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Abstract
State-action value functions (i.e., Q-values) are
ubiquitous in reinforcement learning (RL), giving
rise to popular algorithms such as SARSA and Q-
learning. We propose a new notion of action value
defined by a Gaussian smoothed version of the
expected Q-value. We show that such smoothed
Q-values still satisfy a Bellman equation, making
them learnable from experience sampled from an
environment. Moreover, the gradients of expected
reward with respect to the mean and covariance of
a parameterized Gaussian policy can be recovered
from the gradient and Hessian of the smoothed
Q-value function. Based on these relationships,
we develop new algorithms for training a Gaus-
sian policy directly from a learned smoothed Q-
value approximator. The approach is additionally
amenable to proximal optimization by augment-
ing the objective with a penalty on KL-divergence
from a previous policy. We find that the ability to
learn both a mean and covariance during training
leads to significantly improved results on standard
continuous control benchmarks.

1. Introduction
Model-free reinforcement learning algorithms often alter-
nate between two concurrent but interacting processes: (1)
policy evaluation, where an action value function (i.e., a
Q-value) is updated to obtain a better estimate of the return
associated with taking a specific action, and (2) policy im-
provement, where the policy is updated aiming to maximize
the current value function. In the past, different notions
of Q-value have led to distinct but important families of
RL methods. For example, SARSA (Rummery & Niranjan,
1994; Sutton & Barto, 1998; Van Seijen et al., 2009) uses the
expected Q-value, defined as the expected return of follow-
ing the current policy. Q-learning (Watkins, 1989) exploits a
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hard-max notion of Q-value, defined as the expected return
of following an optimal policy. Soft Q-learning (Haarnoja
et al., 2017) and PCL (Nachum et al., 2017) both use a
soft-max form of Q-value, defined as the future return of
following an optimal entropy regularized policy. Clearly,
the choice of Q-value function has a considerable effect on
the resulting algorithm; for example, restricting the types of
policies that can be expressed, and determining the type of
exploration that can be naturally applied. In each case, the
Q-value at a state s and action a answers the question,

“What would my future value from s be if I were to take an
initial action a?”

Such information about a hypothetical action is helpful
when learning a policy; we want to nudge the policy distri-
bution to favor actions with potentially higher Q-values.

In this work, we investigate the practicality and benefits of
answering a more difficult, but more relevant, question:

“What would my future value from s be if I were to sample my
initial action from a distribution centered at a?”

We focus our efforts on Gaussian policies and thus the coun-
terfactual posited by the Q-value inquires about the expected
future return of following the policy when changing the
mean of the initial Gaussian distribution. Thus, our new
notion of Q-values maps a state-action pair (s, a) to the
expected return of first taking an action sampled from a
normal distribution N(·|a,Σ(s)) centered at a, and follow-
ing actions sampled from the current policy thereafter. In
this way, the Q-values we introduce may be interpreted as a
Gaussian-smoothed version of the expected Q-value, hence
we term them smoothed Q-values.

We show that smoothed Q-values possess a number of im-
portant properties that make them attractive for use in RL
algorithms. It is clear from the definition of smoothed Q-
values that, if known, their structure is highly beneficial for
learning the mean of a Gaussian policy. We are able to show
more than this: although the smoothed Q-values are not a
direct function of the covariance, one can surprisingly use
knowledge of the smoothed Q-values to derive updates to
the covariance of a Gaussian policy. Specifically, the gradi-
ent of the standard expected return objective with respect to
the mean and covariance of a Gaussian policy is equivalent
to the gradient and Hessian of the smoothed Q-value func-
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tion, respectively. Moreover, we show that the smoothed
Q-values satisfy a single-step Bellman consistency, which
allows bootstrapping to be used to train them via function
approximation.

These results lead us to propose an algorithm, Smoothie,
which, in the spirit of (Deep) Deterministic Policy Gradient
(DDPG) (Silver et al., 2014; Lillicrap et al., 2016), trains
a policy using the derivatives of a trained (smoothed) Q-
value function to learn a Gaussian policy. Crucially, unlike
DDPG, which is restricted to deterministic policies and is
well-known to have poor exploratory behavior (Haarnoja
et al., 2017), the approach we develop is able to utilize a
non-deterministic Gaussian policy parameterized by both
a mean and a covariance, thus allowing the policy to be
exploratory by default and alleviating the need for excessive
hyperparameter tuning. On the other hand, compared to
standard policy gradient algorithms (Williams & Peng, 1991;
Konda & Tsitsiklis, 2000), Smoothie’s utilization of the
derivatives of a Q-value function to train a policy avoids the
high variance and sample inefficiency of stochastic updates.

Furthermore, we show that Smoothie can be easily adapted
to incorporate proximal policy optimization techniques by
augmenting the objective with a penalty on KL-divergence
from a previous version of the policy. The inclusion of a
KL-penalty is not feasible in the standard DDPG algorithm,
but we show that it is possible with our formulation, and
it significantly improves stability and overall performance.
On standard continuous control benchmarks, our results are
competitive with or exceed state-of-the-art, especially for
more difficult tasks in the low-data regime.

2. Formulation
We consider the standard model-free RL problem repre-
sented a Markov decision process (MDP), consisting of
a state space S and an action space A. At iteration t
the agent encounters a state st ∈ S and emits an action
at ∈ A, after which the environment returns a scalar re-
ward rt ∼ R(st, at) and places the agent in a new state
st+1 ∼ P (st, at).

