low la-
tency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 811–824. IEEE, 2020.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pp. 36–39.
IEEE, 2019.

Zhang, Q., Zuo, S., Liang, C., Bukharin, A., He, P., Chen,
W., and Zhao, T. Platon: Pruning large transformer mod-
els with upper confidence bound of weight importance.
In International Conference on Machine Learning, pp.
26809–26823. PMLR, 2022.

Zhou, W., Xu, C., Ge, T., McAuley, J., Xu, K., and Wei,
F. Bert loses patience: Fast and robust inference with
early exit. Advances in Neural Information Processing
Systems, 33:18330–18341, 2020.

13

Gradient-Free Structured Pruning with Unlabeled Data

A. Experimental Details
We implemented our framework with PyTorch (Paszke et al., 2019) using the HuggingFace Transformers (Wolf et al., 2020)
library. We fine-tuned the pre-trained checkpoints of the BERTBASE (Devlin et al., 2018) and DistilBERT (Sanh et al.,
2019) downloaded from the HuggingFace repository on GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2018;
2016) benchmarks.

GLUE (Wang et al., 2018) includes following tasks. 1)Sentence similarity (QQP (Shankar et al., 2017), MRPC (Dolan
& Brockett, 2005), STS-B (Cer et al., 2017)) with 364K, 4k and 6k training examples. 2) Sentiment classification (SST-
2 (Socher et al., 2013)) with 67K training example, 3)Textual entailment (RTE (Dagan et al., 2006)) with 3K training
examples. 4) Natural language inference (MNLI (Williams et al., 2017), QNLI (Rajpurkar et al., 2016)) with 392K, 105K
training examples. We exclude CoLA (Warstadt et al., 2019) and WLNI (Levesque et al., 2012) due to their unstable
behaviors. SQuAD 1.1 (Rajpurkar et al., 2016) and SQuAD 2.0 (Rajpurkar et al., 2018) are question and answering
tasks, each of which contains 88K and 130K training examples. SQuAD2.0 is an extension of SQuAD1.1 by including
unanswerable questions whose answers are not stated in the given contexts.

All results are the averaged over the runs with 10 different seeds. For SQuAD tasks we report F1 score and for all GLUE
tasks except STS-B we report accuracy. For STS-B we report Spearman Correlation.

For Pruning we only use 2K raw data from the training sets. Note that we only use the input features and not their labels.
For our Representative Ranking calculation, in Algorithm 2, the width of Gaussian kernel σ, and convergence rate α are the
hyperparameters. In our experiments, we set σ = 1.0 and α = 0.01. On the average it only takes less than 20 iterations to
converge.

B. More Experimental Results
B.1. Comparison with Gradient-free, Retrain-free, Supervision-free Baselines

Figure 5 shows the performance of KCM against Weight-magnitude, and layer-wise Output-magnitude using BERTBASE on
GLUE and SQuAD tasks. All these methods are gradient-free (no backward pass), retrain-free (no retrain), supervision-free
(no labeled data), and run in a matter of minutes. Clearly, KCM outperforms across all tasks considered.

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

QQP

0.60 0.65 0.70 0.75 0.80 0.85 0.90
30

40

50

60

70

80

Ac
cu

ra
cy

MNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
30

40

50

60

70

80

Ac
cu

ra
cy

MRPC

0.60 0.65 0.70 0.75 0.80 0.85 0.90
60

65

70

75

80

85

90

Ac
cu

ra
cy

QNLI

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

70

75

80

85

90

Ac
cu

ra
cy

SST-2

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

76

78

80

82

84

86

88

Ac
cu

ra
cy

STS-B

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

80

Ac
cu

ra
cy

SQuAD1.1

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative FLOPs

20

30

40

50

60

70

Ac
cu

ra
cy

SQuAD2.0

KCM Weight-Magnitude Output-Magnitude

Figure 5. KCM outperforms Weight-magnitude, and outputs-magnitude across all GLUE and SQuAD tasks.

B.2. Impact of Unlabeled Data Sample Size

Figure 6 shows how the performance of KCM on DistilBERT changes while we varied unlabeled data sample size.

