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ABSTRACT

The locally balanced informed proposal has proved to be highly effective for sam-
pling from discrete spaces. However, its success relies on the “local” factor, which
ensures that whenever the proposal distribution is restricted to be near the current
state, the locally balanced weight functions are asymptotically optimal and the
gradient approximations are accurate. In seeking a more efficient sampling al-
gorithm, many recent works have considered increasing the scale of the proposal
distributions, but this causes the “local” factor to no longer hold. Instead, we
propose any-scale balanced samplers to repair the gap in non-local proposals. In
particular, we substitute the locally balanced function with an any-scale balanced
function that can self-adjust to achieve better efficiency for proposal distributions
at any scale. We also use quadratic approximations to capture curvature of the
target distribution and reduce the error in the gradient approximation, while em-
ploying a Gaussian integral trick with a special estimated diagonal to efficiently
sample from the quadratic proposal distribution. On various synthetic and real dis-
tributions, the proposed sampler substantially outperforms existing approaches.

1 INTRODUCTION

The Markov Chain Monte Carlo (MCMC) algorithm is one of the most widely used methods for
sampling from intractable distributions (Robert et al., 1999). Gradient-based samplers that lever-
age gradient information to guide the proposal have achieved significant advances in sampling from
continuous spaces, demonstrated, for example, by the Metropolis Adjusted Langevin Algorithm
(MALA) (Rossky et al., 1978), Hamiltonian Monte Carlo (HMC) (Duane et al., 1987), and re-
lated variants (Girolami & Calderhead, 2011; Hoffman et al., 2014). However, for discrete spaces,
gradient based samplers remain far less well understood. Recently, a family of locally balanced
(LB) samplers (Zanella, 2020; Grathwohl et al., 2021; Sun et al., 2021; 2022a; Zhang et al., 2022)
have demonstrated promise in sampling from discrete spaces. Such samplers use a locally balanced
weight function in an informed proposal Q(x, y) ∝ g(π(y)/π(x))Kσ(x− y), such that g : R→ R
is a weight function that satisfies g(t) = tg( 1t ), π is the target distribution, and Kσ is a kernel
that determines the scale of the proposal distribution. It is also shown that such a locally balanced
informed proposal is a discrete version of MALA, since they both simulate gradient flows in the
Wasserstein manifold (Sun et al., 2022a).

In initial work, Zanella (2020) considered a local proposal with a kernel Kσ that restricts next
states to lie within a 1-Hamming ball, seeking to capture natural discrete topological structure aris-
ing, for example, in spaces of trees, partitions or permutations. For more regular discrete spaces,
such as lattices, Grathwohl et al. (2021) introduce a gradient approximation for the probability ra-
tio π(y)/π(x) ≈ exp(⟨y − x,∇ log π(x)⟩ to make the locally balanced proposal more scalable.
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However, by restricting attention to a local proposal, these methods tend not to make large jumps
and exhibit highly correlated samples. Sun et al. (2021) made the first provably efficient attempt
to extend local proposals from 1-Hamming ball to L-Hamming ball, after which subsequent works
(Zhang et al., 2022; Sun et al., 2022a; Rhodes & Gutmann, 2022) have shown that using a non-local
proposal for the heat kernel Kσ(z) = exp(− 1

2σ∥z∥
2) can further improve sampling efficiency.

Even though extending locally balanced samplers to non-local proposals has delivered some
progress, there remain opportunities for improvement by closing gaps in the current methods.
One gap is exemplified by the choice of weight function. To illustrate, consider g(t) = tα.
For a 100 dimensional Bernoulli distribution, we used an informed proposal with the heat kernel
Kσ(z) = exp(− 1

2σ∥z∥
2) and plotted the effective sample size as a function of α for different σ.

Figure 1 shows clearly that performance of α varies for different σ. In particular, the optimal choice
of α monotonically increases with σ. When σ ↓ 0, the optimal choice g(t) =

√
t recovers the locally

balanced function. This result indicates that the locally balanced function is no longer optimal for
non-local proposals. We will show that a good choice of α depends on the variance ratio between the
target distribution and the kernel. We also give an adaptive algorithm that tunes (σ, α) automatically.
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Figure 1: ESS for different (σ, α) pairs

Another gap arises from the gradient approxi-
mation. For the local proposal, a first order gra-
dient approximation is usually sufficient to esti-
mate the probability ratio. However, for a non-
local proposal, higher order approximations are
generally required to capture correlations be-
tween different variables. Extending from re-
cent work, we consider a quadratic approxi-
mation of the probability ratio: π(y)/π(x) =
exp((y−x)⊤∇ log π(x)+ 1

2 (y−x)
⊤W (y−x))

for non-local proposal, where W is an arbi-
trary symmetric real matrix. Unfortunately, the
quadratic heat kernel renders a proposal distribution that is a pairwise Markov random field in gen-
eral, which is intractable to directly sample from. However, this difficulty can be addressed by
leveraging a stochastic factorization via the Gaussian integral trick (Hertz et al., 1991; Zhang et al.,
2012), also known as the Hubbard-Stratonovich transform (Hubbard, 1959). In particular, we de-
compose the quadratic term via (W +D)

1
2 ξ, where D is a diagonal matrix to make sure W +D is

positive semi-definite (PSD) and ξ is standard Gaussian noise. In this paper we will show that the
quality of the factorization can be characterized by D. While previous work chose D to be isotropic,
we find a substantial increase in performance by numerically optimizing over general diagonal ma-
trices D.

Closing these two gaps renders our proposal for Any-scale Balanced Sampling (AB Sampling) meth-
ods. We extensively demonstrate the advantages of the proposed sampler on both synthetic and real
distributions. The results show that, with the proposed numerical optimization of D and the adaptive
tuning, the two extensions robustly improve the efficiency of non-local informed proposal.

2 PRELIMINARIES

Informed Proposal. The informed proposal (Zanella, 2020) is a class of Metropolis-Hastings algo-
rithms for discrete spaces, such that the proposal distribution at the current state x has the form:

Qg
σ(x, y) = g

(
π(y)

π(x)

)
Kσ(x− y)/Zg(x), Z(x) =

∑
z∈X

g

(
π(z)

π(x)

)
Kσ(x− y), (1)

where π is the target distribution, X is the state space, g : R+ → R+ is a weight function, Z
is the partition function, and Kσ is an uninformed kernel with size σ, such that K(z) = K(−z),
limσ→0 Kσ(z) = 1{z=0} and limσ→∞ Kσ(z) ≡ 1. For example, Kσ can be a Hamming ball kernel
Kσ(z) = 1{|z|≤σ}, or a heat kernel Kσ(z) = exp(−∥z∥2/2σ).
Balanced Proposal. Let πg

σ denote the reversible distribution associated with the informed proposal
Qg

σ; that is, satisfying πg
σ(x)Q

g
σ(x, y) = πg

σ(y)Q
g
σ(y, x). We refer to the family {Qg

σ}σ as a bal-
anced proposal if there exists a sequence σ1, σ2, ..., such that πσj weakly converges to the target
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distribution π. In particular, we say that {Qg
σ}σ is a locally or globally balanced proposal if the

sequence σj satisfies limj σj = 0 or limj σj =∞, respectively.

