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ABSTRACT

Representation learning often plays a critical role in avoiding the curse of dimen-
sionality in reinforcement learning. A representative class of algorithms exploits
spectral decomposition of the stochastic transition dynamics to construct representa-
tions that enjoy strong theoretical properties in idealized settings. However, current
spectral methods suffer from limited applicability because they are constructed for
state-only aggregation and are derived from a policy-dependent transition kernel,
without considering the issue of exploration. To address these issues, we propose
an alternative spectral method, Spectral Decomposition Representation (SPEDER),
that extracts a state-action abstraction from the dynamics without inducing spurious
dependence on the data collection policy, while also balancing the exploration-
versus-exploitation trade-off during learning. A theoretical analysis establishes the
sample efficiency of the proposed algorithm in both the online and offline settings.
In addition, an experimental investigation demonstrates superior performance over
current state-of-the-art algorithms across several RL benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) seeks to learn an optimal sequential decision making strategy by
interacting with an unknown environment, usually modeled by a Markov decision process (MDP).
For MDPs with finite states and actions, RL can be performed in a sample efficint and computationally
efficient way; however, for large or infinite state spaces both the sample and computational complexity
increase dramatically. Representation learning is therefore a major tool to combat the implicit curse
of dimensionality in such spaces, contributing to several empirical successes in deep RL, where
policies and value functions are represented as deep neural networks and trained end-to-end (Mnih
et al., 2015; Levine et al., 2016; Silver et al., 2017; Bellemare et al., 2020). However, an inappropriate
representation can introduce approximation error that grows exponentially in the horizon (Du et al.,
2019b), or induce redundant solutions to the Bellman constraints with large generalization error (Xiao
et al., 2021). Consequently, ensuring the quality of representation learning has become an increasingly
important consideration in deep RL.

In prior work, many methods have been proposed to ensure alternative properties of a learned
representation, such as reconstruction (Watter et al., 2015), bi-simulation (Gelada et al., 2019; Zhang
et al., 2020), and contrastive learning (Zhang et al., 2022a; Qiu et al., 2022; Nachum & Yang, 2021).
Among these methods, a family of representation learning algorithms has focused on constructing
features by exploiting the spectral decomposition of different transition operators, including successor
features (Dayan, 1993; Machado et al., 2018), proto-value functions (Mahadevan & Maggioni, 2007;
Wu et al., 2018), spectral state aggregation (Duan et al., 2019; Zhang & Wang, 2019), and Krylov
bases (Petrik, 2007; Parr et al., 2008). Although these algorithms initially appear distinct, they
all essentially factorize a variant of the transition kernel. The most attractive property of such
representations is that the value function can be linearly represented in the learned features, thereby
reducing the complexity of subsequent planning. Moreover, spectral representations are compatible
with deep neural networks (Barreto et al., 2017), which makes them easily applicable to optimal
policy learning (Kulkarni et al., 2016b) in deep RL.
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However, despite their elegance and desirable properties, current spectral representation algorithms ex-
hibit several drawbacks. One drawback is that current methods generate state-only features, which are
heavily influenced by the behavior policy and can fail to generalize well to alternative polices. More-
over, most existing spectral representation learning algorithms omit the intimate coupling between
representation learning and exploration, and instead learn the representation from a pre-collected
static dataset. This is problematic as effective exploration depends on having a good representation,
while learning the representation requires comprehensively-covered experiences—failing to properly
manage this interaction can lead to fundamentally sample-inefficient data collection (Xiao et al.,
2022). These limitations lead to suboptimal features and limited empirical performance.
In this paper, we address these important but largely ignored issues, and provide a novel spectral
representation learning method that generates policy-independent features that provably manage the
delicate balance between exploration and exploitation. In summary:

• We provide a spectral decomposition view of several current representation learning methods,
and identify the cause of spurious dependencies in state-only spectral features (Section 2.2).

• We develop a novel model-free objective, Spectral Decomposition Representation (SPEDER),
that factorizes the policy-independent transition kernel to eliminate policy-induced dependencies,
while revealing the connection between model-free and model-based representation learning
(Section 3).

• We provide algorithms that implement the principles of optimism and pessimism in the face
of uncertainty using the SPEDER features for online and offline RL (Section 3.1), and equip
behavior cloning with SPEDER for imitation learning (Section 3.2).

• We analyze the sample complexity of SPEDER in both the online and offline settings, to justify
the achieved balance between exploration versus exploitation (Section 4).

• We demonstrate that SPEDER outperforms state-of-the-art model-based and model-free RL
algorithms on several benchmarks (Section 6).