We focus on continuous control tasks, where the actions are
real-valued, i.e., A ≡ Rda . Our observations at a state s
are denoted Φ(s) ∈ Rds . We parameterize the behavior of
the agent using a stochastic policy π(a | s), which takes the
form of a Gaussian density at each state s. The Gaussian
policy is parameterized by a mean and a covariance function,
µ(s) : Rds → Rda and Σ(s) : Rds → Rda × Rda so that
π(a | s) = N (a |µ(s),Σ(s)), where

N(a |µ,Σ) = |2πΣ|−1/2 exp

{
−1

2
‖a− µ‖2Σ−1

}
, (1)

here using the notation ‖v‖2A = vTAv.

2.1. Policy Gradient for Generic Stochastic Policies

The optimization objective (expected discounted return), as
a function of a generic stochastic policy, is expressed in
terms of the expected action value function Qπ(s, a) by,

OER(π) =

∫
S

∫
A
π(a | s)Qπ(s, a) da dρπ(s) , (2)

where ρπ(s) is the state visitation distribution under π, and
Qπ(s, a) is recursively defined using the Bellman equation,

Qπ(s, a) = Er,s′
[
r + γ

∫
A
Qπ(s′, a′)π(a′ | s′) da

]
, (3)

where γ ∈ [0, 1) is the discount factor. For brevity, we
suppress explicit denotation of the distribution R over im-
mediate rewards and P over state transitions.

The policy gradient theorem (Sutton et al., 2000) expresses
the gradient of OER(πθ) w.r.t. θ, the tunable parameters of a
policy πθ, as,

∇θOER(πθ) =

∫
S

∫
A
∇θπθ(a | s)Qπ(s, a) dadρπ(s)

=

∫
S
Ea∼πθ(a|s) [∇θ log πθ(a | s)Qπ(s, a)] dρπ(s). (4)

In order to approximate the expectation on the RHS of (4),
one often resorts to an empirical average over on-policy
samples from πθ(a | s). This sampling scheme results in
a gradient estimate with high variance, especially when
πθ(a | s) is not concentrated. Many policy gradient algo-
rithms, including actor-critic variants, trade off variance
and bias, e.g., by attempting to estimate Qπ(s, a) accurately
using function approximation and the Bellman equation.

2.2. Deterministic Policy Gradient

Silver et al. (2014) study the policy gradient for the specific
class of Gaussian policies in the limit where the policy’s
covariance approaches zero. In this scenario, the policy
becomes deterministic and samples from the policy ap-
proach the Gaussian mean. Under a deterministic policy
π ≡ (µ,Σ → 0), one can estimate the expected future
return from a state s as,

lim
Σ→0

∫
A
π(a | s)Qπ(s, a) da = Qπ(s, µ(s)) . (5)

Accordingly, Silver et al. (2014) express the gradient of the
expected discounted return objective for πθ ≡ δ(µθ) as,

∇θOER(πθ)=

∫
S

∂Qπ(s, a)

∂a

∣∣∣
a=µθ(s)

∇θµθ(s)dρπ(s). (6)

This characterization of the policy gradient theorem for de-
terministic policies is called deterministic policy gradient
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(DPG). Since no Monte Carlo sampling is required for esti-
mating the gradient, the variance of the estimate is reduced.
On the other hand, the deterministic nature of the policy can
lead to poor exploration and training instability in practice.

In the limit of Σ→ 0, one can also re-express the Bellman
equation (3) as,

Qπ(s, a) = Er,s′ [r +Qπ(s′, µ(s′))] . (7)

Therefore, a value function approximator Qπw can be opti-
mized by minimizing the Bellman error,

E(w) =
∑

(s,a,r,s′)∈D

(Qπw(s, a)−r−γQπw(s′, µ(s′))2 , (8)

for transitions (s, a, r, s′) sampled from a dataset D of inter-
actions of the agent with the environment. The deep variant
of DPG known as DDPG (Lillicrap et al., 2016) alternates
between improving the action value estimate by gradient
descent on (8) and improving the policy based on (6).

To improve sample efficiency, Degris et al. (2012) and Silver
et al. (2014) replace the state visitation distribution ρπ(s) in
(6) with an off-policy visitation distribution ρβ(s) based on
a replay buffer. This subsititution introduces some bias in
the gradient estimate (6), but previous work has found that
it works well in practice and improves the sample efficiency
of the policy gradient algorithms. We also adopt a similar
heuristic in our method to make use of off-policy data.

In practice, DDPG exhibits improved sample efficiency over
standard policy gradient algorithms: using off-policy data
to train Q-values while basing policy updates on their gra-
dients significantly improves stochastic policy updates dic-
tated by (4), which require a large number of samples to
reduce noise. On the other hand, the deterministic nature
of the policy learned by DDPG leads to poor exploration
and instability in training. In this paper, we propose an
algorithm which, like DDPG, utilizes derivative informa-
tion of learned Q-values for better sample-efficiency, but
which, unlike DDPG, is able to learn a Gaussian policy and
imposes a KL-penalty for better exploration and stability.

3. Idea
Before giving a full exposition, we use a simplified scenario
to illustrate the key intuitions behind the proposed approach
and how it differs fundamentally from previous methods.

Consider a one-shot decision making problem over a one
dimensional action space with a single state. Here the ex-
pected reward is given by a function over the real line, which
also corresponds to the optimal Q-value function; Figure 1
gives a concrete example. We assume the policy π is spec-
ified by a Gaussian distribution parameterized by a scalar
mean µ and standard deviation σ. The goal is to optimize
the policy parameters to maximize expected reward.
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Figure 1. A simple expected reward function, shown in green,
with a Gaussian-smoothed version, shown in magenta.