Locally Balanced Sampler. Zanella (2020) showed that the locally balanced function g(t) = tg( 1t )
defines the family of locally balanced proposals, which furthermore is asymptotically optimal for
locally informed proposals with σ ↓ 0. The most commonly used locally balanced function is
g(t) =

√
t. Grathwohl et al. (2021) introduced a gradient approximation of the probability ratio

π(y)/π(x) ≈ exp((y − x)⊤∇ log π(x)) to make the locally balanced proposal scalable. Sun et al.
(2021); Zhang et al. (2022); Sun et al. (2022a); Rhodes & Gutmann (2022) show locally balanced
sampler can be more efficient with large scale σ and (Sun et al., 2022b) proves that the optimal
scaling σ for locally balanced proposal is achieved when the average acceptance rate is 0.574.

3 ANY-SCALE BALANCED SAMPLER

Many recent work (Sun et al., 2021; Zhang et al., 2022; Sun et al., 2022b) have shown using larger
kernel Kσ can significantly improve the sampling efficiency in locally balanced samplers. Unfor-
tunately, in migrating locally balanced samplers to a global proposal regime, these works ignore
the fact that a locally balanced weight function is no longer optimal and the accuracy of the gradi-
ent approximation diminishes. To address such shortcomings, we propose our any-scale balanced
samplers. We will consider sampling from the discrete space X = Sd = {1, ..., S}d with a target
distribution π(x) ∝ ef(x).

3.1 ANY-SCALE BALANCED FUNCTIONS

The first challenge in developing a non-local proposal is that the locally balanced weight func-
tion is no longer optimal. To determine the proper choice of weight function for kernels Kσ =
exp(−∥z∥2/2σ) at different scales, we examine the acceptance rate for the informed proposal in (1)
and consider the simple but sufficiently representative weight function class g(t) = tα for different
α. Note that, given a current state x and new state y, we have the ratio

Aσ =
π(y)Qσ(y, x)

π(x)Qσ(x, y)
=

π(y)(π(x)π(y) )
αKσ(x− y)/

∑
z(

π(z)
π(y) )

αKσ(z − y)

π(x)(π(y)π(x) )
αKσ(y − x)/

∑
z(

π(z)
π(x) )

αKσ(z − x)
(2)

=
π1−α(y)/

∑
z π

α(z)Kσ(z − y)

π1−α(x)/
∑

z π
α(z)Kσ(z − x)

=
π1−α(y)/(πα ∗Kσ)(x)

π1−α(x)/(πα ∗Kσ)(y)
, (3)

where (F ∗ G)(x) =
∑

z F (z)G(x − z) represent the convolution of two functions. Based on this
formulation, one can easily recover the locally balanced function. In particular, consider the local
proposal at diminishing scales σ, leading to:

lim
σ→0

(πα ∗Kσ)(x) = πα(x) ⇒ lim
σ→0

Aσ = π1−2α(y)/π1−2α(x). (4)

The limit ratio implies that α = 1
2 makes the stationary distribution of πσ weakly converge to the

target distribution π; hence the corresponding weight function is g(t) =
√
t, which is one of the

most widely used locally balanced functions (Zanella, 2020).

A more interesting question is how to select α for σ > 0. Since computing the convolution for
a general target distributions is intractable, we consider a continuous relaxation to obtain a hint
for determining the proper value of α for a given σ > 0. In particular, consider a normal target
distribution π(·) ∼ N (µ, σ0I) in the real space Rd. In this case, the ratio has a closed form:

πα ∗Kσ ∼ N (µ, (σ + σ0/α)I) = π
ασ0

ασ+σ0 ⇒ Aσ = π1−α− ασ0
ασ+σ0 (y)/π1−α− ασ0

ασ+σ0 (x). (5)
Here, to make the proposal balanced, the parameter α needs to satisfy

1− α− ασ0

ασ + σ0
= 0 ⇒ α =

r − 2 +
√
r2 + 4

2r
, r =

σ

σ0
. (6)

One can easily check that this family of balanced functions forms a set of interpolants between
g(t) =

√
t and g(t) = t, where the two limiting values are:

lim
σ→0

α = lim
r→0

r − 2 +
√
r2 + 4

2r
=

1

2
, lim

σ→∞
α = lim

r→∞

r − 2 +
√
r2 + 4

2r
= 1. (7)
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The first equation recovers the locally balanced function g(t) =
√
t. The second equation shows

that, if we consider all states as candidates in the proposal distribution, the optimal choice of weight
function is g(t) = t, which causes the proposal distribution to become:

lim
σ→∞

Qσ(x, y) =
π(y)/π(x)∑

z∈X π(z)/π(x)
= π(y). (8)

That is, the proposal degenerates to the target distribution. Ignoring computational cost, such a
Markov chain draws independent samples from the target distribution in each step and has, in gen-
eral, the best efficiency one can expect. Between these two limiting cases, the parameter α ∈ (0, 1)
specifies an interpolation that needs to be carefully selected based on σ to balance the proposal.

To this end, we employ an adaptive algorithm to automatically learn the proper configuration during
sampling (Andrieu & Thoms, 2008). Since the hyperparameter pair (σ, α) is highly correlated, it
can be challenging to directly tune them, so we instead employ a coordinate descent style method
that alternatively updates σ and α based on the average jump distance. Specifically, we probe the
value with (1 + γ)σ, σ, (1− γ)σ with fixed α and select the new value of σ based on which one has
the largest average jump distance. And similar method to α; see the Appendix A.2 for full details
of the adaptation algorithm in Algorithm 3. In our experiments below, we observe that the effective
sample size is a concave function of α for fixed σ and vice versa, hence the adaption algorithm is
typically able to find a good (σ, α) configuration efficiently.