2 PRELIMINARIES

In this section, we briefly introduce Markov Decision Processes (MDPs) with a low-rank structure,
and reveal the spectral decomposition view of several representation learning algorithms, which
motivates our new spectral representation learning algorithm.

2.1 LOW-RANK MARKOV DECISION PROCESSES

Markov Decision Processes (MDPs) are a standard sequential decision-making model for RL, and
can be described as a tuple M = (S,A, r, P, ρ, γ), where S is the state space, A is the action space,
r : S × A → [0, 1] is the reward function, P : S × A → ∆(S) is the transition operator with
∆(S) as the family of distributions over S, ρ ∈ ∆(S) is the initial distribution and γ ∈ (0, 1) is the
discount factor. The goal of RL is to find a policy π : S → ∆(A) that maximizes the cumulative
discounted reward V π

P,r := Es0∼ρ,π

[∑∞
i=0 γ

ir(si, ai)|s0
]

by interacting with the MDP. The value
function is defined as V π

P,r(s) = Eπ

[∑∞
i=0 γ

ir(si, ai)|s0 = s
]
, and the action-value function is

Qπ
P,r(s, a) = Eπ

[∑∞
i=0 γ

ir(si, ai)|s0 = s, a0 = a
]
. These definitions imply the following recursive

relationships:

V π
P,r(s) = Eπ

[
Qπ

P,r(s, a)
]
, Qπ

P,r(s, a) = r(s, a) + γEP

[
V π
P,r(s

′)
]
.

We additionally define the state visitation distribution induced by a policy π as dπP (s) = (1 −
γ)Es0∼ρ,πE [

∑∞
t=0 γ

t1(st = s)|s0], where 1(·) is the indicator function.

When |S| and |A| are finite, there exist sample-efficient algorithms that find the optimal policy by
maintaining an estimate of P or Qπ

P,r (Azar et al., 2017; Jin et al., 2018). However, such methods
cannot be scaled up when |S| and |A| are extremely large or infinite. In such cases, function
approximation is needed to exploit the structure of the MDP while avoiding explicit dependence
on |S| and |A|. The low rank MDP is one of the most prominent structures that allows for simple
yet effective function approximation in MDPs, which is based on the following spectral structural
assumption on P and r:
Assumption 1 (Low Rank MDP, (Jin et al., 2020; Agarwal et al., 2020)). An MDP M is a low rank
MDP if there exists a low rank spectral decomposition of the transition kernel P (s′|s, a), such that

P (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩, r(s, a) = ⟨ϕ(s, a), θr⟩, (1)
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with two spectral maps ϕ : S ×A → Rd and µ : S → Rd, and a vector θr ∈ Rd. The ϕ and µ also
satisfy the following normalization conditions:

∀(s, a), ∥ϕ(s, a)∥2 ⩽ 1, ∥θr∥2 ⩽
√
d,∀g : S → R, ∥g∥L∞ ⩽ 1 ,

∥∥∫
S µ(s′)g(s′)ds′

∥∥
2
⩽

√
d. (2)

The low rank MDP allows for a linear representation of Qπ
P,r for any arbitrary policy π, since

Qπ
P,r(s, a) = r(s, a) + γ

∫
V π
P,r(s)P (s′|s, a)ds′ =

〈
ϕ(s, a), θr + γ

∫
V π
P,r(s

′)µ(s′)ds′
〉
. (3)

Hence, we can provably perform computationally-efficient planning and sample-efficient exploration
in a low-rank MDP given ϕ(s, a), as shown in (Jin et al., 2020). However, ϕ(s, a) is generally
unknown to the reinforcement learning algorithm, and must be learned via representation learning to
leverage the structure of low rank MDPs.

2.2 SPECTRAL FRAMEWORK FOR REPRESENTATION LEARNING

Representation learning based on a spectral decomposition of the transition dynamics was investigated
as early as Dayan (1993), although the explicit study began with Mahadevan & Maggioni (2007),
which constructed features via eigenfunctions from Laplacians of the transitions. This inspired a series
of subsequent work on spectral decomposition representations, including the Krylov basis (Petrik,
2007; Parr et al., 2008), continuous Laplacian Wu et al. (2018), and spectral state aggregation (Duan
et al., 2019; Zhang & Wang, 2019). We summarize these algorithms in Table 1 to reveal their
commonality from a unified perspective, which motivates the development of a new algorithm. A
similar summary has also been provided in (Ghosh & Bellemare, 2020).

Table 1: A unified spectral decomposition view
of existing related representations. Here, r de-
notes the reward function, Λ denotes some di-
agonal reweighting operator, and Pπ(s′|s) =∫
P (s′|s, a)π(a|s)da.

