
LEGO: Latent Execution-Guided Reasoning
for Multi-Hop Question Answering on Knowledge Graphs

Hongyu Ren 1 Hanjun Dai 2 Bo Dai 2 Xinyun Chen 3 Michihiro Yasunaga 1 Haitian Sun 4 Dale Schuurmans 2

Jure Leskovec 1 Denny Zhou 2

Abstract
Answering complex natural language questions
on knowledge graphs (KGQA) is a challenging
task. It requires reasoning with the input natu-
ral language questions as well as a massive, in-
complete heterogeneous KG. Prior methods ob-
tain an abstract structured query graph/tree from
the input question and traverse the KG for an-
swers following the query tree. However, they
inherently cannot deal with missing links in the
KG. Here we present LEGO, a Latent Execution-
Guided reasOning framework to handle this chal-
lenge in KGQA. LEGO works in an iterative way,
which alternates between (1) a Query Synthesizer,
which synthesizes a reasoning action and grows
the query tree step-by-step, and (2) a Latent Space
Executor that executes the reasoning action in
the latent embedding space to combat against the
missing information in KG. To learn the synthe-
sizer without step-wise supervision, we design a
generic latent execution guided bottom-up search
procedure to find good execution traces efficiently
in the vast query space. Experimental results on
several KGQA benchmarks demonstrate the ef-
fectiveness of our framework compared with pre-
vious state of the art.

1. Introduction
Answering complex natural language questions with multi-
hop reasoning steps on incomplete knowledge graphs (KGs)
is a fundamental, yet challenging task (KGQA) (Sun et al.,
2019a; Saxena et al., 2020; Bordes et al., 2014; Xu et al.,
2016; Yu et al., 2017; Liang et al., 2017). KGQA takes a
question in natural language as an input, with the goal to
identify a set of KG entities that form the answer. There are

1Stanford University 2Google Brain 3UC Berkeley 4Carnegie
Mellon University. Correspondence to: Hongyu Ren
<hyren@cs.stanford.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Hongyu Ren, Stanford University 1

Reasoning

Action 𝑎𝑡

Query
Synthesizer

Latent
Executor

Updated Query 𝑔𝑡+1

Natural Language Question 𝑞 Initial Query 𝑔0

Termination

Answer entities on KG

LEGO

KG

Figure 1. LEGO answers a question by iteratively performing
execution-guided query synthesis and latent query execution.

two important subproblems that need to be addressed: (1)
bridging the gap between natural language question and the
entities in the KG as structured query needs to be generated
and (2) a robust reasoning algorithm that efficiently locates
the answer entities with missing links in KGs.

Previous neural KGQA models that are based on semantic
parsing (Lan & Jiang, 2020; Chen et al., 2019b; Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018) first synthesize
a tree-structured query by parsing the questions, and then
execute the query on KG, i.e., traverse the KG for answers.
Compared with non-parsing methods (Sun et al., 2019a;
Saxena et al., 2020), these models achieve better empirical
results and interpretability since the underlying structured
query captures the reasoning process. However, the perfor-
mance of these parsing-based methods is hindered by three
major challenges. The first challenge is the scale and in-
complete nature of KGs. Real-world KGs (Bollacker et al.,
2008; Suchanek et al., 2007; Liu & Singh, 2004) often have
millions of entities, and multi-hop traversal on a KG leads
to an exponential growth in computation time and space.
Since KGs are often noisy and incomplete, executing even
the ground truth query may still not return the fully correct
answer set. Another challenge is that the query synthesis
process and the execution process are separate and disjoint,
leading to a combinatorial search space, especially for multi-
hop reasoning. It is currently addressed by KG context-free
beam search (Lan & Jiang, 2020; Chen et al., 2019b). Fi-
nally, these parsing-based models mostly require ground
truth queries for supervision in training. However, such
supervision is hard to obtain in practice.

Latent Execution-Guided Reasoning

Question: Who are Canadian Turing Award winners?

Q
u

e
ry

T
re

e
E

m
b

e
d

d
in

g

S
p

a
c
e

Step 1

Pick 1st Branch

Extend relation

Win

Step 2

Pick 2nd Branch

Extend relation

Citizen

Step 3

Pick 1st and 2nd Branch

Take Intersection
Step 4

Terminate Turing
Award

Win

Canada

Citizen

LeCun

Hinton

Bieber

Bengio

Trudeau

Incomplete KG

Turing

Award

Canada

Win

Citizen
Intrs.

Intrs.

Turing

Award

Canada

Win

Citizen
Intrs.

Intrs.

Turing

Award

Canada

Turing

Award

Canada

Win

Turing

Award

Canada

Win

Citizen

Topic Entity Answer Entity

Win

Citizen

Canada

Turing

Award

Trudeau

Hinton
Bengio

LeCun

Bieber

Win

Citizen

Canada

Turing

Award

Trudeau

Hinton
Bengio

LeCun

Bieber

Win

Citizen

Canada

Turing

Award

Trudeau

Hinton
Bengio

LeCun

Bieber

Win

Canada

Turing

Award

Trudeau

Hinton
Bengio

LeCun

BieberCanada

Turing

Award

Trudeau

Hinton
Bengio

LeCun

Bieber

Figure 2. Given an input natural language question, LEGO starts from topic entities and iteratively perform query synthesis and query
execution in the latent space. LEGO is robust to incomplete KGs, whereas direct traversal will not return all the answers given the
incomplete KG (dashed lines denote missing links).

A recent line of work (Hamilton et al., 2018; Ren et al.,
2020; Ren & Leskovec, 2020; Sun et al., 2020) proposes to
embed complex logical queries by designing neural logical
operators, which allows for multi-hop reasoning and exe-
cution of logical queries in the embedding space. This line
of work enables a scalable and robust reasoning/execution
paradigm, where answering a structured query is reduced
to a K-nearest neighbor search of entities that are close
to the query embedding in the vector space. For exam-
ple, Query2box (Q2B) (Ren et al., 2020) embeds queries
as hyper-rectangles (box) and the answers as point vectors
enclosed in the box. However, such execution relies on the
presence of the structured logical queries, and how to gener-
alize this line of work to take a natural language question
as the input remains unexplored.

In this work, we present LEGO, a Latent Execution-Guided
reasOning framework, for KGQA (Figure 1). LEGO con-
sists of a Latent Space Executor and a Query Synthesizer,
which interact iteratively to identify the answer entities in
the KG. Given a natural language question, the latent space
executor starts with the named entities and their KG em-
beddings (initial query embedding). Afterwards, at each
step, the query synthesizer infers the next reasoning action
based on the question embedding (obtained by pretrained
language models (Devlin et al., 2019)) as well as the current
partial query embedding; then the executor performs this
new reasoning action in the latent KG embedding space,
and updates the query embedding as well as the query tree
accordingly. The proposed LEGO naturally addresses the
abovementioned challenges of KGQA: it executes queries
in the latent space so that the execution is robust against

missing edges; meanwhile, the synthesis becomes a step-
by-step procedure guided by the execution context of the
current query tree, decomposing the structured output space
of queries.

Before we introduce the mechanism to extract training super-
vision for the executor and the synthesizer, we first illustrate
the alternating procedure between these two modules for
reasoning in Figure 2. For example, to answer the ques-
tion “Who are Canadian Turing Award winners?”, we start
with the entities {“Canada”, “Turing Award”} mentioned
in the question, and initialize the query embedding with the
embedding of the topic entities based on Q2B. The query
synthesizer will take as input the question embedding as
well as the query embedding, and infer the reasoning action,
e.g., pick the branch “Turing Award” and traverse by the
relation “Win”. Then the executor will update the embed-
ding of the first branch by performing relation projection in
the embedding space. The process is iteratively executed
until the query synthesizer outputs “Terminate”, marking
the end of the reasoning process. Finally, the answers are
those enclosed in the final box embedding of the query.