3.2 QUADRATIC APPROXIMATION

The second challenge is that, in a non-local proposal, the gradient approximation of the probability
ratio becomes less accurate. To capture the correlation between variables, we consider a quadratic
approximation of the log probability change:

f(y)− f(x) = (y − x)⊤∇f(x) + 1

2
(y − x)⊤W (y − x). (9)

When W = ∇2f(x) is the Hessian matrix, (9) becomes a second order Taylor approximation. In
this work, we employ a global W for all states x, hence we choose W as the empirical average
Hessian. In particular, the pairs (y − x,∇g(y)−∇g(x)) are first collected during a burn-in period
and W is selected as:

W = argminW=W⊤
∑N

i=1 ∥W (yi − xi)− (∇f(yi)−∇f(xi))∥2, (10)
which can be efficiently solved via gradient descent. Please refer to Appendix A.3 for details.
Substituting the quadratic approximation (9), into the informed proposal in (1), with weight function
g(t) = tα, the quadratic proposal distribution becomes

Q(x, y) ∝ exp

(
α[(y − x)⊤∇f(x) + 1

2
(y − x)⊤W (y − x)]− 1

2σ
(y − x)⊤(y − x)

)
. (11)

Although the second order approximation improves proposal quality from the perspective of gra-
dient approximation, it also makes (11) become a pairwise Markov random field, which is typi-
cally intractable to sample from (Murray, 2007). Therefore, to develop a practical sampling algo-
rithm, we exploit a stochastic factorization of quadratic proposal distribution known as the Gaus-
sian integral trick, which originated in statistical physics (Hubbard, 1959; Hertz et al., 1991) and
has been more recently extended in machine learning (Martens & Sutskever, 2010; Zhang et al.,
2012). The original Gaussian integral trick is designed for binary random variables, here we show
it also works on more general discrete random variables. In particular, for a quadratic distribution
π(z) ∝ exp( 12z

⊤Wz + z⊤b), and a PSD diagonal matrix D that guarantees W + D is PSD, one
can introduce a Gaussian auxiliary variable Q(u|z) ∼ N ((W + D)

1
2 z, I) so that the conditional

distribution of z given u can be obtained via Bayes’ rule:

Q(z|u) ∝ exp

(
1

2
z⊤Wz + z⊤b− 1

2
(u− (W +D)

1
2 z)⊤(u− (W +D)

1
2 z)

)
(12)

∝ exp

(
z⊤[(W +D)

1
2u+ b]− 1

2
z⊤Dz

)
, (13)

where the square root of a matrix can be obtained by either Cholesky or eigen decomposition. More
details of the Gaussian integral trick are provided in Appendix A.5; also see Zhang et al. (2012) for
a good introduction. To use this trick in sampling from (11), we first sample the auxiliary variable u
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based on the current state Q(u|x) ∼ N ((W +D)
1
2x, I), then propose y according to

Q(y|x, u) ∝ exp

(
αy⊤[∇f(x)−Wx+ (W +D)

1
2u]− 1

2
y⊤(αD +

1

σ
)y

)
, (14)

Note that the marginal distribution
∫
Q(u|x)Q(y|x, u)du is exactly Q(x, y) in (11), hence we call

this a stochastic factorization. By introducing the auxiliary variable u, we avoid calculating the
intractable partition function for (11). The M-H acceptance test for this auxiliary sampler is:

A(x, u, y) = min

{
1,

π(y)Q(u|y)Q(x|y, u)
π(x)Q(u|x)Q(y|x, u)

}
. (15)

Given W , a good choice for D should give high acceptance rate and large-variance proposal dis-
tribution. However, directly maximizing the acceptance rate and proposal variance at the current
sample with respect to D is intractable, therefore, we construct a surrogate.

Consider a continuous relaxation π(x) ∝ exp( 12x
⊤Wx), where one can use σ = ∞, α = 1 and

the Gaussian integral trick guarantees the acceptance rate is always 1. In this case, the sampling
efficiency is only determined by the variance of the proposal distribution. For a current state x and
auxiliary variables ξ and ζ ∼ N (0, Id), denote u = (W +D)

1
2x+ ξ, and observe

y − x = D−1Wx+D−1(W +D)
1
2 ξ +D− 1

2 ζ, (16)
for new state y in (14). One can compute the variance of the change (y− x) in proposal distribution
in closed-form:

ExEξ,ζ

[(
(y − x)− E[y − x]

)(
(y − x)− E[y − x]

)⊤]
= 2D−1, (17)

which is totally determined by the diagonal matrix D. See Appendix A.4 for detailed derivation.
Therefore, we would like to minimize the diagonal of D for larger variance, thus better sample
efficiency, while still keep W +D a PSD matrix.

A common approach to determine diagonal matrix D is λ-shift, where D = λI is used with λ =
max{ϵ,−λmin(W )}, such that ϵ ≥ 0 is a threshold and λmin(W ) is the smallest eigenvalue of
W (Martens & Sutskever, 2010). However, such an isotropic choice can suppress movement in
dimensions with large variance. For example, consider a special case where W is a diagonal matrix
with W11 = −100 and Wjj = −1 for j = 2, ..., d. Using D = 100I restricts the variance in all
dimensions to 0.01, which is inefficient.

Instead, since the quadratic term W is known, one can improve sampling efficiency by a more
careful choice of diagonal matrix D. For example, Zhang et al. (2012) claims that the convexity of
the proposal distribution depends on the spectrum of W +D. Following this idea, a straightforward
choice is to minimize the largest eigenvalue of W + D. However, instead of only considering
one direction, empirically, we find it is better to maximize the harmonic mean of D−1 in (17).
Intuitively, the harmonic mean provides a balanced approach to maximizing the variance of the
proposal distribution, as it maximizes variance in all dimensions and puts more weight in directions
with smaller variance. Conveniently, recall

argmax
D

1∑d
i=1 1/D

−1
ii

= argmax
D

1∑d
i=1 Dii

= argmin
D

d∑
i=1

Dii = argmin
D

tr(D), (18)

maximizing the harmonic mean of the variance can be reduced to minimizing the trace of D. Under
the constraint that W +D is PSD, we obtains a semi-definite programming (SDP) problem,

min
D

trace(D) s.t. D ⪰ 0, W +D ⪰ 0 (19)

Empirically, we found there is no need for an exact optimum for (19); a rough solution after early
stopping is sufficient to characterize the variance scale in each dimension. Using a modern solver
this estimation step can be typically done in milliseconds for domain with 100 dimensions.

