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Abstract
Off-policy reinforcement learning (RL) using a
fixed offline dataset of logged interactions is an
important consideration in real world applications.
This paper studies offline RL using the DQN Re-
play Dataset comprising the entire replay expe-
rience of a DQN agent on 60 Atari 2600 games.
We demonstrate that recent off-policy deep RL
algorithms, even when trained solely on this fixed
dataset, outperform the fully-trained DQN agent.
To enhance generalization in the offline setting,
we present Random Ensemble Mixture (REM), a
robust Q-learning algorithm that enforces optimal
Bellman consistency on random convex combina-
tions of multiple Q-value estimates. Offline REM
trained on the DQN Replay Dataset surpasses
strong RL baselines. Ablation studies highlight
the role of offline dataset size and diversity as
well as the algorithm choice in our positive re-
sults. Overall, the results here present an opti-
mistic view that robust RL algorithms used on
sufficiently large and diverse offline datasets can
lead to high quality policies. To provide a testbed
for offline RL and reproduce our results, the DQN
Replay Dataset is released at offline-rl.github.io.

1 Introduction
One of the main reasons behind the success of deep learning
is the availability of large and diverse datasets such as Im-
ageNet (Deng et al., 2009) to train expressive deep neural
networks. By contrast, most reinforcement learning (RL)
algorithms (Sutton & Barto, 2018) assume that an agent
interacts with an online environment or simulator and learns
from its own collected experience. This limits online RL’s
applicability to complex real world problems, where active
data collection means gathering large amounts of diverse
data from scratch per experiment, which can be expensive,
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unsafe, or require a high-fidelity simulator that is often diffi-
cult to build (Dulac-Arnold et al., 2019).

Offline RL concerns the problem of learning a policy from
a fixed dataset of trajectories, without any further interac-
tions with the environment. This setting can leverage the
vast amount of existing logged interactions for real world
decision-making problems such as robotics (Cabi et al.,
2019; Dasari et al., 2019), autonomous driving (Yu et al.,
2018), recommendation systems (Strehl et al., 2010; Bot-
tou et al., 2013), and healthcare (Shortreed et al., 2011).
The effective use of such datasets would not only make
real-world RL more practical, but would also enable better
generalization by incorporating diverse prior experiences.

In offline RL, an agent does not receive any new corrective
feedback from the online environment and needs to gen-
eralize from a fixed dataset of interactions to new online
interactions during evaluation. In principle, off-policy algo-
rithms can learn from data collected by any policy, however,
recent work (Fujimoto et al., 2019b; Kumar et al., 2019;
Wu et al., 2019; Siegel et al., 2020) presents a discouraging
view that standard off-policy deep RL algorithms diverge
or otherwise yield poor performance in the offline setting.
Such papers propose remedies by regularizing the learned
policy to stay close to the training dataset of offline trajecto-
ries. Furthermore, Zhang & Sutton (2017) assert that a large
replay buffer can even hurt the performance of off-policy
algorithms due to its “off-policyness”.

By contrast, this paper presents an optimistic perspective on
offline RL that with sufficiently large and diverse datasets,
robust RL algorithms, without an explicit correction for
distribution mismatch, can result in high quality policies.
The contributions of this paper can be summarized as:

• An offline RL setup is proposed for evaluating algo-
rithms on Atari 2600 games (Bellemare et al., 2013),
based on the logged replay data of a DQN agent (Mnih
et al., 2015) comprising 50 million (observation, action,
reward, next observation) tuples per game. This setup re-
duces the computation cost of the experiments consider-
ably and helps improve reproducibility by standardizing
training using a fixed dataset. The DQN Replay Dataset
and our code1 is released to enable offline optimization

1Open-source code at github.com/google-research/batch_rl.
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Figure 1: Offline RL on Atari 2600. (a) Median normalized evaluation scores averaged over 5 runs (shown as traces) across stochastic
version of 60 Atari 2600 games of offline agents trained using the DQN replay dataset. (b) Number of games where an offline agent
achieves a higher score than fully-trained DQN (Nature) as a function of training iterations. Each iteration corresponds to 1 million
training frames. Offline REM outperforms offline QR-DQN and DQN (Nature). The comparison with online C51 gives a sense to the
reader about the magnitude of the improvement from offline agents over the best policy in the entire DQN replay dataset.

of RL algorithms on a common ground.

• Contrary to recent work, we show that recent off-policy
RL algorithms trained solely on offline data can be suc-
cessful. For instance, offline QR-DQN (Dabney et al.,
2018) trained on the DQN replay dataset outperforms the
best policy in the DQN replay dataset. This discrepancy
is attributed to the differences in offline dataset size and
diversity as well as the choice of RL algorithm.

• A robust Q-learning algorithm called Random Ensem-
ble Mixture (REM) is presented, which enforces optimal
Bellman consistency on random convex combinations of
multiple Q-value estimates. Offline REM shows strong
generalization performance in the offline setting, and
outperforms offline QR-DQN. The comparison with on-
line C51 (Bellemare et al., 2017), a strong RL baseline
illustrates the relative size of the gains from exploitation
of the logged DQN data with REM.

2 Off-policy Reinforcement Learning
An interactive environment in reinforcement learning (RL)
is typically described as a Markov decision process (MDP)
(S,A, R, P, γ) (Puterman, 1994), with a state space S, an
action space A, a stochastic reward function R(s, a), tran-
sition dynamics P (s′|s, a) and a discount factor γ ∈ [0, 1).
A stochastic policy π(· | s) maps each state s ∈ S to a
distribution (density) over actions.

For an agent following the policy π, the action-value func-
tion, denoted Qπ(s, a), is defined as the expectation of cu-
mulative discounted future rewards, i.e.,

Qπ(s, a) := E
[∑∞

t=0
γtR(st, at)

]
, (1)

s0 = s, a0 = a, st ∼ P (· | st−1, at−1), at ∼ π(· | st).