The main challenge of applying our approach is that the
correct query tree is unknown for a given natural language
question. In order to train LEGO, we propose execution-
guided action space pruning for efficient online searching
to obtain the valid execution traces given the questions. We
score a candidate query by evaluating whether it is close to
the ground truth answers in the embedding space. For each
question, we keep a buffer of good candidate queries pro-
ducing similar answers to the ground truth, although some

Latent Execution-Guided Reasoning

spurious queries (noisy candidates) exist. Then we optimize
the model to fit the questions and their corresponding can-
didate queries in the buffer. Inspired by prior findings that
deep neural networks can fit the correct labels more easily
than the noisy ones (Arpit et al., 2017; Zhang et al., 2017;
Liu et al., 2020), we propose stochastic hard EM (Min et al.,
2019; Chen et al., 2020b; Liang et al., 2018), i.e., for each
question, we only optimize the model with the candidate
query with the lowest loss in a minibatch. This simple and
effective trick demonstrates robustness against the spurious
queries during training.

We evaluate LEGO on three large-scale KGQA datasets.
LEGO outperforms previous state-of-the-art KGQA meth-
ods in answering questions on massive and incomplete
KGs. Extensive ablation studies further demonstrate the
effectiveness and scalability of multiple components in our
method. The implementation of LEGO can be found in
http://github.com/snap-stanford/lego.

2. Related Work
KGQA. Traditional KGQA methods (Berant et al., 2013;
Bast & Haussmann, 2015) use hand-engineered templates to
parse the question and synthesize the query (Poon & Domin-
gos, 2009). However, these methods require strong domain
knowledge to manually design the set of rules and features
to reduce the search space. To overcome the requirement of
the rules, recent KGQA methods leverage neural semantic
parsing with a deep network (Berant et al., 2013; Lan &
Jiang, 2020; Liang et al., 2017; Yih et al., 2015; 2016; Luo
et al., 2018; Chen et al., 2019b; Hu et al., 2018; Qiu et al.,
2020b). However, these neural semantic parsing methods
require a ground truth query for supervision, which is often
hard to achieve in the real world. Besides, these methods
directly execute the synthesized query on the KG, which is
affected by the missing links. Another line of KGQA meth-
ods (Xu et al., 2016; Dong et al., 2015; Miller et al., 2016)
aim to retrieve information from the KG using RL agent
(Xiong et al., 2017; Qiu et al., 2020a; Lin et al., 2018; Das
et al., 2018) or graph nets (Sun et al., 2018a; 2019a; Xiong
et al., 2019), however, these methods rely on heuristics, e.g.,
shortest paths between topic entities and answers, most of
which are spurious on an incomplete KG. These methods
further leverage text corpora to increase performance (Sun
et al., 2019a; Das et al., 2017). Another recent line of work
uses KG embeddings (Saxena et al., 2020; Sun et al., 2020)
to combat the incompleteness of KG. However, they require
the prior knowledge of the query structure of the question
(Sun et al., 2020) or do not consider the latent reasoning
structure of questions (Saxena et al., 2020). Besides, neither
can deal with complex questions with multiple topic enti-
ties and logical operations, e.g., intersection. Our method
designs a latent execution-guided reasoning framework that
infers the latent structure of a question as well as reasons in

the latent space for multi-hop logical inference.

Structured Representation of Natural Language. While
most existing work on semantic parsing requires the ground
truth programs for training (Zelle & Mooney, 1996; Zettle-
moyer & Collins, 2012; Jia & Liang, 2016; Yu et al.,
2018b;a; Keysers et al., 2020), some recent approaches have
been proposed to improve the model performance with weak
supervision, i.e., the training supervision only contains the
ground truth execution results on tabular databases (Liang
et al., 2017; Neelakantan et al., 2017; Krishnamurthy et al.,
2017; Guu et al., 2017; Liang et al., 2018). However, they
assume that the databases are complete, and thus the result
is always correct when executing the ground truth program.
On the other hand, we need to address the challenge of
execution on incomplete KGs, in addition to the weak super-
vision problem. Besides structured databases, there are other
works on learning to synthesize programs for unstructured
text understanding, including reading comprehension (Chen
et al., 2020b; Amini et al., 2019) and sequence-to-sequence
translation (Chen et al., 2020a; Nye et al., 2020b). These
works demonstrate better generalization performance than
approaches that directly predict the final answers, some-
times without the usage of ground truth programs for train-
ing. Again, these works require the access to an oracle
executor, and thus the model only needs to synthesize the
programs.

Execution-Guided Program Synthesis. Our execution-
guided reasoning framework is related to the line of research
on execution-guided program synthesis (Odena et al., 2020;
Chen et al., 2019a; Wang et al., 2018; Nye et al., 2020a).
While most work on neural program synthesis only uses
the execution results to select from top candidate programs
generated from the beam search, recent works have shown
that utilizing the execution results of partial programs im-
prove the synthesizer performance, including text-to-SQL
tasks (Wang et al., 2018), synthesis of sequential program
statements (Sun et al., 2018b; Zohar & Wolf, 2018; Ellis
et al., 2019), and synthesis of programs including nested
statements or branches (Odena et al., 2020; Chen et al.,
2019a). Different from our work, all these works obtain the
execution results from an oracle program executor, rather
than learn to execute the programs. When the partial pro-
gram semantics is too tedious to formally define, or the par-
tial program is even not executable, computing the partial
program execution becomes challenging. Therefore, some
recent works propose to learn neural networks to represent a
program executor, including reading comprehension (Gupta
et al., 2019), visual question answering (Andreas et al.,
2016), 3D rendering (Tian et al., 2019), and short programs
with loops and higher-order functions (Nye et al., 2020a).
In this work, our model learns to predict the answer from
executing queries on incomplete KGs.

Latent Execution-Guided Reasoning

3. Problem Setting
A knowledge graph (KG) G consists of a set of entities V and
a set of relationsR. Each relation r ∈ R is a binary function
r : V × V → {True,False} that indicates (directed)
edges of relation r between pairs of entities. Given a natural
language question q, we aim to extract its answer entities by
reasoning on G. Following the standard setting in KGQA
(Saxena et al., 2020), we assume that the topic entities of the
question, e.g., “Canada” and “Turing Award” in Figure 2,
are given and linked to nodes on the KG. For each question
q, there exists an underlying query tree corresponding to it,
where the nodes represent a set of concrete KG entities and
each edge belongs to relation traversal or a logical operation,
e.g., conjunction. Among all the nodes of the query tree,
each leaf node represents the set of one topic entity and the
single root represents the answer set. We emphasize that we
only have access to a training dataset of [natural language
question, answer entity] pairs without the knowledge of
ground truth queries in our setting.

4. LEGO Framework
Our LEGO framework consists of a latent space executor
(Sec. 4.1) and a query synthesizer (Sec. 4.2), which perform
embedding-based execution and context-aware synthesis
respectively. Given an input question q and its topic entities
[e1, . . . , en], we use a pretrained language model (Devlin
et al., 2019; Reimers & Gurevych, 2019) to obtain the rep-
resentation q ∈ Rd, and our framework adopts a bottom-up
strategy that synthesizes the query tree from the given topic
entities (leaves in the tree). At each step, the query synthe-
sizer infers an action guided by the current partial execution
result, and the latent executor further executes this action
to grow and update the query tree in the embedding space.
The context-aware synthesis terminates until the root node
is constructed, as shown in Figure 2. The overall training
and inference of LEGO can be found in Algs. 1 and 2.

4.1. Latent Space Executor
The latent space executor executes a reasoning action given
the current (partial) query tree in a low-dimensional latent
space. Given the latent execution results of its partial query
tree gt = [bt

1, . . . ,b
t
n] at step t, where bt

i represents the
embedding of branch bti of the query tree, the executor
runs a reasoning action, which is the output of the query
synthesizer (detailed in Sec. 4.2), to expand the query tree.