A naive policy gradient method updates the parameters by
sampling a ∼ π, observing reward ri, then adjusting µ and
σ in directions ∆µ = d log π(ai)

dµ ri = µ−ai
σ2 ri and ∆σ =

d log π(ai)
dσ ri =

( (µ−ai)2
σ2 − 1

σ

)
ri. Note that such updates

suffer from large variance, particularly when σ is small.

To reduce the variance of direct policy gradient, determinis-
tic policy gradient methods leverage a value function approx-
imator Qπw, parameterized by w, to approximate Qπ. For
example, in this scenario, vanilla DPG would sample an ac-
tion ai = µ + εi with exploration noise εi ∼ N(0, σ2),
then update µ using ∆µ =

∂Qπw(a)
∂a

∣∣
a=µ

and Qπw using
∆w = (ri − Qπw(ai))∇wQπw(ai). Clearly, this update ex-
hibits reduced variance, but requires Qπw to approximate
Qπ (the green curve in Figure 1) to control bias. Unfortu-
nately, DPG is not able to learn the exploration variance
σ2. Variants of DPG such as SVG (Heess et al., 2015) and
EPG (Ciosek & Whiteson, 2018) have been proposed to
work with stochastic policies. However they either have
restrictive assumptions on the form of the true Q-value, in-
troduce a noise into the policy updates, or require an approx-
imate integral, thus losing the advantage of deterministic
gradient updates.

Note, however, that the expected value at any given lo-
cation is actually given by a convolution of the Gaussian
policy with the underlying expected reward function. Such
a process inherently smooths the landscape, as shown in the
magenta curve in Figure 1. Unfortunately, DPG completely
ignores this smoothing effect by trying to approximate Qπ ,
while policy gradient methods only benefit from it indirectly
through sampling. A key insight is that this smoothing effect
can be captured directly in the value function approximator
itself, bypassing any need for sampling or approximating
Qπ . That is, instead of using an approximator to model Qπ ,
one can directly approximate the smoothed version given
by Q̃π(a) =

∫
AN(ã|a, σ2)Qπ(ã) dã (the magenta curve

in Figure 1), which, crucially, satisfies OER(π) = Q̃π(µ).
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Based on this observation, we propose a novel actor-critic
strategy below that uses a function approximator Q̃πw to
model Q̃π. Although approximating Q̃π instead of Qπ

might appear to be a subtle change, it is a major alteration
to existing actor-critic approaches. Not only is approxi-
mating the magenta curve in Figure 1 far easier than the
green curve, modeling Q̃π allows the policy parameters to
be updated deterministically for any given action. In par-
ticular, in the simple scenario above, if one sampled an
action from the current policy, ai ∼ π, and observed ri,
then µ could be updated using ∆µ =

∂Q̃πw(a)
∂a

∣∣
a=µ

, σ using

∆σ =
∂2Q̃πw(a)
∂a2

∣∣
a=µ

(a key result we establish below), and

Q̃πw using ∆w = (ri − Q̃πw(µ))∇wQ̃πw(µ).

Such a strategy combines the best aspects of DPG and pol-
icy gradient while conferring additional advantages: (1) the
smoothed value function Q̃π cannot add but can only re-
move local minima from Qπ; (2) Q̃π is smoother than Qπ

hence easier to approximate; (3) approximating Q̃π allows
deterministic gradient updates for π; (4) approximating Q̃π

allows gradients to be computed for both the mean and vari-
ance parameters. Among these advantages, DPG shares
only 3 and policy gradient only 1. We will see below that
the new strategy we propose significantly outperforms ex-
isting approaches, not only in the toy scenario depicted in
Figure 1, but also in challenging benchmark problems.

4. Smoothed Action Value Functions
Moving beyond a simple illustrative scenario, the key con-
tribution of this paper is to introduce the general notion of
a smoothed action value function, the gradients of which
provide an effective signal for optimizing the parameters of
a Gaussian policy. Smoothed Q-values, which we denote
Q̃π(s, a), differ from ordinary Q-values Qπ(s, a) by not as-
suming the first action of the agent is fully specified; instead,
they assume only that a Gaussian centered at the action is
known. Thus, to compute Q̃π(s, a), one has to perform an
expectation of Qπ(s, ã) for actions ã drawn in the vicinity
of a. More formally, smoothed action values are defined as,

Q̃π(s, a) =

∫
A
N(ã | a,Σ(s))Qπ(s, ã) dã . (9)

With this definition of Q̃π , one can re-express the gradient of
the expected reward objective (Equation (4)) for a Gaussian
policy π ≡ (µ,Σ) as,

∇µ,Σ OER(π) =

∫
S
∇µ,Σ Q̃π(s, µ(s)) dρπ(s) . (10)

The insight that differentiates this approach from prior work
(Heess et al., 2015; Ciosek & Whiteson, 2018) is that instead
of learning a function approximator for Qπ then drawing
samples to approximate the expectation in (9) and its deriva-
tive, we directly learn a function approximator for Q̃π .

One of the key observations that enables learning a function
approximator for Q̃π is that smoothed Q-values satisfy a
notion of Bellman consistency. First, note that for Gaussian
policies π ≡ (µ,Σ) we have the following relation between
the expected and smoothed Q-values:

Qπ(s, a) = Er,s′ [r + γQ̃π(s′, µ(s′))] . (11)

Then, combining (9) and (11), one can derive the following
one-step Bellman equation for smoothed Q-values,

Q̃π(s, a)=

∫
A
N(ã | a,Σ(s))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã,

(12)
where r̃ and s̃′ are sampled from R(s, ã) and P (s, ã). Be-
low, we elaborate on how one can make use of the deriva-
tives of Q̃π to learn µ and Σ, and how the Bellman equation
in (12) enables direct optimization of Q̃π .