Complete Algorithm. With the any-scale wight function and the quadratic approximation, we are
ready to present our any-scale balanced sampler (AB sampler) in Algorithm 1. The parameters
(σ, α) are automatically tuned along the way of sampling (also see Algorithm 3 and Algorithm 4
for the details on adaptive tuning of these parameters), where W and D are 0 during burn-in, and
updated via (10) and (18) right after burn-in.
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Algorithm 1: AB sampling algorithm
Input: Initial σ = 0.1, α = 0.5,W = 0, D = 0; initial x0

Output: MCMC chain x0:T and adjusted σ, α,W,D
1 Burn-in period t < T1: alternatively update σ, α use

algorithm 3 while calling M-H step defined in algorithm 2 as
subroutine; collect trace x0:T1 along the way

2 Estimate W and D using collected x0:T1 via (10) and (18)
3 Mixed period T1 ≤ t ≤ T : use estimated W and D to

continue the alternatively updating σ, α with algorithm 3,
while calling M-H step defined in algorithm 2 as subroutine;

4 Return the entire trace x0:T and the estimated parameters.

Algorithm 2: AB M-H step
Input: σ, α,W,D; current

state xt

Output: new state xt+1

1 Sample auxiliary:
u ∼ N ((W +D)

1
2xt, I)

2 Sample new state: y ∼ (14)
3 Get acceptance rate A in

equation (15)
4 if rand(0, 1) < A then

xt+1 = y else xt+1 = xt;

4 RELATED WORK

The informed proposal, which uses information about the target distribution to guide the proposal for
the Metropolis-Hastings (M-H) algorithm has been extensively studied for discrete spaces in recent
years. A number of methods have attempted to first map the discrete to a continuous space, using
relaxation, apply gradient based methods in the continuous space, then map the new state back to
the discrete space, either by using auxiliary variables, uniform dequantization, or VAE flow (Zhang
et al., 2012; Pakman & Paninski, 2013; Nishimura et al., 2017; Han & Liu, 2018; Zhou, 2020; Jaini
et al., 2021). Such methods work in some scenarios, but embedding a discrete into a continuous
space often destroys its natural topological structure, and can create highly multimodal and irregular
target distributions (Zanella, 2020). As shown in previous work, such methods does not scale well
to high dimensional discrete settings (Grathwohl et al., 2021).

Another group of methods attempt to directly work within discrete spaces. Titsias & Yau (2017)
and Dai et al. (2020) introduce auxiliary variables to trade off the number of updated variables in a
block against computational cost, however, by relying on Gibbs sampling, such methods still require
significant overhead to make updates. In addition to the related works (Zanella, 2020; Grathwohl
et al., 2021; Sun et al., 2021; 2022a; Zhang et al., 2022) already discussed in depth above, a concur-
rent work (Rhodes & Gutmann, 2022) has considered preconditioning and also used the Gaussian
integral trick to incorporate second order information from the target distribution, but this work does
not study how to properly choose the weight function g, the hyperparameter (σ, α), and the diagonal
matrix D, making the resulting algorithm less efficient. Another recent work (Sun et al., 2022b)
proves that the optimal scale σ for locally balanced proposal is achieved when the average accep-
tance equals to 0.574, and give a robust adaptive algorithm for tuning σ. However, its result relies
on the property of locally balanced function, and does not apply to more general weight function
g(t) = tα with α ̸= 0.5.

5 EXPERIMENTS

We conducted an experimental evaluation on three types of target distributions: 1) quadratic syn-
thetic distributions, 2) non-quadratic synthetic distributions, and 3) real distributions. For quadratic
synthetic distributions, we focus on demonstrating the benefits of selecting a high quality diagonal
matrix D. For non-quadratic synthetic distributions, we show that the performance of the proposed
sampler significantly relies on the choice of weight function g(t) = tα. For real distributions, we
compare against baseline samplers on challenging inference problems in deep energy based models
trained on MNIST, Omniglot, and Caltech datasets.

5.1 SETTINGS

Samplers. We denote the proposed Any-scale Balanced sampler as AB-trace sampler, which uses
the any-scale balanced function g(t) = tα and obtains the diagonal matrix D by minimizing its trace.
For comparison, we consider the classical discrete samplers, random walk Metropolis (RWM) and
Gibbs sampler. We also compare to a locally balanced sampler (LB), considering a representative
version DLP in Zhang et al. (2022) that uses α = 0.5 and W = 0 in (11); this is mathematically
equivalent to NCG in Rhodes & Gutmann (2022). For RWM and LB, we follow the optimal ac-
ceptance rate in (Sun et al., 2022b) and tune the scale of the proposal distribution until the average
acceptance is 0.234 and 0.574, respectively.
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Table 1: ESS on selected Quadratic Distributions

Distribution Grid Ising BA-4 Ising Rotation Gaussian Sparse Gaussian

Sampler ESSn ESSt ESSn ESSt ESSn ESSt ESSn ESSt

Gibbs 1.66 0.55 8.53 2.84 2.81 11.26 4.20 16.81
RW 1.27 0.31 4.28 1.07 9.41 2.69 8.67 2.48
DLP 2.96 0.49 120.15 20.89 86.28 15.69 71.23 13.57

DLP-trace 2.88 0.47 143.25 24.90 86.62 15.75 142.86 27.21
AB-1st 3.99 0.67 242.31 35.89 103.16 16.50 79.88 13.31

AB-shift (PAVG) 7.87 1.12 274.18 39.16 196.88 30.29 154.00 24.64
AB-max 7.83 1.11 287.24 41.03 217.41 33.45 474.75 75.96
AB-trace 7.94 1.13 776.31 110.90 239.09 36.78 1227.94 196.47

To demonstrate the benefit of the proposed methods, we consider a few variants for ablation:
DLP-trace, which uses the same anisotropic diagonal matrix D as AB-trace in kernel Kσ(z) =
exp(−z⊤Dz/σ) for DLP, AB-1st, which only uses gradients to approximate the probability ratio,
and AB-shift and AB-max, which obtain the diagonal matrix D via λ-shift or minimizing the max-
imum eigenvalue of W + D, respectively. For all AB-* samplers, we tune (σ, α) adaptively via
the algorithm discussed above (and described in Appendix A.2). Note that the PAVG sampler in
(Rhodes & Gutmann, 2022) is equivalent to AB-shift with fixed (σ, α) = (∞, 1). Since we find that
tuning (σ, α) improves the efficiency, we use AB-shift to represent PAVG. More details about the
sampler implementations, such as solving D, are given in Appendix A.1.

Metrics. As in other works (Hoffman et al., 2014; Zanella, 2020), we use effective sample size
(ESS) (Lenth, 2001) to characterize the efficiency of the samplers on synthetic distributions. To
reduce the effects of implementation, we report ESS normalized in two different ways: We let ESSn

denote the ESS for every 10,000 queries of the log likelihood function, and ESSt denote the ESS for
every one second of sampling. For each setting and sampler, we run 100 chains for T=100,000 steps,
with T1=20,000 burn-in steps to make sure the chain mixes. For real distributions, we compare the
mixing time for different samplers.