We use the Query2box (Q2B) model (Ren et al., 2020) for
latent space representation, which embeds a query into a
hyper-rectangle (box) in the Euclidean space. A box b =
(Cen(b),Off(b)) ∈ R2d is defined as the region:

b ≡ {v ∈ Rd : Cen(b)−Off(b) � v � Cen(b)+Off(b)},

where Cen(b) ∈ Rd is the center of the box, and Off(b) ∈
Rd≥0 is the positive offset of the box. Q2B represents each

entity e ∈ V as a point (box with the zero offset): e =
(Cen(e),0), each relation r as an embedding in R2d, and
provides two logical operators

P : R2d×R2d → R2d and I : R2d×· · ·×R2d → R2d

to perform relation projection and box intersection in the
embedding space respectively. See Figure 2 and Ren et al.
(2020) for more details. Note that our latent space executor
is agnostic to any specific KG embeddings, and we take
Q2B as one example here. Different design choices can be
found in Appendix A.

Overall, the latent space executor (LSE) takes a reasoning
action at and the query embedding gt at timestep t as the
input, and deterministically outputs the resulting query em-
bedding gt+1 = LSE(gt, at), i.e., the executor models the
conditional distribution p(gt+1|gt, at), which is a Dirac-
delta distribution. Valid reasoning actions at ∈ A include:

(1) at = ({bti}, r): extension of one branch bti with a re-
lation edge r, this represents one relation projection from
the set of entities in bti using r, e.g., step 1 and 2 in Figure
2. The executor updates the i-th component of the query
embedding gt accordingly: gt+1[i] = P(bt

i , r) = bt
i + r;

(2) at = (B,−1): conjunction of multiple branches B ⊆
{bti}ni=1, |B| > 1, this action takes the intersection of the
set of entities in each b ∈ B, e.g., step 3 in Figure 2. We use
the intersection operator I, remove all embeddings bt

i with
bti ∈ B from gt, and append bt

int = I(B) to the end of gt;

Cen(bt
int) =

∑
i

ai � Cen(bt
i), ai =

exp(fω(bt
i))∑

j exp(fω(bt
j))
,

Off(bt
int) = Min({Off(bt

i)}bti∈B)� σ(Dω(B)); (1)

(3) at = (∅,−1): termination, e.g., step 4 in Figure 2.

Pretraining Latent Space Executor. The objective of the
executor is that we can embed the query tree (or any its
subquery) such that the query (or subquery) embedding is
close to the embedding of the answers (or any intermediate
entities). We pretrain the parameters of the latent space ex-
ecutor, including all entity embeddings e, ∀e ∈ V , relation
embeddings r, ∀r ∈ R, neural networks fω and Dω used
in the operators. The pretraining procedure includes sam-
pling query trees online from the given KG and optimize a
contrastive loss with sampled positive and negative answers.
Note that this process does not require knowledge of any
natural language questions. The pretraining details can be
found in Appendix B.

4.2. Query Synthesizer
Given the embedding of the question q, the query synthe-
sizer will act as a controller that infers a series of reason-
ing actions for the latent space executor to perform reason-
ing step-by-step. Here we introduce how we model the

Latent Execution-Guided Reasoning

Hongyu Ren, Stanford University 1

Graduate

Born

Obama

Nobel

Prize

Canada
US

Embedding

Incomplete KG

Canada

US

Capital

Nobel

Prize
Recipient

Anthem

Born

Obama

Nobel

Prize

Canada
US

Embedding Pruning Relations

KNN:
Canada

US
Union {Anthem, Capital}

Relation

Pruner:

Embedding

Parameters

BornObama

Nobel

Prize

Canada
US

Figure 3. LEGO pretrains a relation pruner that directly outputs a distribution over all relations to prune the search space when predicting
the next relation for a branch. In this example, the relation “Receipient” is pruned.

Hongyu Ren, Stanford University 1

Graduate

Born

Obama

Nobel

Prize

Canada
US

Embedding

Incomplete KG

Canada

US

Capital

NobelWinner

Anthem

Embedding Branch Pruner

Born

Obama

Nobel

Prize

Canada
US

BornObama

Nobel

Prize

Canada
US

NAFTA

Member

Win

Embedding

Parameters

Figure 4. LEGO trains a branch pruner to limit the search space
of branch selection. The pruner takes as input a set of branches
{bi} and outputs the probability of taking intersection of {bi}.
The pruner predicts high/low probability, When the branches are
similar (brown + orange boxes) or different (brown + cyan boxes).

step-wise query synthesis under the guidance from the ex-
ecution context, i.e., p(at|gt,q). Specifically, in t-th step,
the latent space executor maintains the partial query tree
gt = [bt

1, . . . ,b
t
n] as the context. Taking the current con-

text into account, the query synthesizer is parameterized as

pθ(at = (B, r)|gt,q) = pθ(r|B,gt,q)pθ(B|gt,q), (2)

which first selects one or multiple branches and then chooses
one of the candidate relations. These actions will be sent to
the latent space executor to extend the query tree.

We model pθ(B|gt,q) with a categorical distribution,
i.e., directly choosing from the powerset of the branches
{∅, {bt1}, . . . , {bt1, bt2}, . . . , {bt1, . . . , btn}}. Since each
choice corresponds to a subset of branches of gt, we de-
sign Dθ(·) with an order-invariant DeepSets architecture
(Zaheer et al., 2017) to obtain the representation. For each
B ⊆ {bti}ni=1, we obtain its representation with Dθ(B).
Then we parameterize pθ(B|gt,q) with a scoring network,
which also takes the question embedding q as input:

pθ(B|gt,q) ∝ Sθ(Dθ(B),q). (3)

If only one branch is chosen, i.e., B ∈ {{bt1}, . . . , {btn}},
the query synthesizer further models pθ(r|B,gt,q) using
an additional network for relation inference:

pθ(r|B,gt,q) ∝ Rθ(Dθ(B),q), (4)

which is a distribution over all the relationsR on the KG. If
multiple branches are chosen, we take conjunction over the

chosen branches, and pθ(r = −1|B,gt,q) = 1. We use ∅
to represent the termination (note only when the query tree
has exactly one branch will the model select ∅, otherwise
∅ is not a valid action and will be masked). See Appendix
C for design choice of Dθ(·), Sθ(·, ·) and Rθ(·, ·).

4.3. Iterative Query Synthesis and Question Answering
Given a question q and the initial query tree g0, here we
introduce how LEGO iteratively synthesizes and embeds
the query tree by execution in the embedding space. With
the latent space executor and the query synthesizer, we can
model all query trees by

pθ(gT|q) =

∫ ∏
t

pθ(at|gt,q) da0, . . . , aT−1,

where T is the maximum allowed size of a query tree. Since
the search space is O(#actionT), where |#action| ≈ |R|
and |R| can be over 2000 for a KG like Freebase (Bollacker
et al., 2008), finding the query tree with maximum likeli-
hood is intractable. We use beam search with beam size k
to approximate the best solution. We start from g0, itera-
tively synthesize and embed the query tree in the embedding
space. At each step t, we choose all the actions with top-k
probability based on the query synthesizer and use latent
space executor to achieve k updated query trees. After the
synthesis is terminated, we take the embedding of the query
tree with the maximum probability and rank all the entities
on KG by the distance between the entity and the query tree
in the vector space. The model selects the entity closest to
the query embedding as the final answer to the question. See
Appendix D for details of distance function and Appendix
E for complexity analysis.

4.4. Module Training
During training of the query synthesizer, we are given a
dataset only containing [natural language training ques-
tion, answer] pairs. To obtain fine-grained query trees for
supervising query synthesizer, we propose an execution-
guided search mechanism that will be explained in detail
in Section 5. Suppose at the moment we have a buffer
Dq of potential query trees for each individual natural lan-
guage training question q. We can rank each candidate
query tree in each Dq by the average distance between
the candidate query embedding and the answer embed-

Latent Execution-Guided Reasoning

ding. The replay buffer keeps the top-k candidate query
trees and the traces for the question q: Dq : {τ1, . . . , τk},
where τj = (g0, a0, . . . , atj−1,gtj) and log pθ(τj |q) =∑

t log pθ(at|gt,q).