4.1. Policy Improvement

We assume a Gaussian policy πθ,φ ≡ (µθ,Σφ) parameter-
ized by θ and φ for the mean and the covariance respectively.
The gradient of the objective w.r.t. the mean parameters fol-
lows from the policy gradient theorem in conjunction with
(10) and is almost identical to (6),

∇θOER(πθ,φ) =

∫
S

∂Q̃π(s, a)

∂a

∣∣∣
a=µθ(s)

∇θµθ(s)dρπ(s).

(13)

Estimating the derivative of the objective w.r.t. the covari-
ance parameters is not as straightforward, since Q̃π is not
a direct function of Σ. However, a key result is that the
second derivative of Q̃π w.r.t. actions is sufficient to exactly
compute the derivative of Q̃π w.r.t. Σ.

Theorem 1.
∂Q̃π(s, a)

∂Σ(s)
=

1

2
· ∂

2Q̃π(s, a)

∂a2
∀s, a . (14)

A proof of this identity is provided in the Appendix. The
full derivative w.r.t. φ can then be shown to take the form,

∇φOER(πθ,φ) =
1

2

∫
S

∂2Q̃π(s, a)

∂a2

∣∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s).

(15)

4.2. Policy Evaluation

There are two natural ways to optimize Q̃πw. The first ap-
proach leverages (9) to update Q̃π based on the expectation
of Qπ. In this case, one first trains a parameterized model
Qπw to approximate the standard Qπ function using con-
ventional methods (Rummery & Niranjan, 1994; Sutton &
Barto, 1998; Van Seijen et al., 2009), then fits Q̃πw to Qπw
based on (9). In particular, given transitions (s, a, r, s′) sam-
pled from interactions with the environment, one can train
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Qπw to minimize the Bellman error

(Qπw(s, a)− r − γQπw(s′, a′))2, (16)

where a′ ∼ N(µ(s′),Σ(s′)). Then, Q̃πw can be optimized
to minimize the squared error

(Q̃πw(s, a)− Eã[Qπw(s, ã)])2, (17)

where ã ∼ N(a,Σ(s)), using several samples. When the
target values in the residuals are treated as fixed (i.e., using a
target network), these updates will reach a fixed point when
Q̃πw satisfies the recursion in the Bellman equation (9).

The second approach requires a single function approxima-
tor for Q̃πw, resulting in a simpler implementation; hence we
use this approach in our experimental evaluation. Suppose
one has access to a tuple (s, ã, r̃, s̃′) sampled from a replay
buffer with knowledge of the sampling probability q(ã | s)
(possibly unnormalized) with full support. Then we draw a
phantom action a ∼ N(ã,Σ(s)) and optimize Q̃πw(s, a) by
minimizing a weighted Bellman error

1

q(ã|s)
(Q̃πw(s, a)− r̃ − γQ̃πw(s̃′, µ(s̃′))2 . (18)

In this way, for a specific pair of state and action (s, a) the
expected objective value is,

Eq(ã | s),r̃,s̃′
[
δ ·(Q̃πw(s, a)− r̃ − γQ̃πw(s̃′, µ(s̃′)))2

]
, (19)

where δ = N(a | ã,Σ(s))
q(ã | s) . Note that the denominator of δ

counter-acts the expectation over ã in (19) and that the nu-
merator of δ is N(a|ã,Σ(s)) = N(ã|a,Σ(s)). Therefore,
when the target value r̃ + γQ̃πw(s̃′, µ(s̃′)) is treated as fixed
(i.e., using a target network) this training procedure reaches
an optimum when Q̃πw(s, a) takes on the target value pro-
vided in the Bellman equation (12).

In practice, we find that it is unnecessary to keep track of
the probabilities q(ã | s), and assume the replay buffer pro-
vides a near-uniform distribution of actions conditioned on
states. Other recent work has also benefited from ignoring
or heavily damping importance weights (Munos et al., 2016;
Wang et al., 2017; Schulman et al., 2017). However, it is
possible when interacting with the environment to save the
probability of sampled actions along with their transitions,
and thus have access to q(ã | s) ≈ N(ã |µold(s),Σold(s)).

4.3. Proximal Policy Optimization

Policy gradient algorithms are notoriously unstable, particu-
larly in continuous control problems. Such instability has
motivated the development of trust region methods that con-
strain each gradient step to lie within a trust region (Schul-
man et al., 2015), or augment the expected reward objec-
tive with a penalty on KL-divergence from a previous pol-
icy (Nachum et al., 2018; Schulman et al., 2017). These

Algorithm 1 Smoothie
Input: Environment ENV , learning rates ηπ, ηQ, dis-
count factor γ, KL-penalty λ, batch size B, number of
training steps N , target network lag τ .

Initialize θ, φ, w, set θ′ = θ, φ′ = φ,w′ = w.
for i = 0 to N − 1 do

// Collect experience
Sample action a ∼ N(µθ(s),Σφ(s)) and apply to
ENV to yield r and s′.
Insert transition (s, a, r, s′) to replay buffer.

// Train µ,Σ
Sample batch {(sk, ak, rk, s′k)}Bk=1 from replay buffer.

Compute gradients gk =
∂Q̃πw(sk,a)

∂a

∣∣
a=µθ(sk)

.