5.2 QUADRATIC SYNTHETIC DISTRIBUTIONS

Ising model. The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical
mechanics. It consists of binary random variables arranged in a graph G = (V,E) and allows each
node to interact with its neighbors. The unnormalized log probability function of the Ising model is:

f(x) =
∑

i∈V wixi +
∑

(i,j)∈E Jijxixj . (20)

In this experiment, we consider Ising models on 2D grid graphs and Barabasi-Albert-4 graphs (Al-
bert & Barabási, 2002). For grid Ising, we set Jij = 0.4407 at the critical temperature (Onsager,
1944), so that the model is at its transition phase and hard to sample from; see Appendix B.2 for a
more detailed description. We conduct sampling at high, medium, and low temperatures. In Table
1, we report results for the medium temperature, where Jij = 0.4407. More results on Ising model
are given in Table 2 and Table 3.

Lattice Gaussian Model. The lattice Gaussian model is obtained by restricting the Gaussian distri-
bution to a Lattice, which is an important distribution in coding and cryptography (Kschischang &
Pasupathy, 1993; Micciancio & Regev, 2007). The unnormalized log probability is:

f(x) = − 1
2 (x− b)⊤W (x− b). (21)

In this experiment, we use a finite state space X = {0, 1, ..., 20}100 and we investigate two settings
for the Gaussian model. The first setting is a rotated Gaussian W = P⊤ΛP , where P is an orthog-
onal matrix and Λ is a diagonal matrix. The second setting is a Sparse Gaussian, which is a pairwise
Markov random field defined on a cycle. We constructed the lattice Gaussian models with low,
medium, and high conditions. More detailed descriptions of these models are given in Appendix
B.3. We report the results for medium condition in Table 1. More results are given in Table 4 and 5.

Results Analysis. One can observe that the AB samplers substantially outperform existing samplers
on all distributions. Specifically, the first order sampler AB-1st has ESS consistently larger than LB,
which justifies the benefit of selecting the proper weight function. Also, the AB-trace sampler has
comparable efficiency to AB-shift on Grid Ising and Rotation Gaussian, but is significantly better on
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Sampler ESSn ESSt

Gibbs 43.81 14.60
RW 25.00 6.25
DLP 222.49 35.60

DLP-trace 247.35 40.69
AB-1st 321.56 51.44

AB-shift (PAVG) 265.89 37.98
AB-max 266.49 38.06
AB-trace 403.78 57.68
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Figure 2: Results on BLR: (l) ESS for different samplers, (r) ESS for AB-trace with different (σ, α)

Sampler ESSn ESSt

Gibbs 13.66 34.14
RW 189.69 34.49
DLP 97.97 12.25

DLP-trace 100.65 12.58
AB-1st 256.88 32.11

AB-shift (PAVG) 327.81 36.42
AB-max 355.78 39.53
AB-trace 380.50 42.28
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Figure 3: Results on QMM: (l) ESS for different samplers, (r) ESS for AB-trace with different (σ, α)

BA-4 Ising and Sparse Ising. The reason is that the variables in Grid Ising and Rotation Gaussian
are nearly homogeneous, and an isotropic diagonal matrix D = λI is not slowed by several hard
dimensions. However, in BA-4 Ising and Sparse Gaussian, the variance in different dimensions
can be very different, and AB-trace demonstrates significant advantages by employing a general
diagonal matrix D that allows different step sizes in different dimensions.

5.3 NON-QUADRATIC SYNTHETIC DISTRIBUTIONS

Bayesian Logistic Regression (BLR). Following Zhou (2020), we consider a logistic regression
model Y ∼ Bernoulli(sigmoid(Xβ)), with Y ∈ {0, 1}m, X ∈ Rm×d, β ∈ {0, 1}d. We first
generate the sample X,Y , then, using a uniform prior, the target distribution is the posterior of β
with the unnormalized log probability function:

f(β) = −
∑m

i=1 yi log
(
1 + exp(−σi)

)
+ (1− yi) log

(
1 + exp(σi)

)
, σi =

∑d
j=1 Xijβj . (22)

In this experiment, we considered a d = 100 dimensional regression with m = 50 samples. More
details for generating X,Y are given in Appendix B.4. We report the results for ESS in Table 2. For
AB-trace, the selected configuration is (σ, α) = (16, 0.96). To justify the quality of this selection,
we also plot the ESS for AB-trace with different (σ, α) in Figure 2.

Quartic Mixture Model (QMM). Following Rhodes & Gutmann (2022), we consider a quartic
mixture model, where the unnormalized log likelihood function can be written as:

f(x) = log
(∑K

k=1 exp(−poly4
k(x))

)
. (23)

such that poly4k is multivariate polynomial with degree 4. In this experiment, we use a finite state
space X = {0, 1, ..., 20}50 and K = 50 components for the mixture model. More details about
poly4

k are given in Appendix B.5. We report the ESS results in Figure 3. For AB-trace, the selected
configuration is (σ, α) = (415, 0.92). To justify the quality of this selection, we also plot the ESS
for AB-trace with different (σ, α) in Figure 3

Results Analysis. For the non-quadratic synthetic distributions, the AB-trace sampler significantly
outperformed the other methods. From the curves for (σ, α), one can see that the adaptive tuning
algorithm successfully found optimal configurations. Note that in Figure 2 and Figure 3, the values
σ = 64 and σ = 1000 can be seen as infinity, since further increasing the σ does not influence

8



Published as a conference paper at ICLR 2023

0 1000 2000 3000 4000 5000
sampling steps

980

1000

1020

1040

1060

1080

av
er

ag
e 

en
er

gy

mixing curves on mnist

rw
gibbs
lb
ab

0 2000 4000 6000 8000 10000
sampling steps

1600

1650

1700

1750

1800

1850

1900

1950

av
er

ag
e 

en
er

gy

mixing curves on omniglot

rw
gibbs
lb
ab

0 2000 4000 6000 8000 10000 12000 14000
sampling steps

800

850

900

950

1000

1050

av
er

ag
e 

en
er

gy

mixing curves on caltech

rw
gibbs
lb
ab

Figure 4: Mixing Time on Real Distributions

efficiency. Unlike from (8), the optimal α are still not 1 as we have some estimation error for the
probability ratio. One interesting phenomenon is that the first order method AB-1st can be more
efficient than second order samplers AB-shift and AB-max in BLR. The reason is that the Gaussian
integral trick introduces extra variance in the proposal distribution. If the diagonal matrix D is not
properly selected, the benefit of using a second order sampler can be reduced.