Stochastic Hard EM. One can directly optimize a stan-
dard supervised loss for the query synthesizer. Since the
targeted execution traces are not provided and thus obtained
by searching, there may contain spurious queries/programs,
which leads to correct answers from incorrect execution
paths. These spurious queries do not correspond to the ques-
tion and confuse the model during training. Inspired by
the insights that neural networks will fit the correct label
more easily (Arpit et al., 2017; Zhang et al., 2017; Liu et al.,
2020), we extend hard EM (Min et al., 2019; Liang et al.,
2018) to a stochastic version for more efficient optimiza-
tion. The idea of Hard EM is that given a question, among
all candidate queries, Hard EM only optimizes the model
to fit the query candidate with the lowest loss. We make
it a stochastic version in order to reduce the computation
overhead. Specifically, during each iteration, we sample a
minibatch of questions of size nq and also stochastically
sample a minibatch of candidate query trees from the replay
buffer of size nc for each sampled question. Then we cal-
culate the loss for each [question, candidate query] pairs
and perform a min-pooling over each question, as shown
in Eq. 5 below,

` =
∑nq

i minj=1,...,nc
− log pθ(τ

i
j |qi). (5)

This simple trick has shown effective in the presence of the
noisy labels without additional computation overhead.

5. Execution-Guided Search and Pruning
Here we introduce the execution-guided search to efficiently
obtain the candidate query trees for LEGO training. As
analyzed in Section 4.3, the search space of a single question
is O(#action#hop), which can be very large (O(1018) as
shown in Table 1) when the background KG has a large
number of relation types. We introduce learnable pBg,q and
prB,g,q, which will use the partial execution embeddings
from the latent space executor to prune the search space
of both the branch selection and the relation prediction for
collecting valid execution traces.

5.1. Pruning Branch(es) Selection
Although the model can freely choose from the powerset
of the branches, yet some branches inherently cannot be
selected simultaneously to take intersection regardless of
the input question q. As an example shown in Figure 4, if the
query tree is g = [b1, b2], where b1 = [Obama, [Born]] and
b2 = [Obama, [Win]], then the model should not take the
intersection of the two branches because the b1 represents
a set of countries while the b2 represents a set of awards.
Thus, we further introduce a branch pruner fφ to evaluate

Algorithm 1 Latent Execution-Guided Reasoning (Training)

Input: KG G = (V,R), training dataset {(q, a)}train, an
empty buffer D for each question.
Training:
(1) Pretrain latent space executor, including entity and
relation embedding {e}e∈V , {r}r∈V , fω and Dω (Eq. 1).
(2) Pretrain branch fφ and relation pruner pφ (Eqs. 6, 7)
(3) Search candidate queries for training questions q with
latent execution-guided pruning. Record top ranking
query tree g and traces τ in the buffer D.
(4) Train synthesizer using the candidate queries with
stochastic hard EM, including Dθ, Rθ and Sθ (Eqs. 3, 4).

whether a given set of branches can be intersected during
candidate query searching. Given the pretrained latent space
executor, the pruner takes multiple branch embeddings as
input and outputs a single scalar as the score fφ(B) ∈ (0, 1),
when B ⊆ {bi}ni=1, |B| > 1; when |B| = 1, we assume
fφ(B) = 1. In order to prune the search space, we introduce
a threshold S, only B with fφ(B) > S will it be selected.

pBg,q ∝ pθ(B|g,q) · 1[fφ(B) > S] (6)

Note the pruner fφ is independent of the questions, it only
reflects whether two given branches should possibly be
intersected or not.
Pretraining Branch Pruner fφ. We pretrain the branch
pruner fφ by sampling positive and negative branch sets
from the KG. A positive branch set represents a set of
branches with common answers on the KG, which means
that it makes sense for the branches in the set to take inter-
section. On the contrary, branches in a negative branch set
do not share answers, which means they should not be inter-
sected with high probability. For sampling positive set, we
randomly pick one node on the KG as the common answer,
and reverse-construct the branches. For sampling negative
set, we directly randomly sample a set of branches on the
KG for simplicity. Note the branches sampled in pretraining
do not correspond to any natural language question.

5.2. Pruning Relation Prediction
We also design a learnable heuristic to reduce the number
of valid relations in each step of each target execution trace
based on the embedding of the selected branch.

One empirical observation is the valid next-step relations
for a query branch usually take the union of the relations
associated with the “similar” entities to the current branch
on the KG. For example, as shown in Figure 3, when pre-
dicting the next relation for “[Obama, [Born]]”, we find
“US” and “Canada” are close to the branch embedding (the
brown box), then the relation to be predicted should be a
union of the attributes of “US” and “Canada”: {“Anthem”,
“Capital”} in most cases, while we should ignore “Receip-

Latent Execution-Guided Reasoning

Algorithm 2 Latent Execution-Guided Reasoning (Inference)
Input: KG, question q with embedding q and its topic
entities [e1, . . . , en], initial query tree g0 = [e1, . . . , en],
executor, synthesizer, (assume beam size equals 1).
Inference:
repeat

(1) Synthesizer infers the reasoning action at =
argmaxa pθ(a|gt,q) (Eq. 2).
(2) Executor executes this reasoning action in the latent
space and updates the query tree gt+1 = LSE(gt,at).

until Synthesizer outputs “Termination”.
(3) Calculate the distance between the final query tree g
and the KG entities e.

ient”, which is disjoint and irrelevant no matter what the
natural language question is. So one simple way to prune
the search space of relations is prioritizing those associated
with the similar entities, measured by the distance between
the current branch and the entities in the embedding space.

However, one major limitation of this method is that it
requires a nearest neighbor search at each step for relation
prediction, and the computation complexity is linear with
respect to the number of entities |V| on KG in the worst case.
To address the limitation, we further train a neural network
to prune the relations given the selected branch. The relation
pruner takes as input the embedding of the selected branch
b and outputs a distribution over all the relations pφ(r|b).
When predicting the relation for next step, we only look at
the top-k relations, i.e.,

pr{b},g,q ∝ pθ(r|{b},g,q) · 1[r ∈ arg top k pφ(r|b)] (7)

This relation pruner leverages an important inductive bias
for generalization: similar branch embedding may represent
a similar set of entities. We emphasize that the relation
pruner also does not rely on natural language questions.
Pretraining Relation Pruner pφ. We pretrain the relation
pruner by sampling [synthetic query, relation] pairs from
the KG. Specifically, we first sample a random node on
KG as answer and then use this answer to instantiate a
multi-hop query in a top-down fashion. Then we take the
union of the relations associated with this answer as the
positive classes and the others as the negative classes, and
we optimize a multi-label classification loss. Note again that
this pretraining process is general and the sampled synthetic
queries do not correspond to natural language questions.
See Appendix F for more details on pretraining pruners.

6. Experiments
We evaluate LEGO on three large-scale multi-hop KGQA
benchmark datasets. We show that (1) our LEGO frame-
work outperforms state-of-the-art KGQA methods on these
datasets; (2) execution-guided pruning using pretrained

Table 1. Statistics of the KG for the three datasets.
Entities Relations Observed Edges Missing Edges

MetaQA 43,234 18 134,574 133,680
WQSP (30%) 158,674 1,632 451,634 1,053,800
WQSP (50%) 158,674 1,632 752,717 752,717
CWQ 409,829 1,836 2,151,671 2,151,671

Table 2. Statistics of the three datasets.
Train Dev Test

MetaQA-1hop 96,106 9,992 9,947
MetaQA-2hop 118,980 14,872 14,872
MetaQA-3hop 114,196 14,274 14,274
WQSP 2,848 250 1,639
CWQ 27,623 3,518 3,531

branch and relation pruner significantly reduces the search
space with high recall of the hidden ground truth candidate
query trees; (3) optimization using the stochastic hard EM
demonstrates robustness against noisy candidate query trees.