Compute Hessians Hk =
∂2Q̃πw(sk,a)

∂a2

∣∣
a=µθ(sk)

.
Compute penalties KLk = KL(µθ,Σφ||µθ′ ,Σφ′).
Compute updates

∆θ = 1
B

∑B
k=1 gk∇θµθ(sk)− λ∇θKLk,

∆φ = 1
B

∑B
k=1

1
2Hk∇φΣφ(sk)− λ∇φKLk.

Update θ ← θ + ηπ∆θ, φ← φ+ ηπ∆φ.

// Train Q̃π

Sample batch {(sk, ãk, r̃k, s̃′k)}Bk=1 from replay buffer.
Sample phantom actions ak ∼ N(ãk,Σφ(sk)).
Compute loss
L(w) = 1

B

∑B
k=1(Q̃πw(s, a)−r−γQ̃πw′(s̃′, µθ′(s̃′)))2.

Update w ← w − ηQ∇wL(w).

// Update target variables
Update θ′ ← (1 − τ)θ′ + τθ; φ′ ← (1 − τ)φ′ + τφ;
w′ ← (1− τ)w′ + τw.

end for

stabilizing techniques have thus far not been applicable to
algorithms like DDPG, since the policy is deterministic. The
formulation we propose above, however, is easily amenable
to trust region optimization. Specifically, we may augment
the objective (10) with a penalty

OTR(π) = OER(π)− λ
∫
S

KL (π ‖ πold) dρπ(s), (20)

where πold ≡ (µold,Σold) is a previous version of the pol-
icy. The optimization is straightforward, since the KL-
divergence of two Gaussians can be expressed analytically.

This concludes the technical presentation of the proposed
algorithm Smoothie: pseudocode for the full training pro-
cedure, including policy improvement, policy evaluation,
and proximal policy improvement is given in Algorithm 1.
The reader may also refer to the appendix for additional
implementation details.
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4.4. Compatible Function Approximation

The approximator Q̃πw for Q̃π should be sufficiently accu-
rate so that updates for µθ and Σφ are not affected by substi-

tuting ∂Q̃πw(s,a)
∂a and ∂2Q̃πw(s,a)

∂a2 for ∂Q̃π(s,a)
∂a and ∂2Q̃π(s,a)

∂a2

respectively. Define εk(s, θ, w) as the difference between
the true k-th derivative of Q̃π and the k-th derivative of the
approximated Q̃πw at a = µθ(s):

εk(s, θ, w) = ∇kaQ̃πw(s, a)
∣∣
a=µθ(s)

−∇kaQ̃π(s, a)
∣∣
a=µθ(s)

.

(21)
We claim that a Q̃πw is compatible with respect to µθ if

1. ∇aQ̃πw(s, a)
∣∣
a=µθ(s)

= ∇θµθ(s)Tw,

2. ∇w
∫
S ||ε1(s, θ, w)||2dρπ(s) = 0 (i.e., w minimizes

the expected squared error of the gradients).

Additionally, Q̃πw is compatible with respect to Σφ if

1. ∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

= ∇φΣφ(s)Tw,

2. ∇w
∫
S ||ε2(s, θ, w)||2dρπ(s) = 0 (i.e., w minimizes

the expected squared error of the Hessians).

We provide a proof of these claims in the Appendix. One
possible parameterization of Q̃πw may be achieved by taking
w = [w0, w1, w2] and parameterizing

Q̃πw(s, a) = Vw0(s) + (a− µθ(s))T∇θµθ(s)Tw1

+ (a− µθ(s))T∇φΣφ(s)Tw2(a− µθ(s)). (22)

Similar conditions and parameterizations exist for
DDPG (Silver et al., 2014), in terms of Qπ. While it is
reassuring to know that there exists a class of function ap-
proximators which are compatible, this fact has largely been
ignored in practice. At first glance, it seems impossible to
satisfy the second set of conditions without access to deriva-
tive information of the true Q̃π (for DDPG,Qπ). Indeed, the
methods for training Q-value approximators (equation (8)
and Section 4.2) only train to minimize an error between raw
scalar values. For DDPG, we are unaware of any method
that allows one to train Qπw to minimize an error with re-
spect to the derivatives of the true Qπ. However, the case
is different for the smoothed Q-values Q̃π. In fact, it is
possible to train Q̃πw to minimize an error with respect to
the derivatives of the true Q̃π . We provide an elaboration in
the Appendix. In brief, it is possible to use (12) to derive
Bellman-like equations which relate a derivative ∂kQ̃π(s,a)

∂ak

of any degree k to an integral over the raw Q-values at the
next time step Q̃π(s̃′, µ(s̃′)). Thus, it is possible to devise
a training scheme in the spirit of the one outlined in Sec-
tion 4.2, which optimizes Q̃πw to minimize the squared error
with the derivatives of the true Q̃π. This theoretical prop-
erty of the smoothed Q-values is unique and provides added
benefits to its use over the standard Q-values.

5. Related Work
This paper follows a long line of work that uses Q-value
functions to stably learn a policy, which in the past has been
used to either approximate expected (Rummery & Niranjan,
1994; Van Seijen et al., 2009; Gu et al., 2017) or optimal
(Watkins, 1989; Silver et al., 2014; Nachum et al., 2017;
Haarnoja et al., 2017; Metz et al., 2017) future value.

Work that is most similar to what we present are methods
that exploit gradient information from the Q-value function
to train a policy. Deterministic policy gradient (Silver et al.,
2014) is perhaps the best known of these. The method we
propose can be interpreted as a generalization of the deter-
ministic policy gradient. Indeed, if one takes the limit of the
policy covariance Σ(s) as it goes to 0, the proposed Q-value
function becomes the deterministic value function of DDPG,
and the updates for training the Q-value approximator and
the policy mean are identical.