Representation Decomposed Dynamics

Successor Feature svd
(
(I − γPπ)

−1
)

Proto-Value Function eig
(
ΛPπ + (Pπ)

⊤
Λ
)

Krylov Basis {(Pπ)
i
r}ki=1

Spectral State-Aggregation svd (Pπ)

These existing spectral representation methods
construct features based on the spectral space
of the state transition probability Pπ(s′|s) =∫
P (s′|s, a)π(a|s)da, induced by some policy π.

Such a transition operator introduces inter-state de-
pendency from the specific π, and thus injects an
inductive bias into the state-only spectral represen-
tation, resulting in features that might not be gener-
alizable to other policies. To make the state-feature
generalizable, some work has resorted incorporat-
ing a linear action model (e.g. Yao & Szepesvári,
2012; Gehring et al., 2018) where action information is stored in the linear weights. However, this
work requires known state-features, and it is not clear how to combine the linear action model with
the spectral feature framework. Moreover, these existing spectral representation methods completely
ignore the problem of exploration, which affects the composition of the dataset for representation
learning and is conversely affected by the learned representation during the data collection procedure.
These drawbacks have limited the performance of spectral representations in practice.

3 SPECTRAL DECOMPOSITION REPRESENTATION LEARNING

To address these issues, we provide a novel spectral representation learning method, which we call
SPEctral DEcomposition Representation (SPEDER). SPEDER is compatible with stochastic gradient
updates, and is therefore naturally applicable to general practical settings. We will show that SPEDER
can be easily combined with the principle of optimism in the face of uncertainty to obtain sample
efficient online exploration, and can also be leveraged to perform latent behavioral cloning.

As discussed in Section 2, the fundamental cause of the spurious dependence in state-only spectral
features arises from the state transition operator Pπ (s′|s), which introduces inter-state dependence
induced by a specific behavior policy π. To resolve this issue, we extract the spectral feature
from P (s′|s, a) alone, which is invariant to the policy, thereby resulting in a more stable spectral
representation.

Assume we are given a set of observations {(si, ai, s′i)}ni=1 sampled from ρ0(s, a) × P (s′|s, a),
and want to learn spectral features ϕ(s, a) ∈ Rd and µ(s′) ∈ Rd, which are produced by function
approximators like deep neural nets, such that:

P (s′|s, a) ≈ ϕ(s, a)⊤µ(s′). (4)
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Such a representation allows for a simple linear parameterization of Q for any policy π, making the
planning step efficient, as discussed in section 2.1. Based on (4), one can exploit density estimation
techniques, e.g., maximum likelihood estimation (MLE), to estimate ϕ and µ:(

ϕ̂, µ̂
)
= argmax

ϕ∈Φ,µ∈Ψ

1

n

n∑
i=1

log ϕ(si, ai)
⊤µ(s′i)− logZ(s, a), (5)

where Z(s, a) =
∫
S ϕ(s, a)⊤µ(s′) ds′. In fact, (Agarwal et al., 2020; Uehara et al., 2022) provide

rigorous theoretical guarantees when a computation oracle for solving (5) is provided. However,
such a computation for MLE is highly nontrivial. Meanwhile, the MLE (5) is invariant to the scale
of ϕ and µ; that is, if (ϕ, µ) is a solution of (5), then (c1ϕ, c2µ) is also a solution of (5) for any
c1, c2 > 0. Hence, we generally do not have Z(s, a) = 1 for any (s, a), and we can only use

P (s′|s, a) =
(

ϕ(s,a)
Z(s,a)

)⊤
µ(s′). Therefore, we need to use ϕ̃(s, a) := ϕ(s,a)

Z(s,a) to linearly represent the
Q-function, which incurs an extra estimation requirement for Z(s, a).

Recall that the pair ϕ(s, a) and µ(s′) actually form the subspace of transition operator P (s′|s, a), so
instead of MLE for the factorization of P (s′|s, a), we can directly apply singular value decomposi-
tion (SVD) to the transition operator to bypass the computation difficulties in MLE. Specifically, the
SVD of transition operator can be formulated as

max
E[ϕϕ⊤]=Id

∥Eρ0
[P (s′|s, a)ϕ(s, a)]∥22 (6)

= max
E[ϕϕ⊤]=Id/d

max
µ

2Trace

(
Eρ0

[∫
µ(s′)P (s′|s, a)ϕ(s, a)⊤ds′

])
− 1/d

∫
µ(s′)⊤µ(s′)ds′

= max
E[ϕϕ⊤]=Id/d,µ′

2Eρ0×P

[
ϕ(s, a)⊤µ′ (s′) p(s′)