The goal of RL is to find an optimal policy π∗ that attains

maximum expected return, for which Qπ
∗
(s, a) ≥ Qπ(s, a)

for all π, s, a. The Bellman optimality equations (Bellman,
1957) characterize the optimal policy in terms of the optimal
Q-values, denoted Q∗ = Qπ

∗
, via:

Q∗(s, a) = E R(s, a) + γEs′∼P max
a′∈A

Q∗(s′, a′) . (2)

To learn a policy from interaction with the environment, Q-
learning (Watkins & Dayan, 1992) iteratively improves an
approximate estimate of Q∗, denoted Qθ, by repeatedly re-
gressing the LHS of (2) to target values defined by samples
from the RHS of (2). For large and complex state spaces,
approximate Q-values are obtained using a neural network
as the function approximator. To further stabilize optimiza-
tion, a target network Qθ′ with frozen parameters may be
used for computing the learning target (Mnih et al., 2013).
The target network parameters θ′ are updated to the current
Q-network parameters θ after a fixed number of time steps.

DQN (Mnih et al., 2013; 2015) parameterizesQθ with a con-
volutional neural network (LeCun et al., 1998) and uses Q-
learning with a target network while following an ε-greedy
policy with respect to Qθ for data collection. DQN min-
imizes the temporal difference (TD) error ∆θ using the
loss L(θ) on mini-batches of agent’s past experience tu-
ples, (s, a, r, s′), sampled from an experience replay buffer
D (Lin, 1992) collected during training:

L(θ) = Es,a,r,s′∼D [`λ (∆θ(s, a, r, s
′))] , (3)

∆θ(s, a, r, s
′) = Qθ(s, a)− r − γmax

a′
Qθ′(s

′, a′)

where lλ is the Huber loss (Huber, 1964) given by

`λ(u) =

{
1
2u

2, if |u| ≤ λ
λ(|u| − 1

2λ), otherwise.
(4)
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Q-learning is an off-policy algorithm (Sutton & Barto, 2018)
since the learning target can be computed without any con-
sideration of how the experience was generated.

A family of recent off-policy deep RL algorithms, which
serve as a strong baseline in this paper, include Distribu-
tional RL (Bellemare et al., 2017; Jaquette, 1973) methods.
Such algorithms estimate a density over returns for each
state-action pair, denoted Zπ(s, a), instead of directly esti-
mating the mean Qπ(s, a). Accordingly, one can express a
form of distributional Bellman optimality as

Z∗(s, a)
D
= r + γZ∗(s′, argmaxa′∈A Q

∗(s′, a′)), (5)
where r ∼ R(s, a), s′ ∼ P (· | s, a).

and D
= denotes distributional equivalence and Q∗(s′, a′) is

estimated by taking an expectation with respect toZ∗(s′, a′).
C51 (Bellemare et al., 2017) approximates Z∗(s, a) by us-
ing a categorical distribution over a set of pre-specified
anchor points, and distributional QR-DQN (Dabney et al.,
2018) approximates the return density by using a uniform
mixture of K Dirac delta functions, i.e.,

Zθ(s, a) :=
1

K

K∑
i=1

δθi(s,a), Qθ(s, a) =
1

K

K∑
i=1

θi(s, a).

QR-DQN outperforms C51 and DQN and obtains state-of-
the-art results on Atari 2600 games, among agents that do
not exploit n-step updates (Sutton, 1988) and prioritized
replay (Schaul et al., 2016). This paper avoids using n-step
updates and prioritized replay to keep the empirical study
simple and focused on deep Q-learning algorithms.

3 Offline Reinforcement Learning
Modern off-policy deep RL algorithms (as discussed above)
perform remarkably well on common benchmarks such as
the Atari 2600 games (Bellemare et al., 2013) and contin-
uous control MuJoCo tasks (Todorov et al., 2012). Such
off-policy algorithms are considered “online” because they
alternate between optimizing a policy and using that policy
to collect more data. Typically, these algorithms keep a
sliding window of most recent experiences in a finite replay
buffer (Lin, 1992), throwing away stale data to incorporate
most fresh (on-policy) experiences.

Offline RL, in contrast to online RL, describes the fully
off-policy setting of learning using a fixed dataset of experi-
ences, without any further interactions with the environment.
We advocate the use of offline RL to help isolate an RL al-
gorithm’s ability to exploit experience and generalize vs. its
ability to explore effectively. The offline RL setting removes
design choices related to the replay buffer and exploration;

therefore, it is simpler to experiment with and reproduce
than the online setting.

Offline RL is considered challenging due to the distribution
mismatch between the current policy and the offline data
collection policy, i.e., when the policy being learned takes
a different action than the data collection policy, we don’t
know the reward that should be provided. This paper re-
visits offline RL and investigates whether off-policy deep
RL agents trained solely on offline data can be successful
without correcting for distribution mismatch.

4 Developing Robust Offline RL Algorithms
In an online RL setting, an agent can acquire on-policy
data from the environment, which ensures a virtuous cycle
where the agent chooses actions that it thinks will lead to
high rewards and then receives feedback to correct its errors.
Since it is not possible to collecting additional data in the
offline RL setting, it is necessary to reason about gener-
alization using the fixed dataset. We investigate whether
one can design robust RL algorithms with an emphasis on
improving generalization in the offline setting. Ensembling
is commonly used in supervised learning to improve gen-
eralization. In this paper, we study two deep Q-learning
algorithms, Ensemble DQN and REM, which adopt ensem-
bling, to improve stability.