6.1. Experimental Setup
Datasets. We evaluate LEGO on three large-scale multi-
hop KGQA benchmark datasets: MetaQA (Zhang et al.,
2018), WebQuestionsSP (WQSP) (Yih et al., 2015) and
ComplexWebQuestions (CWQ) (Talmor & Berant, 2018).
The questions in MetaQA span from 1-hop to 3-hop path-
like reasoning steps, and can be answered on the given KG
based on WikiMovies (Miller et al., 2016). In order to evalu-
ate the robustness against an incomplete KG, following prior
work (Sun et al., 2019a), we use the incomplete KG with
only 50% edges. Both WQSP and CWQ contain natural
language questions that can be answered using the Freebase
KG. The questions may contain multiple topic entities and
constraints so that the reasoning process requires intersec-
tion operations. We prepare a KG subgraph of Freebase
with 150k and 400k entities for WQSP and CWQ respec-
tively, containing relevant entities and their 3-hop neighbors
with mentioned relation types in the datasets. We further
randomly drop 50% of the edges as the incomplete version.
Note that we make sure that if we traverse the full (100%)
KG using the ground truth query tree, we can answer all
questions. The statistics of the KG and the datasets can be
found in Table 1 and 2.

Baselines. We compare with three state-of-the-art methods:
(1) Pullnet (Sun et al., 2019a), which iteratively retrieves
a subgraph from the KG starting from the topic entities
and obtains answers by ranking entities on the subgraph
by graph nets (Sun et al., 2018a); (2) EmbedKGQA (Sax-
ena et al., 2020), which learns a score function between
the question embeddings and the entity embeddings from
a learned KG embedding method; (3) EMQL (Sun et al.,
2020), which learns a dense and a sparse representation of
the query and uses these joint representation to obtain the
answers. Besides, we also compare LEGO with KG traver-
sal using the ground truth query, whose accuracy would be
the upper bound of the semantic-parsing based KGQA meth-

Latent Execution-Guided Reasoning

Table 3. Hits@1 results of MetaQA on 50% KG. Our method
achieves at least 3.6% better than the SOTA baselines.

Hits@1 1-hop 2-hop 3-hop All
KG Traversal (w/ GT query) 63.3 45.8 45.3 51.5
Latent Execution (w/ GT query) 70.8 62.1 66.4 66.6
Pullnet (Sun et al., 2019a) 65.1 52.1 59.7 59.2
EmbedKGQA (Saxena et al., 2020) 70.6 54.3 53.5 60.2
EMQL (Sun et al., 2020) 63.8 47.6 48.1 53.2
LEGO (ours) 69.3 57.8 63.8 63.8

Table 4. Hits@1 results of WQSP and CWQ. Ours achieve 2.6%
and 1.1% better results respectively.

Hits@1 CWQ WQSP
KG Traversal (w/ GT query) 25.2 56.9
Latent Execution (w/ GT query) 46.4 70.0
Pullnet (Sun et al., 2019a) 26.8 47.4
EmbedKGQA (Saxena et al., 2020) - 42.5
LEGO (ours) 29.4 48.5

ods. However, since the KG is incomplete, these methods
can still only obtain a subset of answers. We tune all the
methods on the same KG for all the datasets. More details
of training and baselines can be found in Appendix G.

6.2. Main Results
Following the standard setup in KGQA (Saxena et al., 2020;
Sun et al., 2019a; 2020), we evaluate the accuracy using
the Hits@1 metrics. As shown in Table 3, our method
achieves slightly worse results than EmbedKGQA on single-
hop questions while outperforms both Pullnet and Embed-
KGQA by at least 3.5% Hits@1 on multi-hop questions.
On both CWQ and WQSP, we also achieve SOTA results,
demonstrating the effectiveness of LEGO in modeling the
reasoning steps of multi-hop questions. EMQL is not suit-
able for these two datasets since it requires prior knowledge
of the query template/structure. Note that ours without using
any ground truth query is better than traversing the KG using
the ground truth query on both MetaQA (12.3%) and CWQ
(4.2%). When using our executor to execute the ground
truth query, we could achieve the best performance, serving
as the upper bound of LEGO.

6.3. Search Space Pruning
For both the WQSP and the CWQ datasets, since the KG
has a huge number of relations (> 1000), enumerating all
the candidate queries becomes intractable. As introduced in
Sec. 5, we pretrain a branch and relation pruner on the KG
to perform execution guided search instead.

Branch Pruning. For all the ground truth query trees of
the questions in the dataset, we generate a dataset of partial
queries to evaluate the branch pruner. Specifically, we take
those query trees with multiple topic entities, which means
that there exists at least one intersection step in the query
tree. We add the partial query before the intersection opera-
tion to the dataset for evaluation, these branches should be

Table 5. Results of branch pruning on WQSP and CWQ. The
pruner can perfectly classify whether a set of branches should
be intersected. Selecting S = 0.8 (Eq. 6) can cover more than
91% intersection steps when searching for candidates.

S = 0.1 S = 0.4 S = 0.8 AUC #Positive #Negative
WQSP (30%) 0.97 0.96 0.95 0.99 975 229
WQSP (50%) 0.99 0.98 0.96 0.99 975 229
CWQ 0.98 0.95 0.91 0.96 17596 12320

Table 6. Results of relation pruning on WQSP and CWQ.
k = 5 k = 50 MRR MR |R|

WQSP (30%) 0.68 0.98 0.4 8.14 1632
WQSP (50%) 0.72 0.98 0.42 7.44 1632
CWQ 0.61 0.93 0.4 14.3 1836

positive examples. Then we perturb these branches to create
negative examples. For example, given a query tree of a test
question: [[NobelPrize, [winnerOf, bornIn]], [WorldCup,
[heldIn]]], these two branches were together added to the
dataset as positive samples. We further perturb the first
branch to [NobelPrize, [winnerOf]], now the two branches
should not be intersected, and we add these perturbed exam-
ples to the dataset.

As shown in Table 5, our pretrained branch pruner achieves
almost perfect AUC and accuracy in classifying whether a
given set of branches should be intersected or not. Selecting
the threshold S = 0.8 (in Eq. 6) can already covers more
than 91% of the intersection steps for both WQSP and CWQ.

Relation Pruning. Similar to the branch pruning, we also
create a dataset to evaluate the performance of the pretrained
relation pruner based on the WQSP and CWQ test questions.
For all query trees of the test questions, we generate all the
relation projection steps of the full query tree. For exam-
ple, given the query tree, [[NobelPrize, [winnerOf, bornIn]],
[WorldCup, [heldIn]]], it has three relation projection steps:
(1) [NobelPrize, []]→ “winnerOf”; (2) [NobelPrize, [win-
nerOf]]→ “bornIn”; (3) [WorldCup, []]→ “heldIn”. We
evaluate the performance of the relation pruner by calcu-
lating the mean reciprocal rank of these targeted relation.
Note that when training the relation pruner, it only samples
queries from the KG and has no knowledge of what the
query trees of the test questions will be.

As shown in Table 6, our pretrained relation pruner has
0.42 and 0.4 mean reciprocal rank on WQSP and CWQ
respectively. We can safely reduce the number of relations
to search from all 1836 relations to only the top 50 relations,
reducing more than 99.92% the search space for a 2-hop
question on CWQ.

See Appendix H for example questions with the ground
truth query as well as the top-ranking candidate queries.

6.4. Ablation
Severely Incomplete KG. We test LEGO on WQSP with
70% missing edges in KG. We still achieve the best result,

Latent Execution-Guided Reasoning

Table 7. Hits@1 results of WQSP on 30% incomplete KG. Ours
achieves 3.4% better performance.