]
− Ep

[
p(s′)µ′(s′)⊤µ′(s′)

]
/d, (7)

where ∥·∥2 denotes the L2(µ) norm where µ denotes the Lebesgue measure for continuous case and
counting measure for discrete case, the second equality comes from the Fenchel duality of ∥·∥22 with
up-scaling of µ by

√
d, and the third equality comes from reparameterization µ(s′) = p(s′)µ′ (s′)

with some parametrized probability measure p(s′) supported on the state space S.
As (7) can be approximated with the samples, it can be solved via stochastic gradient updates,
where the constraint is handled via the penalty method as in (Wu et al., 2018). This algorithm starkly
contrasts with existing policy-dependent methods for spectral features via explicit eigendecomposition
of state transition matrices (Mahadevan & Maggioni, 2007; Machado et al., 2017; 2018).

Remark (equivalent model-based view of (7)): We emphasize that the SVD variational formu-
lation in (6) is model-free, according to the categorization in Modi et al. (2021), without explicit
modeling of µ. Here, µ is only introduced only for tractability. This reveals an interesting model-based
perspective on representation learning.

We draw inspiration from spectral conditional density estimation (Grünewälder et al., 2012):
min
ϕ,µ

E(s,a)∼ρ0

∥∥P (·|s, a)− ϕ(s, a)⊤µ(·)
∥∥2
2
. (8)

This objective (8) has a unique global minimum, ϕ(s, a)⊤µ(s′) = P (s′|s, a), thus it can be used as
an alternative representation learning objective.

However, the objective (8) is still intractable when we only have access samples from P . To resolve
the issue, we note that

L(ϕ, µ) := E(s,a)∼ρ0

∥∥P (·|s, a)− ϕ(s, a)⊤µ(·)
∥∥2
2

=C − 2E(s,a)∼ρ0,s′∼P (s′|s,a)
[
ϕ(s, a)⊤µ(s′)

]
+ E(s,a)∼ρ0

[∫
S

(
ϕ(s, a)⊤µ(s′)

)2
ds′
]
, (9)

where C = Es,a∼ρ0

[∫
(P (s′|s, a))2

]
is a problem-dependent constant. For the third term, we turn

to an approximation method by reparameterization µ(s′) = p(s′)µ′(s′),

E(s,a)∼ρ0

[∫
S

(
ϕ(s, a)⊤µ(s′)

)2
ds′
]
= Trace

(
E(s,a)∼ρ0

[
ϕ(s, a)ϕ(s, a)⊤

]
Ep

[
p(s′)µ′(s′)µ′(s′)⊤

])
.
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Algorithm 1 Online Exploration with SPEDER

1: Input: Regularizer λn, parameter αn, Model class F = {(ϕ, µ) : ϕ ∈ Φ, µ ∈ Ψ, }, Iteration N
2: Initialize π0(· | s) to be uniform; set D0 = ∅, D′

0 = ∅
3: for episode n = 1, · · · , N do
4: Collect the transition (s, a, s′, a′, s̃) where s ∼ d

πn−1

P⋆ , a ∼ U(A), s′ ∼ P ⋆(·|s, a),a′ ∼
U(A), s̃ ∼ P ⋆(·|s′, a′), where U(A) denotes the uniform distribution on A.

5: Dn = Dn−1 ∪ {s, a, s′}, D′
n = D′

n−1 ∪ {s′, a′, s̃}.
6: Learn representation ϕ̂(s, a) with Dn ∪ D′

n via equation 10 .
7: Update the empirical covariance matrix

Σ̂n =
∑

s,a∈Dn
ϕ̂n(s, a)ϕ̂n(s, a)

⊤ + λnI

8: Set the exploration bonus b̂n(s, a) = αn

√
ϕ̂n(s, a)⊤Σ̂

−1
n ϕ̂n(s, a)

9: Update policy πn = argmaxπ V
π
P̂n,r+b̂n

10: end for
11: Return π1, · · · , πN

Under the constraint that Es,a[ϕ(s, a)ϕ(s, a)
⊤] = Id/d, we have

Trace
(
E(s,a)∼ρ0

[
ϕ(s, a)ϕ(s, a)⊤

]
Ep

[
p(s′)µ′(s′)µ′(s′)⊤

])
= Ep

[
p(s′)µ′(s′)⊤µ′(s′)

]
/d.