4.1 Ensemble-DQN

Ensemble-DQN is a simple extension of DQN that approx-
imates the Q-values via an ensemble of parameterized Q-
functions (Faußer & Schwenker, 2015; Osband et al., 2016;
Anschel et al., 2017). Each Q-value estimate, denoted
Qkθ(s, a), is trained against its own target Qkθ′(s, a), sim-
ilar to Bootstrapped-DQN (Osband et al., 2016). The Q-
functions are optimized using identical mini-batches in the
same order, starting from different parameter initializations.
The loss L(θ) takes the form,

L(θ) =
1

K

K∑
k=1

Es,a,r,s′∼D
[
`λ
(
∆k
θ(s, a, r, s′)

)]
,

(6)

∆k
θ(s, a, r, s′) = Qkθ(s, a)− r − γmax

a′
Qkθ′(s

′, a′)

where lλ is the Huber loss. While Bootstrapped-DQN uses
one of the Q-value estimates in each episode to improve
exploration, in the offline setting, we are only concerned
with the ability of Ensemble-DQN to exploit better and use
the mean of the Q-value estimates for evaluation.

4.2 Random Ensemble Mixture (REM)

Increasing the number of models used for ensembling typi-
cally improves the performance of supervised learning mod-
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Figure 2: Neural network architectures for DQN, distributional QR-DQN and the proposed expected RL variants, i.e., Ensemble-DQN
and REM, with the same multi-head architecture as QR-DQN. The individual Q-heads share all of the neural network layers except the
final fully connected layer. In QR-DQN, each head (red rectangles) corresponds to a specific quantile of the return distribution, while in
the proposed variants, each head approximates the optimal Q-function.

els (Shazeer et al., 2017). This raises the question whether
one can use an ensemble over an exponential number of
Q-estimates in a computationally efficient manner. Inspired
by dropout (Srivastava et al., 2014), we propose Random
Ensemble Mixture for off-policy RL.

Random Ensemble Mixture (REM) uses multiple param-
eterized Q-functions to estimate the Q-values, similar to
Ensemble-DQN. The key insight behind REM is that one
can think of a convex combination of multiple Q-value es-
timates as a Q-value estimate itself. This is especially true
at the fixed point, where all of the Q-value estimates have
converged to an identical Q-function. Using this insight,
we train a family of Q-function approximators defined by
mixing probabilities on a (K − 1)-simplex.

Specifically, for each mini-batch, we randomly draw a cate-
gorical distribution α, which defines a convex combination
of the K estimates to approximate the optimal Q-function.
This approximator is trained against its corresponding target
to minimize the TD error. The loss L(θ) takes the form,

L(θ) = Es,a,r,s′∼D
[
Eα∼P∆

[
`λ
(
∆α
θ (s, a, r, s′)

)]]
, (7)

∆α
θ =

∑
k

αkQ
k
θ(s, a)− r − γmax

a′

∑
k

αkQ
k
θ′(s
′, a′)

where P∆ represents a probability distribution over the stan-
dard (K − 1)-simplex ∆K−1 = {α ∈ RK : α1 +α2 + · · ·+
αK = 1, αk ≥ 0, k = 1, . . . ,K}.
REM considers Q-learning as a constraint satisfaction prob-
lem based on Bellman optimality constraints (2) and L(θ)
can be viewed as an infinite set of constraints corresponding
to different mixture probability distributions. For action se-
lection, we use the average of the K value estimates as the
Q-function, i.e., Q(s, a) =

∑
kQ

k
θ(s, a)/K. REM is easy

to implement and analyze (see Proposition 1), and can be
viewed as a simple regularization technique for value-based
RL. In our experiments, we use a very simple distribution
P∆: we first draw a set of K values i. i. d. from Uniform (0,
1) and normalize them to get a valid categorical distribution,
i.e., α′k ∼ U(0, 1) followed by αk = α′k/

∑
α′i.

Proposition 1. Consider the assumptions: (a) The distribu-
tion P∆ has full support over the entire (K − 1)-simplex.
(b) Only a finite number of distinct Q-functions globally
minimize the loss in (3). (c) Q∗ is defined in terms of the
MDP induced by the data distribution D. (d) Q∗ lies in the
family of our function approximation. Then, at the global
minimum of L(θ) (7) for a multi-head Q-network:

(i) Under assumptions (a) and (b), all the Q-heads repre-
sent identical Q-functions.

(ii) Under assumptions (a)–(d), the common global solu-
tion is Q∗.

The proof of (ii) follows from (i) and the fact that (7) is
lower bounded by the TD error attained by Q∗. The proof
of part (i) can be found in the supplementary material.

5 Offline RL on Atari 2600 Games
To facilitate a study of offline RL, we create the DQN Re-
play Dataset by training several instances of DQN (Nature)
agents (Mnih et al., 2015) on 60 Atari 2600 games for 200
million frames each, with a frame skip of 4 (standard pro-
tocol) and sticky actions (Machado et al., 2018) (with 25%
probability, the agent’s previous action is executed instead
of the current action). On each game, we train 5 differ-
ent agents with random initialization, and store all of the
tuples of (observation, action, reward, next observation) en-
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Figure 4: Offline QR-DQN vs. DQN (Nature). Normalized performance improvement (in %) over fully-trained online DQN (Nature),
per game, of (a) offline DQN (Nature) and (b) offline QR-DQN trained using the DQN replay dataset for same number of gradient updates
as online DQN. The normalized online score for each game is 100% and 0% for online DQN and random agents respectively.

countered during training into 5 replay datasets per game
resulting in a total of 300 datasets.

Each game replay dataset is approximately 3.5 times larger
than ImageNet (Deng et al., 2009) and include samples
from all of the intermediate (diverse) policies seen during
the optimization of the online DQN agent. Figure A.4 shows
the learning curves of the individual agents used for data
collection as well as the performance of best policy found
during training (which we use for comparison).

Experiment Setup. The DQN Replay Dataset is used for
training RL agents, offline, without any interaction with
the environment during training. We use the hyperparam-
eters provided in Dopamine baselines (Castro et al., 2018)
for a standardized comparison (Appendix A.4) and report
game scores using a normalized scale (Appendix A.3). Al-
though the game replay datasets contain data collected by a
DQN agent improving over time as training progresses, we
compare the performance of offline agents against the best
performing agent obtained after training (i.e., fully-trained
DQN). The evaluation of the offline agents is done online for
a limited number of times in the intervals of 1 million train-
ing frames. For each game, we evaluate the 5 offline agents

trained (one per dataset), using online returns, reporting the
best performance averaged across the 5 agents.