Hits@1 WQSP (30% KG)
KG Traversal (w/ GT query) 37.3
Latent Execution (w/ GT query) 53.2
Pullnet (Sun et al., 2019a) 34.6
EmbedKGQA (Saxena et al., 2020) 31.4
LEGO (ours) 38.0

outperforming Pullnet and EmbedKGQA by 3.4% and 6.6%
respectively, shown in Table 7. Note that the margin is even
larger than that on 50% KG, demonstrating the robustness
of LEGO on more severely incomplete KGs.
Table 8. Hits@1 results of LEGO without stochastic hard EM on
CWQ and WQSP.

Hits@1 CWQ WQSP
LEGO w/o S-Hard EM 27.8 47.6
LEGO 29.4 48.5

LEGO W/O Stochastic Hard EM. We further analyze the
stochastic hard EM trick. The performance on CWQ and
WQSP decreases by up to 1.6% without using stochastic
hard EM, which demonstrates the robustness against spuri-
ous queries (noisy labels).
Table 9. Hits@1 results and the percentage of questions with
ground truth query tree in the resulting candidate set after searching
on WQSP given the same computation budget.

GT query searched % Hits@1
LEGO w/o Pruning 3.3 13.2
LEGO 65.5 48.5

LEGO W/O Pruning. Given the same computation budget,
we further search the candidate queries for training questions
without the search space pruning. At each step, instead
of predicting top 50 probable relations according to Eq.
7, we randomly select 50. Only 3.3% training questions
discovered the ground truth query (Table 9). The synthesizer
trained by this candidate set becomes much worse.

7. Conclusion
We proposed LEGO for multi-hop KGQA. LEGO consists
of a latent space executor and a query synthesizer, itera-
tively synthesizing and executing the query in the embed-
ding space. With execution-guided search space pruner,
LEGO achieves the state-of-the-art performance.

Acknowledgements
We thank the anonymous reviewers for providing feedback
on our manuscript. We also gratefully acknowledge the
support of DARPA under Nos. HR00112190039 (TAMI),
N660011924033 (MCS); ARO under Nos. W911NF-16-
1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF un-
der Nos. OAC-1835598 (CINES), OAC-1934578 (HDR),
CCF-1918940 (Expeditions), IIS-2030477 (RAPID), NIH
under No. R56LM013365; Stanford Data Science Initia-
tive, Wu Tsai Neurosciences Institute, Chan Zuckerberg

Biohub, Amazon, JPMorgan Chase, Docomo, Hitachi, Intel,
JD.com, KDDI, NVIDIA, Dell, Toshiba, Visa, and United-
Health Group. Hongyu Ren is supported by the Masason
Foundation Fellowship and the Apple PhD Fellowship. Jure
Leskovec is a Chan Zuckerberg Biohub investigator.

References
Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi,

Y., and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms.
In Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2019.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Learn-
ing to compose neural networks for question answering.
In Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2016.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,
E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., et al. A closer look at memorization in
deep networks. In International Conference on Machine
Learning (ICML), 2017.

Bao, J., Duan, N., Yan, Z., Zhou, M., and Zhao, T.
Constraint-based question answering with knowledge
graph. In International Conference on Computational
Linguistics (COLING), 2016.

Bast, H. and Haussmann, E. More accurate question an-
swering on freebase. In Proceedings of the 24th ACM
International on Conference on Information and Knowl-
edge Management, 2015.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In Empir-
ical Methods in Natural Language Processing (EMNLP),
2013.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor,
J. Freebase: a collaboratively created graph database for
structuring human knowledge. In ACM SIGMOD inter-
national conference on Management of data (SIGMOD).
ACM, 2008.

Bordes, A., Chopra, S., and Weston, J. Question answering
with subgraph embeddings. In Empirical Methods in
Natural Language Processing (EMNLP), 2014.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations (ICLR), 2019a.

Latent Execution-Guided Reasoning

Chen, X., Liang, C., Yu, A. W., Song, D., and Zhou, D.
Compositional generalization via neural-symbolic stack
machines. In Advances in Neural Information Processing
Systems (NeurIPS), 2020a.

Chen, X., Liang, C., Yu, A. W., Zhou, D., Song, D., and
Le, Q. V. Neural symbolic reader: Scalable integration
of distributed and symbolic representations for reading
comprehension. In International Conference on Learning
Representations (ICLR), 2020b.

Chen, Z.-Y., Chang, C.-H., Chen, Y.-P., Nayak, J., and Ku,
L.-W. Uhop: An unrestricted-hop relation extraction
framework for knowledge-based question answering. In
Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2019b.

Das, R., Zaheer, M., Reddy, S., and McCallum, A. Question
answering on knowledge bases and text using universal
schema and memory networks. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2017.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar,
I., Krishnamurthy, A., Smola, A., and McCallum, A. Go
for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. In
International Conference on Learning Representations
(ICLR), 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL), 2019.

Dong, L., Wei, F., Zhou, M., and Xu, K. Question an-
swering over freebase with multi-column convolutional
neural networks. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2015.

Ellis, K., Nye, M. I., Pu, Y., Sosa, F., Tenenbaum, J. B.,
and Solar-Lezama, A. Write, execute, assess: Program
synthesis with a repl. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Gupta, N., Lin, K., Roth, D., Singh, S., and Gardner, M.
Neural module networks for reasoning over text. In Inter-
national Conference on Learning Representations (ICLR),
2019.

Guu, K., Pasupat, P., Liu, E., and Liang, P. From language
to programs: Bridging reinforcement learning and max-
imum marginal likelihood. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2017.

Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., and
Leskovec, J. Embedding logical queries on knowledge
graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Hu, S., Zou, L., and Zhang, X. A state-transition frame-
work to answer complex questions over knowledge base.
In Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Jia, R. and Liang, P. Data recombination for neural seman-
tic parsing. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D.,
Kashubin, S., Momchev, N., Sinopalnikov, D., Stafiniak,
L., Tihon, T., et al. Measuring compositional general-
ization: A comprehensive method on realistic data. In
International Conference on Learning Representations
(ICLR), 2020.

Krishnamurthy, J., Dasigi, P., and Gardner, M. Neural se-
mantic parsing with type constraints for semi-structured
tables. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2017.

Lan, Y. and Jiang, J. Query graph generation for answering
multi-hop complex questions from knowledge bases. In
Annual Meeting of the Association for Computational
Linguistics (ACL), 2020.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N.
Neural symbolic machines: Learning semantic parsers
on freebase with weak supervision. In Annual Meeting
of the Association for Computational Linguistics (ACL),
2017.

Liang, C., Norouzi, M., Berant, J., Le, Q., and Lao, N. Mem-
ory augmented policy optimization for program synthesis
and semantic parsing. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Lin, X. V., Socher, R., and Xiong, C. Multi-hop knowledge
graph reasoning with reward shaping. In Empirical Meth-
ods in Natural Language Processing (EMNLP), 2018.

Liu, H. and Singh, P. Conceptnet—a practical commonsense
reasoning tool-kit. BT technology journal, 2004.

Liu, S., Niles-Weed, J., Razavian, N., and Fernandez-
Granda, C. Early-learning regularization prevents memo-
rization of noisy labels. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

Luo, K., Lin, F., Luo, X., and Zhu, K. Knowledge base ques-
tion answering via encoding of complex query graphs.
In Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Latent Execution-Guided Reasoning

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A.,
and Weston, J. Key-value memory networks for directly
reading documents. In Empirical Methods in Natural
Language Processing (EMNLP), 2016.

Min, S., Chen, D., Hajishirzi, H., and Zettlemoyer, L. A
discrete hard em approach for weakly supervised question
answering. arXiv preprint arXiv:1909.04849, 2019.

Neelakantan, A., Le, Q. V., Abadi, M., McCallum, A.,
and Amodei, D. Learning a natural language interface
with neural programmer. In International Conference on
Learning Representations (ICLR), 2017.