Stochastic Value Gradient (SVG) (Heess et al., 2015) also
trains stochastic policies using an update that is similar to
DDPG (i.e., SVG(0) with replay). The key differences with
our approach are that SVG does not provide an update for
the covariance, and the mean update in SVG estimates the
gradient with a noisy Monte Carlo sample, which we avoid
by estimating the smoothed Q-value function. Although a
covariance update could be derived using the same repa-
rameterization trick as in the mean update, that would also
require a noisy Monte Carlo estimate. Methods for updat-
ing the covariance along the gradient of expected reward
are essential for applying the subsequent trust region and
proximal policy techniques.

More recently, Ciosek & Whiteson (2018) introduced ex-
pected policy gradients (EPG), a generalization of DDPG
that provides updates for the mean and covariance of a
stochastic Gaussian policy using gradients of an estimated
Q-value function. In that work, the expected Q-value used
in standard policy gradient algorithms such as SARSA (Sut-
ton & Barto, 1998; Rummery & Niranjan, 1994; Van Seijen
et al., 2009) is estimated. The updates in EPG therefore
require approximating an integral of the expected Q-value
function, or assuming the Q-value has a simple form that
allows for analytic computation. Our analogous process
directly estimates an integral (via the smoothed Q-value
function) and avoids approximate integrals, thereby making
the updates simpler and generally applicable. Moreover,
while Ciosek & Whiteson (2018) rely on a quadratic Taylor
expansion of the estimated Q-value function, we instead rely
on the strength of neural network function approximators to
directly estimate the smoothed Q-value function.

The novel training scheme we propose for learning the co-
variance of a Gaussian policy relies on properties of Gaus-
sian integrals (Bonnet, 1964; Price, 1958). Similar identities
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Figure 2. Left: The learnable policy mean and standard deviation
during training for Smoothie and DDPG on the simple synthetic
task introduced in Section 3. The standard deviation for DDPG is
the exploratory noise kept constant during training. Right: Copy of
Figure 1 showing the reward function and its Gaussian-smoothed
version. Smoothie successfully escapes the lower-reward local
optimum, while increasing then decreasing its policy variance as
the convexity/concavity of the smoothed reward function changes.

have been used in the past to derive updates for variational
auto-encoders (Kingma & Welling, 2014) and Gaussian
back-propagation (Rezende et al., 2014).

Finally, the perspective presented in this paper, where Q-
values represent the averaged return of a distribution of
actions rather than a single action, is distinct from recent ad-
vances in distributional RL (Bellemare et al., 2017). Those
approaches focus on the distribution of returns of a single
action, whereas we consider the single average return of a
distribution of actions. Although we restrict our attention
in this paper to Gaussian policies, an interesting topic for
further investigation is to study the applicability of this new
perspective to a wider class of policy distributions.

6. Experiments
We utilize the insights from Section 4 to introduce a new RL
algorithm, Smoothie. Smoothie maintains a parameterized
Q̃πw trained via the procedure described in Section 4.2. It
then uses the gradient and Hessian of this approximation to
train a Gaussian policy πθ,φ ≡ (µθ,Σφ) using the updates
stated in (13) and (15). See Algorithm 1 for a simplified
pseudocode of the algorithm.

We perform a number of evaluations of Smoothie to com-
pare to DDPG. We choose DDPG as a baseline because it
(1) utilizes gradient information of a Q-value approximator,
much like the proposed algorithm; and (2) is a standard al-
gorithm well-known to have achieve good, sample-efficient
performance on continuous control benchmarks.

6.1. Synthetic Task

Before investigating benchmark problems, we first briefly
revisit the simple task introduced in Section 3 and repro-
duced in Figure 2 (Right). Here, the reward function is a
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Figure 3. Results of Smoothie and DDPG on continuous control
benchmarks. The x-axis is in millions of environment steps. Each
plot shows the average reward and standard deviation clipped at
the min and max of six randomly seeded runs after choosing best
hyperparameters. We see that Smoothie is competitive with DDPG
even when DDPG uses a hyperparameter-tuned noise scale, and
Smoothie learns the optimal noise scale (the covariance) during
training. Moreoever, we observe significant advantages in terms
of final reward performance, especially in the more difficult tasks
like Hopper, Walker2d, and Humanoid.

mixture of two Gaussians, one better than the other, and we
initialize the policy mean to be centered on the worse of the
two. We plot the learnable policy mean and standard devi-
ation during training for Smoothie and DDPG in Figure 2
(Left). Smoothie learns both the mean and variance, while
DDPG learns only the mean and the variance plotted is the
exploratory noise, whose scale is kept fixed during training.

As expected, we observe that DDPG cannot escape the local
optimum. At the beginning of training it exhibits some
movement away from the local optimum (likely due to the
initial noisy approximation given by Qπw). However, it is
unable to progress very far from the initial mean. Note that
this is not an issue of exploration. The exploration scale is
high enough that Qπw is aware of the better Gaussian. The
issue is in the update for µθ, which is only with regard to
the derivative of Qπw at the current mean.
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On the other hand, we find Smoothie is easily able to solve
the task. This is because the smoothed reward function
approximated by Q̃πw has a derivative that clearly points µθ
toward the better Gaussian. We also observe that Smoothie
is able to suitably adjust the covariance Σφ during training.
Initially, Σφ decreases due to the concavity of the smoothed
reward function. As a region of convexity is entered, it
begins to increase, before again decreasing to near-zero as
µθ approaches the global optimum. This example clearly
shows the ability of Smoothie to exploit the smoothed action
value landscape.