5.1 Can standard off-policy RL algorithms with no
environment interactions succeed?

Given the logged replay data of the DQN agent, it is natural
to ask how well an offline variant of DQN solely trained
using this dataset would perform? Furthermore, whether
more recent off-policy algorithms are able to exploit the
DQN Replay Dataset more effectively than offline DQN.
To investigate these questions, we train DQN (Nature) and
QR-DQN agents, offline, on the DQN replay dataset for the
same number of gradient updates as online DQN.

Figure 4 shows that offline DQN underperforms fully-
trained online DQN on all except a few games where it
achieves much higher scores than online DQN with the
same amount of data and gradient updates. Offline QR-
DQN, on the other hand, outperforms offline DQN and
online DQN on most of the games (refer to Figure A.4 for
learning curves). Offline C51 trained using the DQN Replay
Dataset also considerably improves upon offline DQN (Fig-
ure 3). Offline QR-DQN outperforms offline C51.
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Table 1: Asymptotic performance of offline agents. Median nor-
malized scores (averaged over 5 runs) across 60 games and number
of games where an offline agent trained using the DQN Replay
Dataset achieves better scores than a fully-trained DQN (Nature)
agent. Offline DQN (Adam) significantly outperforms DQN (Na-
ture) and needs further investigation. Offline REM surpasses the
gains (119%) from fully-trained C51, a strong online agent.

Offline agent Median >DQN

DQN (Nature) 83.4% 17
DQN (Adam) 111.9% 41
Ensemble-DQN 111.0% 39
Averaged Ensemble-DQN 112.1% 43
QR-DQN 118.9% 45
REM 123.8% 49

These results demonstrate that it is possible to optimize
strong Atari agents offline using standard deep RL algo-
rithms on DQN Replay Dataset without constraining the
learned policy to stay close to the training dataset of offline
trajectories. Furthermore, the disparity between the perfor-
mance of offline QR-DQN/C51 and DQN (Nature) indicates
the difference in their ability to exploit offline data.

5.2 Asymptotic performance of offline RL agents

In supervised learning, asymptotic performance matters
more than performance within a fixed budget of gradient
updates. Similarly, for a given sample complexity, we prefer
RL algorithms that perform the best as long as the number
of gradient updates is feasible. Since the sample efficiency
for an offline dataset is fixed, we train offline agents for 5
times as many gradient updates as DQN.

Comparison with QR-DQN. QR-DQN modifies the
DQN (Nature) architecture to output K values for each
action using a multi-head Q-network and replaces RM-
SProp (Tieleman & Hinton, 2012) with Adam (Kingma
& Ba, 2015) for optimization. To ensure a fair comparison
with QR-DQN, we use the same multi-head Q-network as
QR-DQN with K = 200 heads (Figure 2), where each head
represents aQ-value estimate for REM and Ensemble-DQN.
We also use Adam for optimization.

Additional Baselines. To isolate the gains due to Adam in
QR-DQN and our proposed variants, we compare against
a DQN baseline which uses Adam. We also evaluate Aver-
aged Ensemble-DQN, a variant of Ensemble-DQN proposed
by Anschel et al. (2017), which uses the average of the pre-
dicted target Q-values as the Bellman target for training
each parameterized Q-function. This baseline determines
whether the random combinations of REM provide any sig-
nificant benefit over simply using an ensemble of predictors
to stabilize the Bellman target.

Results. The main comparisons are presented in Figure 1.
Table 1 shows the comparison of baselines with REM and
Ensemble-DQN. Surprisingly, DQN with Adam bridges
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Figure 5: Online REM vs. baselines. Median normalized evalua-
tion scores averaged over 5 runs (shown as traces) across stochas-
tic version of 60 Atari 2600 games of online agents trained for
200 million frames (standard protocol). Online REM with 4 Q-
networks performs comparably to online QR-DQN. Please refer to
Figure A.6 for learning curves.

the gap in asymptotic performance between QR-DQN and
DQN (Nature) in the offline setting. Offline Ensemble-DQN
does not improve upon this strong DQN baseline showing
that its naive ensembling approach is inadequate. Further-
more, Averaged Ensemble-DQN performs only slightly bet-
ter than Ensemble-DQN. In contrast, REM exploits offline
data more effectively than other agents, including QR-DQN,
when trained for more gradient updates. Learning curves of
all offline agents can be found in Figure A.5.

Hypothesis about effectiveness of REM. The gains from
REM over Averaged Ensemble-DQN suggest that the ef-
fectiveness of REM is due to the noise from randomly en-
sembling Q-value estimates leading to more robust training,
analogous to dropout. Consistent with this hypothesis, we
also find that offline REM with separate Q-networks (with
more variation in individual Q-estimates) performs bet-
ter asymptotically and learns faster than a multi-head Q-
network (Figure A.3). Furthermore, randomized ensembles
as compared to a minimum over the Q-values for the target
perform substantially better in our preliminary experiments
on 5 games and requires further investigation.

5.3 Does REM work in the online setting?

In online RL, learning and data generation are tightly cou-
pled, i.e., an agent that learns faster also collects more rele-
vant data. We ran online REM with 4 separate Q-networks
because of the better convergence speed over multi-head
REM in the offline setting. For data collection, we use
ε-greedy with a randomly sampled Q-estimate from the sim-
plex for each episode, similar to Bootstrapped DQN. We
follow the standard online RL protocol on Atari and use a
fixed replay buffer of 1M frames.