5.4 DEEP EBMS ON REAL DISTRIBUTIONS

Having observed excellent performance of the AB sampler on synthetic datasets, we considered
sampling in more challenging real distributions. In particular, here we trained deep EBMs param-
eterized by ResNet (He et al., 2016) on the MNIST, Omniglot, and Caltech datasets. In these real
image distributions, we are interested in how fast sampling algorithms can find high quality images,
so we report the mixing rate in figure 4. Since we are comparing behavior during the mixing stage,
we do not have samples to estimate W via (10), hence we use AB sampler with a bit different from
Algorithm 1. In particular, we use the true data (from datasets) to estimate the variance vari for each
variable xi and set W as a diagonal matrix with Wii = 1/(1 + vari). In this case, we do not need
to use the Gaussian integral trick and we do not distinguish the different version of AB samplers.
More details are given in Appendix B.6.

In Figure 4, one can see that the AB sampler mixes faster than the LB sampler on all three real distri-
butions. The optimal α selected for MNIST, Omniglot, and Caltech are 0.6, 0.55, 0.55, respectively.
They are significantly smaller than that in non-quadratic synthetic distributions. We believe the rea-
son is that these deep EBMs are much more complicated than the synthetic distributions. Larger
estimation errors only allow the sampler to make local movements, and hence have a smaller α.

6 CONCLUSION

In this work, we proposed an Any-scale Balanced sampler (AB sampler) that substantially improves
existing locally balanced samplers for discrete spaces in two respects:

• the AB sampler goes beyond considering the locally balanced function as an “optimal” choice
for weight function in an informed proposal, and provides an adaptive algorithm for finding the
optimal configuration of (σ, α);

• the AB sampler introduces the Gaussian integral trick, which allows efficient second order
approximation to improve proposal quality.

There are still directions for further improvement of the AB sampler. First, current adapting Algo-
rithm 3 tunes (σ, α) based on the empirical estimation of jump distance, which can vary a lot during
the mixing process. As a result, our adapting algorithm is not stable until the Markov chain reaches
its stationary distribution. This is not a big problem in sampling. But if we want to train EBMs via
contrastive divergence (Hinton, 2002; Tieleman, 2008), the current adapting algorithm can hardly
find the optimal configuration for (σ, α) as the model keeps changing. A potential solution is to
use adaptive algorithms based on acceptance rate (Roberts & Rosenthal, 2001; Sun et al., 2022b).
Second, the estimation of W in (10) is rough. In complicated distributions, the Hessian matrix can
vary a lot at different state x. More accurate quadratic approximation can be obtained via Rieman-
nian (Girolami & Calderhead, 2011) or quasi-Newton style algorithms (Zhang & Sutton, 2011) that
allow W = W (x) depend on the current state x. Third, the current quadratic approximation can
be inefficient on large models. For example, on a large sparse quadratic model, solving the sparse
SDP can be time consuming, and the square root (W +D)

1
2 is not necessarily sparse. Hence, more

sophisticated design are needed to make the quadratic approximation being scalable.
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A SAMPLERS

A.1 SEMI-DEFINITE PROGRAMMING

Solving the diagonal matrix D for AB-trace and AB-max can be formulated as semi-definite pro-
gramming (SDP). In particular, for AB-trace, the SDP problem is:

D∗ = argmin
D

trace(D) (24)

s.t. D ⪰ 0, W +D ⪰ 0 (25)
For AB-max, the SDP problem is

D∗ = argmin
D

λ (26)

s.t. D ⪰ 0, λI ⪰W +D ⪰ 0 (27)
Both SDP problems can be efficiently solved by modern SDP solver. In this work, we use academia
version of Mosek (ApS, 2019). For models have less or equal to 100 variables (Lattice Gaussian,
Bayesian Logistic Regression, Quartic Mixture Model), Mosek takes less than 0.05 second to solve
the SDP problem. For models with 400 variables (ISing), Mosek took less than 1 second to solve
the SDP problem. For models with 784 variables, Mosek takes around 10 seconds to solve the SDP
problem. For all distributions considered in this work, the time used for solving SDP is negligible
comparing to the sampling time. However, for models with several thousands or more variables, the
cost for directly solving the SDP could be high and better methods to estimate the diagonal matrix
D are needed.

A.2 ADAPTIVE TUNING ALGORITHM

We give the pseudo code for adaptive tuning of (σ, α) in Algorithm 3. The basic idea is alternatively
updating σ and α to maximizing the average jump distance. In line 1, 2, and 3 in Algorithm 4, the
samples are collected via calling M-H step of AB sampler as in Algorithm 2.

Algorithm 3: Adapting Algorithm
Input: initial σ = 0.1, α = 0.5, update rate γ = 0.2, decay rate β = 0.9, initial state x0, buffer

size N = 100.
Output: parameters σ, α, samples x1, x2, ...

1 for i = 0, 1, ... do
2 σ′, (x6iN+1, ..., x6iN+3N )← Adapting Algorithm Block(θ = σ, γ, x0)
3 α′, (x6iN+3N1, ..., x6iN+6N )← Adapting Algorithm Block(θ = α, γ, x0)
4 end
5 if σ == σ′, α == α′ then
6 γ = βγ
7 else
8 σ = σ′, α = α′

9 end

A.3 QUADRATIC APPROXIMATION

Here, we explain how to efficiently solve the following optimization problem:

W ∗ = argmin
W=W⊤

N∑
i=1

∥W (yi − xi)− (∇f(yi)−∇f(xi))∥2. (28)

Denote the yi − xi forms a matrix XRN×d, such that the i-th row Mi = yi − xi. Similarly, denote
the ∇f(yi) − ∇f(xi) forms a matrix Y ∈ RN×d, such that the i-th row Yi = ∇f(yi) − ∇f(xi).
Then, the loss function can be rewritten as:

W ∗ = argmin
W=W⊤

d∑
j=1

∥XW:,j − Y:,j∥22 (29)
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Algorithm 4: Adapting Algorithm Block
Input: target parameter θ, adapting rate γ, initial state x0

Output: updated parameter θ′, samples x1, ..., x3N

1 Using parameter θ to sample x1, ..., xN via Algorithm 2
2 Compute d0 =

∑N
i=1 |xi − xi−1|1

3 Using parameter θ(1 + γ) to sample xN+1, ..., x2N via Algorithm 2
4 Compute d+ =

∑N
i=1 |xN+i − xN+i−1|1

5 Using parameter θ(1− γ) to sample x2N+1, ..., x3N via Algorithm 2
6 Compute d− =

∑N
i=1 |x2N+i − x2N+i−1|1

7 if max{d0, d+, d−} == d+ then
8 θ′ = θ(1 + γ)
9 else if max{d0, d+, d−} == d− then

10 θ′ = θ(1− γ)
11 else
12 θ′ = θ
13 end

where W:,j represents the j-th column of W . One can easily see that the loss function is a regression.
For the feasible region W = W⊤, one can easily check it is a d(d+1)

2 dimensional linear subspace.
As a result, one only efficiently solving this convex optimization problems via projected gradient
descent, where the projection to symmetric matrix space is simply X → X+XT

2 .