6.2. Continuous Control

Next, we consider standard continuous control benchmarks
available on OpenAI Gym (Brockman et al., 2016) utilizing
the MuJoCo environment (Todorov et al., 2012).

Our implementations utilize feed forward neural networks
for policy and Q-values. We parameterize the covariance
Σφ as a diagonal given by eφ. The exploration for DDPG
is determined by an Ornstein-Uhlenbeck process (Uhlen-
beck & Ornstein, 1930; Lillicrap et al., 2016). Additional
implementation details are provided in the Appendix.

We compare the results of Smoothie and DDPG in Figure 3.
For each task we performed a hyperparameter search over
actor learning rate, critic learning rate and reward scale, and
plot the average of six runs for the best hyperparameters.
For DDPG we extended the hyperparameter search to also
consider the scale and damping of exploratory noise pro-
vided by the Ornstein-Uhlenbeck process. Smoothie, on
the other hand, contains an additional hyperparameter to
determine the weight on KL-penalty.

Despite DDPG having the advantage of its exploration de-
cided by a hyperparameter search while Smoothie must
learn its exploration without supervision, we find that
Smoothie performs competitively or better across all tasks,
exhibiting a slight advantage in Swimmer and Ant, while
showing more dramatic improvements in Hopper, Walker2d,
and Humanoid. The improvement is especially dramatic for
Hopper, where the average reward is doubled. We also high-
light the results for Humanoid, which as far as we know, are
the best published results for a method that only trains on the
order of millions of environment steps. In contrast, TRPO,
which to the best of our knowledge is the only other algo-
rithm that can achieve competitive performance, requires on
the order of tens of millions of environment steps to achieve
comparable reward. This gives added evidence to the ben-
efits of using a learnable covariance and not restricting a
policy to be deterministic.

Empirically, we found the introduction of a KL-penalty to
improve performance of Smoothie, especially on harder
tasks. We present a comparison of results of Smoothie
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Figure 4. Results of Smoothie with and without a KL-penalty. The
x-axis is in millions of environment steps. We observe benefits of
using a proximal policy optimization method, especially in Hopper
and Humanoid, where the performance improvement is significant
without sacrificing sample efficiency.

with and without the KL-penalty on the four harder tasks
in Figure 4. A KL-penalty to encourage stability is not
possible in DDPG. Thus, Smoothie provides a much needed
solution to the inherent instability in DDPG training.

7. Conclusion
We have presented a new Q-value function concept, Q̃π , that
is a Gaussian-smoothed version of the standard expected
Q-value, Qπ. The advantage of Q̃π over Qπ is that its
gradient and Hessian possess an intimate relationship with
the gradient of expected reward with respect to mean and
covariance of a Gaussian policy. The resulting algorithm,
Smoothie, is able to successfully learn both mean and covari-
ance during training, leading to performance that surpasses
that of DDPG, especially when incorporating a penalty on
divergence from a previous policy.

The success of Q̃π is encouraging. Intuitively it appears
advantageous to learn Q̃π instead of Qπ. The smoothed Q-
values by definition make the true reward surface smoother,
thus possibly easier to learn; moreover the smoothed Q-
values have a more direct relationship with the expected
discounted return objective. We encourage further inves-
tigation of these claims and techniques for applying the
underlying motivations for Q̃π to other types of policies.
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A. Proof of Theorem 1
We want to show that for any s, a,

∂Q̃π(s, a)

∂Σ(s)
=

1

2
· ∂

2Q̃π(s, a)

∂a2
(23)

We note that similar identities for Gaussian integrals exist in the literature (Price, 1958; Rezende et al., 2014) and point the
reader to these works for further information.

Proof. The specific identity we state may be derived using standard matrix calculus. We make use of the fact that

∂

∂A
|A|−1/2 = −1

2
|A|−3/2 ∂

∂A
|A| = −1

2
|A|−1/2A−1, (24)

and for symmetric A,
∂

∂A
||v||2A−1 = −A−1vvTA−1. (25)

We omit s from Σ(s) in the following equations for succinctness. The LHS of (23) is∫
A
Qπ(s, ã)

∂

∂Σ
N(ã|a,Σ)dã

=

∫
A
Qπ(s, ã) exp

{
−1

2
||ã− a||2Σ−1

}(
∂

∂Σ
|2πΣ|−1/2 − 1

2
|2πΣ|−1/2 ∂

∂Σ
||ã− a||2Σ−1

)
dã

=
1

2

∫
A
Qπ(s, ã)N(ã|a,Σ)

(
−Σ−1 + Σ−1(ã− a)(ã− a)TΣ−1

)
dã.

Meanwhile, towards tackling the RHS of (23) we note that

∂Q̃π(s, a)

∂a
=

∫
A
Qπ(s, ã)N(ã|a,Σ)Σ−1(ã− a)dã . (26)

Thus we have

∂2Q̃π(s, a)

∂a2
=

∫
A
Qπ(s, ã)

(
Σ−1(ã− a)

∂

∂a
N(ã|a,Σ) +N(ã|a,Σ)

∂

∂a
Σ−1(ã− a)

)
dã

=

∫
A
Qπ(s, ã)N(ã|a,Σ)(Σ−1(ã− a)(ã− a)TΣ−1 − Σ−1) dã .

�

B. Compatible Function Approximation
We claim that a Q̃πw is compatible with respect to µθ if

1. ∇aQ̃πw(s, a)
∣∣
a=µθ(s)

= ∇θµθ(s)Tw,

2. ∇w
∫
S

(
∇aQ̃πw(s, a)

∣∣
a=µθ(s)

−∇aQ̃π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the expected squared error

of the gradients).