To estimate the gains from the REM objective (7) in the
online setting, we also evaluate Bootstrapped-DQN with
identical modifications (e.g., separateQ-networks) as online
REM. Figure 5 shows that REM performs on par with QR-
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DQN and considerably outperforms Bootstrapped-DQN.
This shows that we can use the insights gained from the
offline setting with appropriate design choices (e.g., explo-
ration, replay buffer) to create effective online methods.

6 Important Factors in Offline RL
Dataset Size and Diversity. Our offline learning results
indicate that 50 million tuples per game from DQN (Nature)
are sufficient to obtain good online performance on most of
the Atari 2600 games. Behavior cloning performs poorly on
the DQN Replay Dataset due to its diverse composition. We
hypothesize that the size of the DQN Replay Dataset and
its diversity (De Bruin et al., 2015) play a key role in the
success of standard off-policy RL algorithms trained offline.

To study the role of the offline dataset size, we perform an
ablation experiment with variable replay size. We train of-
fline QR-DQN and REM with reduced data obtained via ran-
domly subsampling entire trajectories from the logged DQN
experiences, thereby maintaining the same data distribution.
Figure 6 presents the performance of the offline REM and
QR-DQN agents with N% of the tuples in the DQN replay
dataset where N ∈ {1, 10, 20, 50, 100}. As expected, per-
formance tends to increase as the fraction of data increases.
With N ≥ 10%, REM and QR-DQN still perform compara-
bly to online DQN on most of these games. However, the
performance deteriorates drastically for N = 1%.

To see the effect of quality of offline dataset, we perform
another ablation where we train offline agents on the first 20
million frames in the DQN Replay Dataset – a lower quality
dataset which roughly approximates exploration data with
suboptimal returns. Similar to the offline results with the
entire dataset, on most Atari games, offline REM and QR-
DQN outperform the best policy in this dataset (Figure 7
and Figure A.7), indicating that standard RL agents work
well with sufficiently diverse offline datasets.

Algorithm Choice. Even though continuous control is not
the focus of this paper, we reconcile the discrepancy be-
tween our findings (Section 5.1) and the claims of Fujimoto
et al. (2019b) that standard off-policy methods fail in the
offline continuous control setting, even with large and di-
verse replay datasets. The results of Fujimoto et al. (2019b)
are based on the evaluation of a standard continuous control
agent, called DDPG (Lillicrap et al., 2015), and other more
recent continuous control algorithms such as TD3 (Fuji-
moto et al., 2018) and SAC (Haarnoja et al., 2018) are not
considered in their study.

Motivated by the so-called final buffer setting in Fujimoto
et al. (2019b) (Appendix A.2), we train a DDPG agent on
continuous control MuJoCo tasks (Todorov et al., 2012)
for 1 million time steps and store all of the experienced
transitions. Using this dataset, we train standard off-policy
agents including TD3 and DDPG completely offline. Con-
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sistent with our offline results on Atari games, offline TD3
significantly outperforms the data collecting DDPG agent
and offline DDPG (Figure 8). Offline TD3 also performs
comparably to BCQ (Fujimoto et al., 2019b), an algorithm
designed specifically to learn from offline data.

7 Related work

Our work is mainly related to batch RL 2 (Lange et al., 2012).
Similar to (Ernst et al., 2005; Riedmiller, 2005; Jaques et al.,
2019), we investigate batch off-policy RL, which requires
learning a good policy given a fixed dataset of interactions.
In our offline setup, we only assume access to samples
from the behavior policy and focus on Q-learning methods
without any form of importance correction, as opposed to
(Swaminathan & Joachims, 2015; Liu et al., 2019).

Recent work (Fujimoto et al., 2019b; Kumar et al., 2019;
Wu et al., 2019; Siegel et al., 2020) reports that standard
off-policy methods trained on fixed datasets fail on continu-
ous control environments. Fujimoto et al. (2019a) also ob-
serve that standard RL algorithms fail on Atari 2600 games
when trained offline using trajectories collected by a single
partially-trained DQN policy. The majority of recent pa-
pers focus on the offline RL setting with dataset(s) collected
using a single data collection policy (e.g., random, expert,
etc) and propose remedies by regularizing the learned policy
to stay close to training trajectories. These approaches im-
prove stability in the offline setting, however, they introduce
additional regularization terms and hyper-parameters, the
selection of which is not straightforward (Wu et al., 2019).
REM (Section 4.2) is orthogonal to these approaches and
can be easily combined with them.

This paper focuses on the offline RL setting on Atari 2600
games with data collected from a large mixture of policies
seen during the optimization of a DQN agent, rather than a

2To avoid confusion with batch vs. minibatch optimization, we
refer to batch RL as offline RL in this paper.

single Markovian behavior policy. Our results demonstrate
that recent off-policy deep RL algorithms (e.g., TD3 (Fu-
jimoto et al., 2018), QR-DQN (Dabney et al., 2018)) are
effective in the offline setting with sufficiently large and
diverse offline datasets, without explicitly correcting for
the distribution mismatch between the learned policy and
the offline dataset. We suspect that the suboptimal perfor-
mance of offline DQN (Nature) is related to the notion of off-
policyness of large buffers established by Zhang & Sutton
(2017). However, robust deep Q-learning algorithms such
as REM are able to effectively exploit DQN Replay, given
sufficient number of gradient updates. Section 6 shows
that dataset size and its diversity, as well as choice of the
RL algorithms significantly affect offline RL results and
explains the discrepancy with recent work. Inspired by our
work, Cabi et al. (2019) successfully apply distributional
RL algorithms on large-scale offline robotic datasets.

8 Future Work
Since the (observation, action, next observation, reward)
tuples in DQN Replay Dataset are stored in the order they
were experienced by online DQN during training, various
data collection strategies for benchmarking offline RL can
be induced by subsampling the replay dataset containing
200 million frames. For example, the first k million frames
from the DQN Replay Dataset emulate exploration data with
suboptimal returns (e.g., Figure 7) while the last k million
frames are analogous to near-expert data with stochasticity.
Another option is to randomly subsample the entire dataset
to create smaller offline datasets (e.g., Figure 6). Based on
the popularity and ease of experimentation on Atari 2600
games, the DQN Replay Dataset can be used for benchmark-
ing offline RL in addition to continuous control setups such
as BRAC (Wu et al., 2019).