A.4 VARIANCE OF THE PROPOSAL DISTRIBUTION

For ξ and ζ ∼ N (0, Id), u = (W +D)
1
2x+ ξ, and

y − x = D−1Wx+D−1(W +D)
1
2 ξ +D− 1

2 ζ,

we have

ExEξ,ζ

[(
(y − x)− E[y − x]

)(
(y − x)− E[y − x]

)⊤]
(30)

=Ex[D
−1WxxTWD−1 +D−1(W +D)D−1 +D−1] (31)

=−D−1WD−1 +D−1WD−1 + 2D−1 (32)
=2D−1 (33)

where (32) is because for a normal random variable x ∝ exp( 12x
TWx), the variance of x is−W−1.

A.5 GAUSSIAN INTEGRAL TRICK

The Gaussian integral trick, also known as Hubbard-Stratonovich transform (Hubbard, 1959), is
first named in (Hertz et al., 1991) and extedned by Martens & Sutskever (2010); Zhang et al. (2012)
for efficient Gibbs/HMC sampling inference. The main idea is for discrete-valued pairwise-MRF
with within-layer connections, by introducing a real-valued auxiliary variable, the quadratic form
in the energy function, x⊤Wx, will be canceled out. Thus, the inference will be easy to carry on.
Specifically, we would like to sample from a MRF with pairwise dependency, i.e.,

p(x) = exp(
x⊤Wx

2
+ x⊤b)/Z, (34)

where x ∈ {0, 1}d and Z =
∑

x exp(x
⊤Wx+ x⊤b). The vanilla sampler for this model is Markov

chain Monte Carlo or Gibbs sampling, which although provably converges to the target distribution,
but still might stuck in some region.

To accelerate the sampling, one can introduce the auxiliary variables to reformulate the MRF into
a family of equivalent Boltzmann machines. Concretely, we introduce the auxiliary variable u with
conditional distribution:

p(u|x) = N (u|A(W +D)x,A(W +D)A⊤), (35)
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Figure 5: Visualization: (l) 10× 10 Grid Graph, (r) 50-4 BA Graph

where D = diag(d). Therefore, we have the joint distribution as

p(x, u) ∝ exp

(
−
u⊤ (A−1

)⊤
(W +D)

−1
A−1u

2
+ x⊤A−1u+

(
b− 1

2
d

)⊤

x

)
, (36)

which cancels the quadratic term w.r.t. x and makes x independent for each dimension. This induces
the p(x|u) is a multivariate Bernoulli distribution, i.e.,

p(x|u) =
d∏

i=1

(1− pi)
1−xi pxi

i , (37)

with pi =
1

1+exp(−ti)
, ti = bi − 1

2di + (A−1u)i.

One shall notice that in the original Gaussian integral trick (36), the simplification − 1
2x

⊤Dx =

− 1
2d

⊤x using the property that x are binary random variables. Actually, we don’t have to use
this simplification. As long as D is diagonal, we can factorize the distribution and make efficinet
proposal. In this work, we consider using A = (W +D)−

1
2 , such that the conditional distribution

has following simple forms:

p(u|x) = N (u|(W +D)
1
2x, I), (38)

p(x|u) ∝ exp

(
x⊤((W +D)

1
2u+ b)− 1

2
x⊤Dx

)
. (39)

B EXPERIMENTS

B.1 HARDWARE

All experiments are running on a virtual machine with CPU: Intel Haswell, GPU: 4× Nvidia V100,
System: Debian 10.

B.2 ISING MODEL

The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical mechanics
. It consists of binary random variables arranged in a graph G = (V,E) and allows each node to
interact with its neighbors. The log probability function of Ising model is:

f(x) =
∑
i∈V

wixi +
∑

(i,j)∈E

Jijxixj (40)

In this experiment, we consider Ising models on 2D grid graphs and Barabasi-Albert graphs (Albert
& Barabási, 2002).

grid Ising. We consider 20× 20 grid graphs. See Figure 5 for visualization of a 10× 10 grid graph.
We use zero external force wi = 0 and set the interaction Jij = 0.3000, 0.4407, 0.7071 for high,
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critical, and low temperatures. We report the results in Table 2. Consistent to the results in statisti-
cal physics, phase transition occurs at the critical temperature and makes the sampling much harder
(Onsager, 1944). More detailedly, at low temperature, variables in grid Ising model only have strong
correlation with variables close to it. At critical temperature, the correlation is global and a variable
can strongly depends on variables far from it. At high temperature, the variables have weak corre-
lation to all the other variables. On all these three scenarios, Any-scale (AB) samplers substantially
outperforms previous discrete sampling methods, including locally balanced (LB) samplers.

Table 2: ESS on 20× 20 Grid Ising

Distribution Interaction (0.3000) Interaction (0.4407) Interaction (0.7071)

Sampler ESSn ESSt ESSn ESSt ESSn ESSt

Gibbs 4.50 1.50 1.66 0.55 6.11 2.04
RW 4.81 1.20 1.27 0.31 2.02 0.50
LB 43.16 6.91 2.96 0.49 62.06 10.34

AB-1st 69.91 11.19 3.99 0.67 78.44 13.07
AB-shift 178.70 24.65 7.87 1.12 111.94 15.44
AB-max 178.68 24.65 7.83 1.11 117.06 16.15
AB-trace 182.91 65.23 7.94 1.13 149.06 20.56

BA Ising. We consider 400-4 BA graph, that’s to say, a Barabasi-Albert random graph with 400
nodes and 4 attach edges for every node (Albert & Barabási, 2002). See Figure B.2 for visualization
of a 50-4 BA graph. Since we don’t know the critical temperature in BA graphs, we keep using the
settig in grid Ising with zero external force wi = 0 and interaction Jij = 0.3000, 0.4407, 0.7071
for high, critical, and low temperatures. We report the results in Table 3. On all three temperatures,
Any-scale (AB) samplers substantially outperforms previous discrete sampling methods, including
locally balanced (LB) samplers. Also, one can notice that AB-trace sampler significantly outper-
forms other AB samplers using quadratic approximation. In low temperature model Ising (0.7071),
the first order method BA-1st even beat AB-shift and AB-max using quadratic approximation. The
reason is that the variables in BA graph has inhomogeneous topology and a casual selection of D
does help. Furthermore, using quadratic approximation has to involve extra randomness in Gaus-
sian integral trick and harm the proposal quality. In grid graphs where different variables have very
similar topology, thus this drawback is less significant.