Additionally, Q̃πw is compatible with respect to Σφ if

1. ∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

= ∇φΣφ(s)Tw,
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2. ∇w
∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

−∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the expected squared error

of the Hessians).

Proof. We shall show how the conditions stated for compatibility with respect to Σφ are sufficient. The reasoning for
µθ follows via a similar argument. We also refer the reader to Silver et al. (2014) which includes a similar procedure for
showing compatibility.

From the second condition for compatibility with respect to Σφ we have∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

−∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)
∇w

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

)
dρπ(s) = 0 .

We may combine this with the first condition to find∫
S
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s) =

∫
S
∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s) ,

which is the desired property for compatibility. �

C. Derivative Bellman Equations
The conditions for compatibility require training Q̃πw to fit the true Q̃π with respect to derivatives. Howevever, in RL
contexts, one often does not have access to the derivatives of the true Q̃π . In this section, we elaborate on a method to train
Q̃πw to fit the derivatives of the true Q̃π without access to true derivative information.

Our method relies on a novel formulation: derivative Bellman equations. We begin with the standard Q̃π Bellman equation
presented in the main paper:

Q̃π(s, a) =

∫
A
N(ã | a,Σ(s))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (27)

One may take derivatives of both sides to yield the following identity for any k:

∂kQ̃π(s, a)

∂ak
=

∫
A

∂kN(ã | a,Σ(s))

∂ak
Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (28)

One may express the k-the derivative of a normal density for k ≤ 2 simply as

∂kN(ã | a,Σ(s))

∂ak
= N(ã | a,Σ(s))Σ(s)−k/2 ·Hk(Σ(s)−1/2(ã− a)), (29)

where Hk is a polynomial. Therefore, we have the following derivative Bellman equations for any k ≤ 2:

∂kQ̃π(s, a)

∂ak
=

∫
A
N(ã | a,Σ(s))Σ(s)−k/2 ·Hk(Σ(s)−1/2(ã− a))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (30)

One may train a parameterized Q̃πw to satisfy these consistencies in a manner similar to that described in Section 4.2.
Specifically, suppose one has access to a tuple (s, ã, r̃, s̃′) sampled from a replay buffer with knowledge of the sampling
probability q(ã | s) (possibly unnormalized) with full support. Then we draw a phantom action a ∼ N(ã,Σ(s)) and optimize
Q̃πw(s, a) by minimizing a weighted derivative Bellman error

1

q(ã|s)

(
∂kQ̃πw(s, a)

∂ak
− Σ(s)−k/2 ·Hk(Σ(s)−1/2(a− ã))(r̃ + γQ̃πw(s̃′, µ(s̃′)))

)2

, (31)

for k = 0, 1, 2. As in the main text, it is possible to argue that when using target networks, this training procedure reaches
an optimum when Q̃πw(s, a) satisfies the recursion in the derivative Bellman equations (30) for k = 0, 1, 2.
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Hyperparameter Range Sampling
actor learning rate [1e-6,1e-3] log
critic learning rate [1e-6,1e-3] log

reward scale [0.01,0.3] log
OU damping [1e-4,1e-3] log
OU stddev [1e-3,1.0] log

λ [1e-6, 4e-2] log
discount factor 0.995 fixed

target network lag 0.01 fixed
batch size 128 fixed

clipping on gradients of Q 4.0 fixed
num gradient updates per observation 1 fixed

Huber loss clipping 1.0 fixed

Table 1. Random hyperparameter search procedure. We also include the hyperparameters which we kept fixed.

D. Implementation Details
We utilize feed forward networks for both policy and Q-value approximator. For µθ(s) we use two hidden layers of
dimensions (400, 300) and relu activation functions. For Q̃πw(s, a) and Qπw(s, a) we first embed the state into a 400
dimensional vector using a fully-connected layer and tanh non-linearity. We then concatenate the embedded state with a
and pass the result through a 1-hidden layer neural network of dimension 300 with tanh activations. We use a diagonal
Σφ(s) = eφ for Smoothie, with φ initialized to −1.

To find optimal hyperparameters we perform a 100-trial random search over the hyperparameters specified in Table 1.
The OU exploration parameters only apply to DDPG. The λ coefficient on KL-penalty only applies to Smoothie with a
KL-penalty.

D.1. Fast Computation of Gradients and Hessians

The Smoothie algorithm relies on the computation of the gradients ∂Q̃πw(s,a)
∂a and Hessians ∂2Q̃πw(s,a)

∂a2 . In general, these
quantities may be computed through multiple backward passes of a computation graph. However, for faster training, in our
implementation we take advantage of a more efficient computation. We make use of the following identities:

∂

∂x
f(g(x)) = f ′(g(x))

∂

∂x
g(x), (32)

∂2

∂x2
f(g(x)) =

(
∂

∂x
g(x)

)T
f ′′(g(x))

∂

∂x
g(x) + f ′(g(x))

∂2

∂x2
g(x). (33)

Thus, during the forward computation of our critic network Q̃πw, we not only maintain the tensor output OL of layer L, but
also the tensor GL corresponding to the gradients of OL with respect to input actions and the tensor HL corresponding to
the Hessians of OL with respect to input actions. At each layer we may compute OL+1, GL+1, HL+1 given OL, GL, HL.
Moreover, since we utilize feed-forward fully-connected layers, the computation of OL+1, GL+1, HL+1 may be computed
using fast tensor products.