Nye, M., Pu, Y., Bowers, M., Andreas, J., Tenenbaum,
J. B., and Solar-Lezama, A. Representing partial pro-
grams with blended abstract semantics. arXiv preprint
arXiv:2012.12964, 2020a.

Nye, M. I., Solar-Lezama, A., Tenenbaum, J. B., and Lake,
B. M. Learning compositional rules via neural program
synthesis. arXiv preprint arXiv:2003.05562, 2020b.

Odena, A., Shi, K., Bieber, D., Singh, R., and Sutton, C.
Bustle: Bottom-up program-synthesis through learning-
guided exploration. arXiv preprint arXiv:2007.14381,
2020.

Poon, H. and Domingos, P. Unsupervised semantic parsing.
In Empirical Methods in Natural Language Processing
(EMNLP), 2009.

Qiu, Y., Wang, Y., Jin, X., and Zhang, K. Stepwise reason-
ing for multi-relation question answering over knowledge
graph with weak supervision. In Proceedings of the 13th
International Conference on Web Search and Data Min-
ing, 2020a.

Qiu, Y., Zhang, K., Wang, Y., Jin, X., Bai, L., Guan, S.,
and Cheng, X. Hierarchical query graph generation for
complex question answering over knowledge graph. In
Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, 2020b.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Empiri-
cal Methods in Natural Language Processing (EMNLP),
2019.

Ren, H. and Leskovec, J. Beta embeddings for multi-hop
logical reasoning in knowledge graphs. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Ren, H., Hu, W., and Leskovec, J. Query2box: Reason-
ing over knowledge graphs in vector space using box
embeddings. In International Conference on Learning
Representations (ICLR), 2020.

Saxena, A., Tripathi, A., and Talukdar, P. Improving multi-
hop question answering over knowledge graphs using
knowledge base embeddings. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2020.

Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: a core
of semantic knowledge. In Proceedings of the Interna-
tional World Wide Web Conference (WWW), pp. 697–706.
ACM, 2007.

Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhut-
dinov, R., and Cohen, W. W. Open domain question
answering using early fusion of knowledge bases and text.
In Empirical Methods in Natural Language Processing
(EMNLP), 2018a.

Sun, H., Bedrax-Weiss, T., and Cohen, W. W. Pullnet:
Open domain question answering with iterative retrieval
on knowledge bases and text. In Empirical Methods in
Natural Language Processing (EMNLP), 2019a.

Sun, H., Arnold, A. O., Bedrax-Weiss, T., Pereira, F., and
Cohen, W. W. Faithful embeddings for knowledge base
queries. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. Neural
program synthesis from diverse demonstration videos. In
International Conference on Machine Learning (ICML),
2018b.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. In International Conference on Learning Repre-
sentations (ICLR), 2019b.

Talmor, A. and Berant, J. The web as a knowledge-base
for answering complex questions. In Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2018.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Learning to infer and execute 3d
shape programs. In International Conference on Learning
Representations (ICLR), 2019.

Wang, C., Tatwawadi, K., Brockschmidt, M., Huang, P.-S.,
Mao, Y., Polozov, O., and Singh, R. Robust text-to-
sql generation with execution-guided decoding. arXiv
preprint arXiv:1807.03100, 2018.

Xiong, W., Hoang, T., and Wang, W. Y. Deeppath: A
reinforcement learning method for knowledge graph rea-
soning. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2017.

Xiong, W., Yu, M., Chang, S., Guo, X., and Wang, W. Y.
Improving question answering over incomplete kbs with

Latent Execution-Guided Reasoning

knowledge-aware reader. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2019.

Xu, K., Reddy, S., Feng, Y., Huang, S., and Zhao, D. Ques-
tion answering on freebase via relation extraction and
textual evidence. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2016.

Yih, S. W.-t., Chang, M.-W., He, X., and Gao, J. Semantic
parsing via staged query graph generation: Question an-
swering with knowledge base. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2015.

Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and
Suh, J. The value of semantic parse labeling for knowl-
edge base question answering. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2016.

Yu, M., Yin, W., Hasan, K. S., Santos, C. d., Xiang, B.,
and Zhou, B. Improved neural relation detection for
knowledge base question answering. In Annual Meeting
of the Association for Computational Linguistics (ACL),
2017.

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li,
Z., and Radev, D. Syntaxsqlnet: Syntax tree networks
for complex and cross-domaintext-to-sql task. In Empiri-
cal Methods in Natural Language Processing (EMNLP),
2018a.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. Spider: A
large-scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In Empiri-
cal Methods in Natural Language Processing (EMNLP),
2018b.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets.
In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Zelle, J. M. and Mooney, R. J. Learning to parse database
queries using inductive logic programming. In Proceed-
ings of the national conference on artificial intelligence,
1996.

Zettlemoyer, L. S. and Collins, M. Learning to map sen-
tences to logical form: Structured classification with prob-
abilistic categorial grammars. In Uncertainty in Artificial
Intelligence (UAI), 2012.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning
Representations (ICLR), 2017.

Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., and Song, L.
Variational reasoning for question answering with knowl-
edge graph. In AAAI Conference on Artificial Intelligence
(AAAI), 2018.

Zohar, A. and Wolf, L. Automatic program synthesis of long
programs with a learned garbage collector. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

Latent Execution-Guided Reasoning

Appendix
A. Design Choice of the Latent Space Executor
Besides Query2box (Ren et al., 2020), which is introduced in Sec. 4.1, we also design a new latent space executor based
on RotatE (Sun et al., 2019b). RotatE is also a translation-based knowledge graph embedding method. It models a triple
(h, r, t) as a relation traversal in the Complex space. The goal is t = h ◦ r, where h, r, t ∈ Cd, |ri| = 1. Since the rotation
operation is naturally compositional, we further extend RotatE to handle multi-hop KG reasoning.

Given the latent execution results of a partial query tree gt = [bt
1, . . . ,b

t
n] at step t, where bt

i represents the embedding
of branch bti of the query tree. And we use a RotatE embedding to represent bti: b

t
i ∈ Cd. We also provide two logical

operators:
P : Cd × Cd → Cd and I : Cd × · · · × Cd → Cd

to perform relation projection and intersection in the embedding space respectively. The RotatE-based latent executor
models the conditional distribution p(gt+1|gt, at) as follows. For all valid reasoning actions at ∈ A:

(1) at = ({bti}, r): extension of one branch bti with a relation edge r, this represents one relation projection from the set of
entities in bti using r, e.g., step 1 and 2 in Figure 2. The executor updates the i-th component of the query embedding gt

accordingly: gt+1[i] = P(bt
i , r) = bt

i ◦ r;

(2) at = (B,−1): conjunction of multiple branches B ⊆ {bti}ni=1, |B| > 1, this action takes the intersection of the set of
entities in each b ∈ B, e.g., step 3 in Figure 2. We use the intersection operator I, remove all embeddings bt

i with bti ∈ B
from gt, and append bt

int = I(B) = Dω(B) to the end of gt, where Dω is a neural network with DeepSet architecture
(Zaheer et al., 2017);

(3) at = (∅,−1): termination, e.g., step 4 in Figure 2.

B. Pretraining Details of Latent Space Executor
Given a KG, we follow the practices of Query2box (Ren et al., 2020) and synthesize query trees of different structures. As
shown in Figure 5, given a query structure, we need to instantiate it for a query tree, where essentially we need to ground the
blue nodes (topic entities) and all the edges in the query structure. For instantiation, we adopt a top-down strategy, where we
first sample a random node on the KG and treat this node as the green node and iteratively ground the edges by sampling the
neighboring edges of the green node. The process is iteratively executed until we have instantiated all the blue nodes. Then
we traverse the KG using the query tree for answers, and add this new [query, answer] pair to our pretraining dataset.