Table 3: ESS on 400-4 BA Ising

Distribution Interaction (0.3000) Interaction (0.4407) Interaction (0.7071)

Sampler ESSn ESSt ESSn ESSt ESSn ESSt

Gibbs 8.19 3.27 8.53 2.84 8.75 3.50
RW 7.07 2.02 4.28 1.07 3.06 0.88
LB 117.06 20.36 120.15 20.89 153.16 26.64

AB-1st 207.91 36.16 242.31 35.89 354.50 61.65
AB-shift 367.72 54.48 274.18 39.16 160.03 23.71
AB-max 402.06 59.56 287.24 41.03 172.47 25.55
AB-trace 779.12 115.43 776.31 110.90 848.72 124.85

B.3 LATTICE GAUSSIAN

Rotation Gaussian. For rotation Gaussian, we use bias vector b = 0. Given parameter L, we
generate the weight matrix W in the following way: We first generate the diagonal matrix Λ ∈
R100×100, such that

Λii =

√
L

1 + (L− 1) ∗ (i− 1)/99
, i = 1, 2, ..., 100 (41)
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Figure 6: Images sampled from the trained EBMs.

Then we generate orthogonal matrix P and let W = −PΛP⊤. The results for rotation Gaussian
with L = 2, 10, 50 are reported in Table 4.

Sparse Gaussian For Sparse Gaussian, we use bias vector b = 0. Given parameter l, we generate
the weight matrix W in the following way: We first generate the matrix M ∈ R100×100, with
Wii = 1 and Wi,i+1 = Wi+1,i ∼ N (0, 0.04), for i = 1, 2, ..., 100. One shall notice that we denote
W100,101 = W100,1 and W101,100 = W1,100. Then we generate the diagonal matrix Λ, such that

Λii =

(
99

1 + i ∗ (L− 1)

) 1
2

, i = 1, 2, ..., 100 (42)

Then, we let W = −ΛMΛ. Such a log probability function defines a graphical model defined on
a cycle. Since a cycle is sparse, we call it sparse Gaussian. The results for sparse Gaussian with
L = 2, 10, 50 are reported in Table 4.

Table 4: ESS on 100d Rotation Gaussian

Distribution L = 2 L = 10 L = 50

Sampler ESSn ESSt ESSn ESSt ESSn ESSt

Gibbs 4.55 1.82 2.81 11.26 1.64 6.58
RW 14.53 4.15 9.41 2.69 6.20 1.77
LB 222.47 42.38 86.28 15.69 27.28 5.20

AB-1st 492.12 93.74 103.16 30.29 27.97 5.33
AB-shift 1182.16 189.15 196.88 30.29 35.72 5.71
AB-max 1224.06 195.85 217.41 33.45 36.75 5.88
AB-trace 1244.34 199.09 239.09 36.78 52.84 8.46

Table 5: ESS on 100d Sparse Gaussian

Distribution L = 2 L = 10 L = 50

Sampler ESSn ESSt ESSn ESSt ESSn ESSt

Gibbs 3.80 15.21 4.20 16.81 4.42 17.68
RW 11.80 3.37 8.67 2.48 9.99 2.85
LB 147.91 28.17 71.23 13.57 32.19 6.13

AB-1st 247.59 47.16 79.88 13.31 36.62 6.98
AB-shift 545.06 87.21 154.00 24.64 45.19 7.23
AB-max 680.15 108.82 474.75 75.96 132.88 21.26
AB-trace 916.76 146.68 1227.94 196.47 1417.57 226.81
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B.4 BAYESIAN LOGISTIC REGRESSION

We consider the logistic regression model Y ∼ Bernoulli(sigmoid(Xβ)), with Y ∈ {0, 1}50, X ∈
R50×100, β ∈ {0, 1}100. We first generate X ∈ R50×100. Each row Xi is a realization of the normal
distribution N (0, 0.25ΛΣΛ), where Σii = 1.25, σij = 0.25, and Λii = exp(−0.25 + (i− 1)/99).
Then, we set the ground truth β that βi = 1 for i = 1, 2, ..., 7 and βi = 0 for i = 8, 9, ..., 100.
Then, we get the logits v = Xβ. Then, we sample Yi ∼ Bernoulli(σ(vi)) for i = 1, ..., 50, where
σ(t) = 1/(1+exp(−t)). Our target distribution is the posterior of β and the log probability function
is:

f(β) = −
m∑
i=1

yi log
(
1 + exp(−σi)

)
+ (1− yi) log

(
1 + exp(σi)

)
, σi =

d∑
j=1

Xijβj (43)

B.5 QUARTIC MIXTURE MODEL

Following Rhodes & Gutmann (2022), we consider quartic mixture model, where the log likelihood
function can be written as:

f(x) = log

(
K∑

k=1

exp(−poly4k(x))

)
(44)

where poly4
k is multivariate polynomial with degree 4 generated in the following way. For com-

ponent k = 1, ..., 50, the associated bias bk = k−1
49 1 ∈ R50. Denote s ∈ R20 such that

si = 20 ∗ exp(−0.5 + (i− 1)/19) for i = 1, ..., 20. Then, we have the vector

vk = (x− bk)/si ∈ R20×50 (45)
We also generate a rotation matrix P ∈ R20 shared by all components and we have :

uk = Pvk ∈ R20×50 (46)
Then, the polynomial is defined as

poly4k(x) =
50∑
d=1

(ud + 1)(u2
d + 0.5)(ud − 2) (47)

B.6 DEEP EBM

Model training. In the main text we compare the sampling efficiency of different samplers using
the trained deep EBMs. Here we provide more details on obtaining these pretrained EBMs.

We follow the existing works to parameterize the EBMs using ResNets, where it is trained using
persistent contrastive divergence (Tieleman, 2008) framework. Specifically we follow Grathwohl
et al. (2021); Sun et al. (2021) to maintain a buffer of multiple MCMC chains. We use the sampler
proposed in Sun et al. (2021) and run 60 steps to obtain samples from the current model per each
gradient update. We retain the model after 50,000 steps of training. The models are all reasonable
and can produce realistic binary images as the ground truth data.

Estimating W . Since we compare the mixing time on real distributions, we can not use AB sampler
as Algorithm 1 which always use W = D = 0 during burn-in stage. Instead, we directly use the true
data from the datasets to estimate the variance vari for each variable. Then we set W as diagonal
matrix with Wii = 1/(1 + vari). In this case, the proposal distribution in equation 11 is naturally
factorized and we don’t need to use Gaussian integral trick.

Adaptive Tuning. The adaptive Algorithm 3 tuning (σ, α) based on average jump distance, which
could be very unstable during the mixing stage. Hence, we simply apply a grid search of the config-
urations of (σ, α), and report the best one in Figure 4.
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