As REM simply uses a randomized Q-ensemble, it is
straightforward to combine REM with existing Q-learning
methods including distributional RL. REM can be used for
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improving value baseline estimation in policy gradient and
actor-critic methods (Weng, 2018). Using entropy regular-
ization to create correspondence between Q-values and poli-
cies (e.g., SAC (Haarnoja et al., 2018)) and applying REM
to Q-values is another possibility for future work. REM
can also be combined with behavior regularization methods
such as SPIBB (Laroche et al., 2019) and BCQ (Fujimoto
et al., 2019b) to create better offline RL algorithms.

Our results also emphasize the need for a rigorous charac-
terization of the role of generalization due to deep neural
nets when learning from offline data collected from a large
mixture of (diverse) policies. We also leave further investi-
gation of the exploitation ability of distributional RL as well
as REM to future work.

Analogous to supervised learning, the offline agents exhibit
overfitting, i.e., after certain number of gradient updates,
their performance starts to deteriorates. To avoid such over-
fitting, we currently employ online policy evaluation for
early stopping, however, “true” offline RL requires offline
policy evaluation for hyperparameter tuning and early stop-
ping. We also observe divergence w.r.t. Huber loss in our
reduced data experiments with N = 1%. This suggests the
need for offline RL methods that maintain reasonable per-
formance throughout learning (Garcıa & Fernández, 2015).

Experience replay-based algorithms can be more sample
efficient than model-based approaches (Van Hasselt et al.,
2019), and using the DQN Replay Dataset on Atari 2600
games for designing non-parametric replay models (Pan
et al., 2018) and parametric world models (Kaiser et al.,
2019) is another promising direction for improving sample-
efficiency in RL.

9 Conclusion
This paper studies offline RL on Atari 2600 games based
on logged experiences of a DQN agent. The paper demon-
strates that standard RL methods can learn to play Atari
games from DQN Replay Dataset, better than the best be-
havior in the dataset. This is in contrast with existing work,
which claims standard methods fail in the offline setting.
The DQN Replay Dataset can serve as a benchmark for
offline RL. These results present a positive view that robust
RL algorithms can be developed which can effectively learn
from large-scale offline datasets. REM strengthens this op-
timistic perspective by showing that even simple ensemble
methods can be effective in the offline setting.

Overall, the paper indicates the potential of offline RL
for creating a data-driven RL paradigm where one could
pretrain RL agents with large amounts of existing diverse
datasets before further collecting new data via exploration,
thus creating sample-efficient agents that can be deployed
and continually learn in the real world.
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A Appendix

A.1 Proofs

Proposition 1. Consider the assumptions: (a) The distribu-
tion P∆ has full support over the entire (K − 1)-simplex.
(b) Only a finite number of distinct Q-functions globally
minimize the loss in (3). (c) Q∗ is defined in terms of the
MDP induced by the data distribution D. (d) Q∗ lies in the
family of our function approximation. Then at the global
minimum of L(θ) (7) for multi-head Q-network :

(i) Under assumptions (a) and (b), all the Q-heads repre-
sent identical Q-functions.

(ii) Under assumptions (a)–(d), the common convergence
point is Q∗.

Proof. Part (i): Under assumptions (a) and (b), we would
prove by contradiction that each Q-head should be identical
to minimize the REM loss L(θ) (7). Note that we consider
twoQ-functions to be distinct only if they differ on any state
s in D.

The REM loss L(θ) = Eα∼P∆ [L(α, θ)] where L(α, θ) is
given by

L(α, θ) = Es,a,r,s′∼D
[
`λ
(
∆α
θ (s, a, r, s′)

)]
, (8)

∆α
θ =

∑
k

αkQ
k
θ(s, a)− r − γmax

a′

∑
k

αkQ
k
θ′(s
′, a′)

If the headsQiθ andQjθ don’t converge to identicalQ-values
at the global minimum of L(θ), it can be deduced using
Lemma 1 that all the Q-functions given by the convex com-
bination αiQiθ + αjQ

j
θ such that αi + αj = 1 minimizes

the loss in (3). This contradicts the assumption that only
a finite number of distinct Q-functions globally minimize
the loss in (3). Hence, all Q-heads represent an identical
Q-function at the global minimum of L(θ).

Lemma 1. Assuming that the distribution P∆ has full sup-
port over the entire (K − 1)-simplex ∆K−1, then at any
global minimum of L(θ), the Q-function heads Qkθ for
k = 1, . . . ,K minimize L(α, θ) for any α ∈ ∆K−1.

Proof. Let Qα∗,θ∗ =
∑K
k=1 α

∗
kQ

k
θ∗(s, a) corresponding

to the convex combination α∗ = (α∗1, · · · , α∗K) represents
one of the global minima of L(α, θ) (8) i.e., L(α∗, θ∗) =
min
α,θ
L(α, θ) where α ∈ ∆K−1. Any global minima of L(θ)

attains a value of L(α∗, θ∗) or higher since,

L(θ) = Eα∼P∆ [L(α, θ)] (9)
≥ Eα∼P∆ [L(α∗, θ∗)] ≥ L(α∗, θ∗)

Let Qkθ∗(s, a) = wkθ∗ · fθ∗(s, a) where fθ∗(s, a) ∈ RD rep-
resent the shared features among the Q-heads and wkθ∗ ∈
RD represent the weight vector in the final layer correspond-

ing to the k-th head. Note that Qα∗,θ∗ can also be repre-
sented by each of the individual Q-heads using a weight
vector given by convex combination α∗ of weight vectors
(w1

θ∗ , · · · , wKθ∗), i.e., Q(s, a) =
(∑K

k=1 α
∗
kw

k
θ∗

)
·fθ∗(s, a).