Hongyu Ren, Stanford University 3

3i2i3p2p1p

Figure 5. The query structures on which we instantiate
grounded queries and pretrain the knowledge embed-
ding module.

Given a batch of [query g, answer v] pairs, we may first embed the
query tree using the latent space executor, then we may optimize a
loss to minimize the distance between the query embedding g and the
answer embedding v while maximize the distance between the query
embedding g and k negative samples {v′j}:

L = − log σ (γ − dist(v;g))−
k∑
j=1

1

k
log σ

(
dist(v′j;g)− γ

)
. (8)

The distance function varies for different executors, which will be
detailed in Appendix D.

C. Design Choice of the Query Synthesis Module
Here we discuss the details of the architecture design of the Dθ(·), Sθ(·, ·), Rθ(·, ·) networks in the query synthesis module.
Since Dθ takes a set of branches B ∈ [∅, {b1}, . . . , {b1,b2}, . . . , {b1, . . . ,bn}] as input, we adopt an order-invariant
DeepSets architecture (Zaheer et al., 2017), where we first use a 2-layer MLP to obtain the initial representation for each
branch in the set and then use max-pooling, before we use another 2-layer MLP to obtain the final representation for the
set of branches. For ∅, we manually set Dθ(∅) = 0. For Sθ, it aims to score a set of branches conditioned on the input
question, so we directly concatenate the set representation obtained by Dθ with the Bert embedding q of the question. After

Latent Execution-Guided Reasoning

we score all branches in the powerset using Dθ and Sθ, we normalize it with Softmax. For Rθ, it has the same input with
Sθ, hence we adopt the same architecture, and only differ in the design of the last layer, where instead of selecting branches,
Rθ outputs a distribution over all the relations.

D. Distance Function
Given the final query tree with a single branch g, we define the distance between g and an entity embedding v on KG.

If the latent space executor is based on Query2box, then we use the box distance as in Query2box (Ren et al., 2020). Here g
is a box with center and offset, and v is a single point in the embedding space.

distbox(v;g) = distoutside(v;g) + α · distinside(v;g),

distoutside(v;g) = ‖Max(v − gmax,0) + Max(gmin − v,0)‖1,
distinside(v;g) = ‖Cen(g)−Min(gmax,Max(gmin,v))‖1.

where gmax = Cen(g) + Off(g) ∈ Rd, gmin = Cen(g)− Off(g) ∈ Rd and 0 < α < 1 is a fixed scalar and we used 0.02
in our experiments.

If the latent space executor is based on RotatE, then we define distance as L1 distance between the query embedding and the
entity embedding: distrotate(v;g) = ‖v − g‖1.

E. Complexity Analysis
Given a KG G, with |V| number of entities and the maximum degree ∆(G), and a k-hop question, we list below the worst
case asymptotic complexity of traversing G following the structured query as well as embedding the structured query. For
traversal, the complexity is min(O(∆(G)k),O(k|V|2)) since they need to track and model all the intermediate entities;
while the complexity of embedding-based methods is O(k + |V|), linear with respect to the number of hops and the number
of entities on G.

F. Pretraining Details of Pruners
F.1. Branch Pruner

In order to pretrain the branch pruner fφ, we need to sample positive branch sets and negative branch sets, where positive
branch sets represent a set of branches that have shared answers, while negative branch sets represent a set of branches that
do not have shared answers. Specifically, we look at several query templates/structures, including 2i and 3i as shown in
Fig. 5. We instantiate 2i and 3i queries on KG, and the instantiated queries will be viewed as positives since they all have
shared answers. We then randomly sample branches from KG, and view these randomly sampled branches as negatives.
Note again that this pretraining process does not involve natural language questions.

F.2. Relation Pruner

For pretraining the relation pruner pφ, we need to sample [query, relation] pairs from KG. The trick is to first sample a pair
of [query, answer] and then take the union of all the relations associated with the answer in order to obtain [query, relation]
pairs. In detail, we instantiate all 5 query templates/structures {1p, 2p, 3p, 2i, 3i} for pretraining relation pruners. We have
also tried to only use queries of structure {1p, 2p, 3p}, the performance are comparable.

G. Experimental Details
For all the baselines and our method, we use the same pretrained case-insensitive 768 dimensional Bert embedding (without
finetuning) (Devlin et al., 2019) to obtain the question representation for fair comparison.

H. Example Candidate Queries
We also list some candidate queries our model finds for question from the WebQuestionSP dataset (Yih et al., 2015).
As shown in Figure 6, our method mostly finds the correct candidate queries for the questions, (the concrete percentage

Latent Execution-Guided Reasoning

can be found in Table 9). Although the ground truth query may not always achieve the highest score (the closest to
the answers) measured by mean reciprocal rank (MRR). Some other non-ground truth queries also make sense. For
example, the candidates we find for question “what is nina dobrev nationality” contain a relation path [“place of birth”,
“location.contained by”], which may still provide meaningful supervision signal for the synthesizer.

Hongyu Ren, Stanford University 1

Question Ground Truth Candidates (query, mrr)

who does joakim noah

play for

[topic, ['pro_athlete.teams', 'sports_team_roster.team']] 1. [topic, ['sports.sports_team_roster.player',

'sports.sports_team.roster']] 0.5

2. [topic, ['sports.sports_team_roster.player',

'sports.sports_team_roster.team']] 0.5

3. [topic, ['sports.pro_athlete.teams',

'sports.sports_team_roster.team']] 0.5

what is nina dobrev

nationality

[topic, ['people.person.nationality']] 1. [topic, ['people.person.languages',

'language.language_family.geographic_distribution']] 0.509

2. [topic, ['people.person.place_of_birth',

'location.contained_by']] 0.5

3. [topic, ['people.person.nationality']] 0.455

what movies does taylor

lautner play in

[topic, ['film.actor.film', 'film.performance.film']] 1. [topic, ['film.performance.actor', 'film.film.starring']] 1.0

2. [topic, ['film.actor.film', 'film.performance.film']] 1.0

3. [topic, ['film.actor.film', 'film.film.starring']] 1.0

what type of guitar does

kirk hammett play

[[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.instrument.family']]]

1. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.instrument.family']]] 1.0

2. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.composition.composer’]]] 1.0

3. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.group_membership.role']]] 1.0

Figure 6. Example questions from WebQuestion datasets with the ground truth query and the candidate queries our model finds.

I. Results of Different Latent Space Executors
Here we show the H@1max and H@10 results of LEGO with different latent space executors (RotatE and Q2B). Note the
H@1 max measures whether the top ranking entiyt is the answer and H@10 measures percentage of the (filtered) rank
of all answers is among top 10 (typically used in KG completion). Our method LEGO with both executors achieve better
performance than baselines, which suggests that LEGO is robust to the specific embedding models. PullNet has lower H@10
than H@1 max because it ranks answers on a subset of KG entities it retrieves and the recall of the answers is low.

Table 10. Different embeddings (H@1max / H@10).
CWQ WQSP (50%) WQSP (30%)

Pullnet 26.8 / 33.9 47.4 / 39.1 34.6 / 23.2
EmbedKGQA - 42.5 / 60.6 31.4 / 41.4
LEGO (RotatE) 29.4 / 49.4 48.5 / 67.3 38.0 / 48.2
LEGO (Q2B) 28.9 / 48.5 48.3 / 66.3 39.2 / 50.8

Table 11. Relation Pruner of LEGO on CWQ using RotatE and Box as latent space executor.
k = 5 k = 50 MRR MR |R|

RotatE 0.61 0.93 0.4 14.3 1836
Q2B 0.62 0.93 0.41 14.0 1836

Table 12. Branch Pruner of LEGO on CWQ using RotatE and Box as latent space executor.
S = 0.1 S = 0.4 S = 0.8 AUC #Positive #Negative

RotatE 0.98 0.95 0.91 0.96 17596 12320
Q2B 0.99 0.97 0.95 0.98 17596 12320