14

Gradient-Free Structured Pruning with Unlabeled Data

1000 2000 3000 4000
88.00

88.05

88.10

88.15

88.20
Ac

cu
ra

cy
QQP

1000 2000 3000 4000

77.6

77.8

78.0

78.2

78.4

Ac
cu

ra
cy

MNLI

1000 2000 3000 4000
79.2

79.4

79.6

79.8

80.0

Ac
cu

ra
cy

MRPC

1000 2000 3000 4000

85.6

85.8

86.0

86.2

86.4

Ac
cu

ra
cy

QNLI

1000 2000 3000 4000
 Number of Samples

87.6

87.8

88.0

88.2

88.4

88.6

88.8

89.0

Ac
cu

ra
cy

SST-2

1000 2000 3000 4000
 Number of Samples

85.20

85.25

85.30

85.35

85.40

Ac
cu

ra
cy

STS-B

1000 2000 3000 4000
 Number of Samples

76.6

76.8

77.0

77.2

77.4

Ac
cu

ra
cy

SQuAD1.1

1000 2000 3000 4000
 Number of Samples

64.0

64.2

64.4

64.6

64.8

65.0

Ac
cu

ra
cy

SQuAD2.0

Figure 6. Performance of KCM on DistilBERT by varying unlabeled data sample size.

B.3. Speedup

We evaluated the latency on real hardware and obtained the speedup of KCM on BERTBASE on a single NVIDIA V100
GPU for 60% Flops constraint:

Table 6. Speedup of KCM on BERTBASE on a single NVIDIA V100 GPU for 60% Flops constraint.

Method QQP MNLI MRPC QNLI SST-2 STS-B SQuAD1.1 SQuAD2.0

speedup 1.58x 1.46x 1.53x 1.57x 1.58x 1.59x 1.47x 1.44x

C. SQuAD1.1 Task on BERTLARGE

We conducted additional experiments on a larger-scale model, BERTLARGE over SQuAD1.1. The results in Table 7 indicate
that our method outperforms unsupervised baselines, providing further evidence of its efficacy.

Table 7. KCM outperforms Weight-magnitude, and Weight-magnitude-Scale on BERTLARGE over SQuAD1.1.

Method 60% 70% 80% 90%
Weight-Magnitude (Li et al., 2016) 2.3029 2.8365 4.5763 52.5013

Weight-Magnitude-Scale 2.3178 24.6811 83.6422 91.4438
KCM (ours) 85.86± 0.14 88.57± 0.06 91.40± 0.04 92.72± 0.03

Table 8. How few labeled data improves accuracy of our pruning framework KCM on BERTLARGE for SQuAD1.1.

Method 60% 70% 80% 90%
KCM 85.86± 0.14 88.57± 0.06 91.40± 0.04 92.72± 0.03

Extension(512 labeled data) 89.44± 0.1 91.85± 0.06 92.40± 0.05 93.00± 0.01
Extension(1k labeled data) 89.48± 0.16 91.92± 0.07 92.69± 0.02 93.17± 0.04

D. Train-Test Data Discrepancy
We ran new experiments with a new dataset called new-Wiki to further evaluate the effectiveness of the proposed method
under training-test data discrepancy. As outlined in Miller et al. (2020), new-Wiki is different from the original SQuAD1.1

dataset and was generated using the Wikipedia dataset.

15

Gradient-Free Structured Pruning with Unlabeled Data

We explored various scenarios involving the sampling of unlabeled data from datasets that differ from the evaluation dataset.
In particular, we sample unlabeled data from 1) SQuAD1.1-train 2) SQuAD1.1-val or 3) new-Wiki and evaluate
on SQuAD1.1-val. As evident from the results in Table 9, sampling unlabeled data from new-Wiki (and evaluating
on SQuAD1.1-val) yielded improved performance compared to sampling from SQuAD1.1-train and evaluating on
SQuAD1.1-val. This finding further supports our assertion regarding the applicability and effectiveness of our approach.

Table 9. Train-Test data discrepancy

Unlabeled Sample Evaluation 60% 70%
SQuAD1.1-train SQuAD1.1-val 76.92± 0.11 82.65± 0.06
SQuAD1.1-val SQuAD1.1-val 77.17± 0.073 82.75± 0.074
new-Wiki SQuAD1.1-val 77.45± 0.076 82.80± 0.031

We further evaluate the effectiveness of our approach on using the finetuned model on SQuAD1.1 but evaluate on new-Wiki
and results are as follows:

Table 10. Performance of Finetuned model on SQuAD1.1 on new-Wiki dataset.

Unlabeled Sample Evaluation 60% 70%
SQuAD1.1-train new-Wiki 75.26± 0.08 81.14± 0.096

new-Wiki new-Wiki 75.72± 0.09 81.08± 0.13

16