Let θI be such that QkθI = Qα∗,θ∗ for all Q-heads. By
definition of Qα∗,θ∗ , for all α ∼ P∆, L(α, θI) = L(α∗, θ∗)
which implies that L(θI) = L(α∗, θ∗). Hence, θI corre-
sponds to one of the global minima of L(θ) and any global
minima of L(θ) attains a value of L(α∗, θ∗).

Since L(α, θ) ≥ L(α∗, θ∗) for any α ∈ ∆K−1, for any θM

such that L(θM ) = L(α∗, θ∗) implies that L(α, θM ) =
L(α∗, θ∗) for any α ∼ P∆. Therefore, at any global mini-
mum of L(θ), the Q-function heads Qkθ for k = 1, . . . ,K
minimize L(α, θ) for any α ∈ ∆K−1.

A.2 Offline continuous control experiments

We replicated the final buffer setup as described by Fujimoto
et al. (2019b): We train a DDPG (Lillicrap et al., 2015) agent
for 1 million time steps three standard MuJoCo continuous
control environments in OpenAI gym (Todorov et al., 2012;
Brockman et al., 2016), adding N (0, 0.5) Gaussian noise
to actions for high exploration, and store all experienced
transitions. This collection procedure creates a dataset with
a diverse set of states and actions, with the aim of sufficient
coverage. Similar to Fujimoto et al. (2019b), we train DDPG
across 15 seeds, and select the 5 top performing seeds for
dataset collection.

Using this logged dataset, we train standard continuous
control off-policy actor-critic methods namely DDPG and
TD3 (Fujimoto et al., 2018) completely offline without any
exploration. We also train a Batch-Constrained deep Q-
learning (BCQ) agent, proposed by Fujimoto et al. (2019b),
which restricts the action space to force the offline agent to-
wards behaving close to on-policy w.r.t. a subset of the given
data. We use the open source code generously provided by
the authors at https://github.com/sfujim/BCQ
and https://github.com/sfujim/TD3. We use
the hyperparameters mentioned in (Fujimoto et al., 2018;
2019b) except offline TD3 which uses a learning rate of
0.0005 for both the actor and critic.

Figure 8 shows that offline TD3 significantly outperforms
the behavior policy which collected the offline data as well
as the offline DDPG agent. Noticeably, offline TD3 also
performs comparably to BCQ, an algorithm designed specif-
ically to learn from arbitrary, fixed offline data. While Fuji-
moto et al. (2019b) attribute the failure to learn in the offline
setting to extrapolation error (i.e., the mismatch between the
offline dataset and true state-action visitation of the current
policy), our results suggest that failure to learn from diverse
offline data may be linked to extrapolation error for only
weak exploitation agents such as DDPG.

https://github.com/sfujim/BCQ
https://github.com/sfujim/TD3
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A.3 Score Normalization

The improvement in normalized performance of an of-
fline agent, expressed as a percentage, over an online
DQN (Nature) (Mnih et al., 2015) agent is calculated as:
100× (Scorenormalized − 1) where:

Scorenormalized =
ScoreAgent − Scoremin

Scoremax − Scoremin
, (10)

Scoremin = min(ScoreDQN, ScoreRandom)

Scoremax = max(ScoreDQN, ScoreRandom)

Here, ScoreDQN, ScoreRandom and ScoreAgent are the
mean evaluation scores averaged over 5 runs. We chose
not to measure performance in terms of percentage of online
DQN scores alone because a tiny difference relative to the
random agent on some games can translate into hundreds of
percent in DQN score difference. Additionally, the max is
needed since DQN performs worse than a random agent on
the games Solaris and Skiing.

A.4 Hyperparameters & Experiment Details

In our experiments, we used the hyperparameters provided
in Dopamine baselines (Castro et al., 2018) and report them
for completeness and ease of reproducibility in Table 2.
As mentioned by Dopamine’s GitHub repository, chang-
ing these parameters can significantly affect performance,
without necessarily being indicative of an algorithmic dif-
ference. We will also open source our code to further aid in
reproducing our results.

The Atari environments (Bellemare et al., 2013) used in our
experiments are stochastic due to sticky actions (Machado
et al., 2018), i.e., there is 25% chance at every time step that
the environment will execute the agent’s previous action
again, instead of the agent’s new action. All agents (online
or offline) are compared using the best evaluation score (av-
eraged over 5 runs) achieved during training where the evalu-
ation is done online every training iteration using a ε-greedy
policy with ε = 0.001. We report offline training results
with same hyperparameters over 5 random seeds of the
DQN replay data collection, game simulator and network
initialization.

DQN replay dataset collection. For collecting the offline
data used in our experiments, we use online DQN (Na-
ture) (Mnih et al., 2015) with the RMSprop (Tieleman
& Hinton, 2012) optimizer. The DQN replay dataset,
BDQN, consists of approximately 50 million experience
tuples for each run per game corresponds to 200 million
frames due to frame skipping of four, i.e., repeating a
selected action for four consecutive frames. Note that
the total dataset size is approximately 15 billion tuples (
50 million tuples

agent ∗ 5 agents
game ∗ 60 games).

Optimizer related hyperparameters. For existing off-

policy agents, step size and optimizer were taken as pub-
lished. Offline DQN (Adam) and all the offline agents
with multi-head Q-network (Figure 2) use the Adam op-
timizer (Kingma & Ba, 2015) with same hyperparameters
as online QR-DQN (Dabney et al., 2018) (lr = 0.00005,
εAdam = 0.01/32). Note that scaling the loss has the same
effect as inversely scaling εAdam when using Adam.

Online Agents. For online REM shown in Figure 1b, we
performed hyper-parameter tuning over εAdam in (0.01/32,
0.005/32, 0.001/32) over 5 training games (Asterix, Break-
out, Pong, Q*Bert, Seaquest) and evaluated on the full set of
60 Atari 2600 games using the best setting (lr = 0.00005,
εAdam = 0.001/32). Online REM uses 4 Q-value esti-
mates calculated using separate Q-networks where each
network has the same architecture as originally used by
online DQN (Nature). Similar to REM, our version of
Bootstrapped-DQN also uses 4 separate Q-networks and
Adam optimizer with identical hyperaparmeters (lr =
0.00005, εAdam = 0.001/32).

Wall-clock time for offline experiments. The offline ex-
periments are approximately 3X faster than the online ex-
periments for the same number of gradient steps on a P100
GPU. In Figure 1, the offline agents are trained for 5X gra-
dient steps, thus, the experiments are 1.67X slower than
running online DQN for 200 million frames (standard pro-
tocol). Furthermore, since the offline experiments do not
require any data generation, using tricks from supervised
learning such as using much larger batch sizes than 32 with
TPUs / multiple GPUs would lead to a significant speed up.

Additional Plots & Tables
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Table 2: The hyperparameters used by the offline and online RL agents in our experiments.

Hyperparameter setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training steps per iteration 250K
Update period every 4 steps
Evaluation ε 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Multi-head Q-network: number of Q-heads 200
Hardware Tesla P100 GPU

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1,000,000 steps 50,000,000 steps
Replay Scheme Uniform Uniform
Training Iterations 200 200 or 1000

Table 3: Median normalized scores (Section A.3) across stochastic version of 60 Atari 2600 games, measured as percentages and number
of games where an agent achieves better scores than a fully trained online DQN (Nature) agent. All the offline agents below are trained
using the DQN replay dataset. The entries of the table without any suffix report training results with the five times as many gradient steps
as online DQN while the entires with suffix (1x) indicates the same number of gradient steps as the online DQN agent. All the offline
agents except DQN use the same multi-head architecture as QR-DQN.

Offline agent Median >DQN

DQN (Nature) (1x) 74.4% 10
DQN (Adam) (1x) 104.6% 39
Ensemble-DQN (1x) 92.5% 26
Averaged Ensemble-DQN (1x) 88.6% 24
QR-DQN (1x) 115.0% 44
REM (1x) 103.7% 35

Offline agent Median >DQN

DQN (Nature) 83.4% 17
DQN (Adam) 111.9% 41
Ensemble-DQN 111.0% 39
Averaged Ensemble-DQN 112.1% 43
QR-DQN 118.9% 45
REM 123.8% 49
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Figure A.1: Normalized Performance improvement (in %) over online DQN (Nature), per game, of (a) offline Ensemble-DQN and (b)
offline REM trained using the DQN replay dataset for same number of gradient steps as online DQN. The normalized online score for
each game is 0.0 and 1.0 for the worse and better performing agent among fully trained online DQN and random agents respectively.
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Figure A.2: Normalized Performance improvement (in %) over online DQN (Nature), per game, of (a) offline QR-DQN (5X) (b) offline
REM (5X) trained using the DQN replay dataset for five times as many gradient steps as online DQN. The normalized online score for
each game is 0.0 and 1.0 for the worse and better performing agent among fully trained online DQN and random agents respectively.
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Online REM vs. baselines. Scores for online agents trained for 200 million ALE frames. Scores are averaged over 3 runs (shown as
traces) and smoothed over a sliding window of 5 iterations and error bands show standard deviation.
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(a) REM with 4 Q-value estimates (K = 4)
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(b) REM with 16 Q-value estimates (K = 16)

Figure A.3: REM with Separate Q-networks. Average online scores of offline REM variants with different architectures and QR-DQN
trained on stochastic version of 6 Atari 2600 games for 500 iterations using the DQN replay dataset. The scores are averaged over 5 runs
(shown as traces) and smoothed over a sliding window of 5 iterations and error bands show standard deviation. The multi-network REM
and the multi-head REM employ K Q-value estimates computed using separate Q-networks and Q-heads of a multi-head Q-network
respectively and are optimized with identical hyperparameters. Multi-network REM improves upon the multi-head REM indicating that
the more diverse Q-estimates provided by the separate Q-networks improve performance of REM over Q-estimates provided by the
multi-head Q-network with shared features.
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Figure A.4: Average evaluation scores across stochastic version of 60 Atari 2600 games for online DQN, offline DQN and offline QR-DQN
trained for 200 iterations. The offline agents are trained using the DQN replay dataset. The scores are averaged over 5 runs (shown
as traces) and smoothed over a sliding window of 5 iterations and error bands show standard deviation. The horizontal line shows the
performance of the best policy (averaged over 5 runs) found during training of online DQN.
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Figure A.5: Average evaluation scores across stochastic version of 60 Atari 2600 games of DQN (Adam), Ensemble-DQN, QR-DQN and
REM agents trained offline using the DQN replay dataset. The horizontal line for online DQN show the best evaluation performance it
obtains during training. All the offline agents except DQN use the same multi-head architecture with K = 200 heads. The scores are
averaged over 5 runs (shown as traces) and smoothed over a sliding window of 5 iterations and error bands show standard deviation.
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Figure A.6: Online results. Average evaluation scores across stochastic version of 60 Atari 2600 games of DQN, C51, QR-DQN,
Bootstrapped-DQN and REM agents trained online for 200 million game frames (standard protocol). The scores are averaged over 5
runs (shown as traces) and smoothed over a sliding window of 5 iterations and error bands show standard deviation.
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Figure A.7: Effect of Dataset Quality. Normalized scores (averaged over 3 runs) of QR-DQN and multi-head REM trained offline on
stochastic version of 60 Atari 2600 games for 5X gradient steps using logged data from online DQN trained only for 20M frames (20
iterations). The horizontal line shows the performance of best policy found during DQN training for 20M frames which is significantly
worse than fully-trained DQN.
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