Hence, Equation 8 can be written equivalently as:

min
ϕ,µ′

−E(s,a,s′)∼ρ0×P

[
ϕ(s, a)⊤µ′(s′)p(s′)

]
+
(
Ep(s′)

[
p(s′)µ′(s′)⊤µ′(s′)

])
/(2d)

s.t. E(s,a)∼ρ0

[
ϕ(s, a)ϕ(s, a)⊤

]
= Id/d, (10)

which is exact as the dual form of the SVD in (7). Such an equivalence reveals an interesting
connection between model-free and model-based representation learning, obtained through duality,
which indicates that the spectral representation learned via SVD is implicitly minimizing the model
error in L2 norm. This connection paves the way for theoretical analysis.

3.1 ONLINE EXPLORATION AND OFFLINE POLICY OPTIMIZATION WITH SPEDER

Unlike existing spectral representation learning algorithms, where the features are learned based on a
pre-collected static dataset, we can use SPEDER to perform sample efficient online exploration. In
Algorithm 1, we show how to use the representation obtained from the solution to (10) to perform
sample efficient online exploration under the principle of optimism in the face of uncertainty. Central
to the algorithm is the newly proposed representation learning procedure (Line 6 in Algorithm 1),
which learns the representation ϕ̂(s, a) and the model P̂ (s′|s, a) = ϕ̂(s, a)⊤µ̂(s) with adaptively
collected exploratory data. After recovering the representation, we use the standard elliptical poten-
tial (Jin et al., 2020; Uehara et al., 2022) as the bonus (Line 8 in Algorithm 1) to enforce exploration.
We then plan using the learned model P̂n with the reward bonus b̂n to obtain a new policy that is used
to collect additional exploratory data. These procedures iterate, comprising Algorithm 1.

SPEDER can also be combined with the pessimism principle to perform sample efficient offline
policy optimization. Unlike the online setting where we enforce exploration by adding a bonus to
the reward, we now subtract the elliptical potential from the reward to avoid risky behavior. For
completeness, we include the algorithm for offline policy optimization in Appendix C.

On the requirements of P̂n. As we need to plan with the learned model P̂n, we generally require
P̂n to be a valid transition kernel, but the representation learning objective (10) does not explicitly
enforce this. Therefore in our implementations, we use the data from the replay buffer collected
during the past executions to perform planning. We can also enforce that P̂n is a valid probability by
adding the following additional regularization term Ma & Collins (2018):

E(s,a)

[(
log
∫
S ϕ(s, a)⊤µ′(s′)p(s′)ds′

)2]
, (11)

which can be approximated with samples from p(s′). Obviously, the regularization is non-negative
and achieves zero when

∫
S ϕ(s, a)⊤µ′(s′)p(s′)ds′ = 1.
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Practical Implementation We parameterize ϕ(s, a) and µ′(s′) as separate MLP networks, and
train them by optimizing objective (10). Instead of using a linear Q on top of ϕ(s, a), as suggested
by the low-rank MDP, we parameterize the critic network as a two-layer MLP on top of the learned
representation ϕ(s, a) to support the nonlinear exploration bonus and entropy regularization. Unlike
other representation learning methods in RL, we do not backpropagate the gradient from TD-learning
to the representation network ϕ(s, a). To train the policy, we use the Soft Actor-Critic (SAC)
algorithm (Haarnoja et al., 2018), and alternate between policy optimization and critic training.

3.2 SPECTRAL REPRESENTATION FOR LATENT BEHAVIORAL CLONING

We additionally expand the use of the learned spectral representation ϕ(s, a) as skills for downstream
imitation learning, which seeks to mimic a given set of expert demonstrations. Specifically, recall the
correspondence between the max-entropy policy and Q-function, i.e.,

πQ(a|s) :=
exp(Q(s, a))∑

a∈A exp(Q(s, a))
= argmax

π(·|s)∈∆(A)

Eπ [Q(s, a)] +H (π) , (12)

where H (π) :=
∑

a∈A π(a|s) log π(a|s). Therefore, given a set of linear basis functions for Q,
{ϕi}di=1, the we can construct the policy basis, or skill sets, based on ϕ according to (12), which
induces the policy family πw(a|s) ∝ exp(w⊤ϕ(s, a)). We emphasize that the policy construction
from the skills is no longer linear. This inspires us to use a latent variable composition to approximate
policy construction, i.e., π(a|s) =

∫
πα(a|s, z)πZ(z|s)dz, with z = ϕ(s, a) to insert the learned

representation. The policy decoder πα : S × Z → ∆(A) and the policy encoder πZ : S → ∆(Z)
can be composed to form the final policy.

We assume access to a fixed set of expert transitions Dπ∗
= {(st, at, st+1) : st ∼ dπ

∗

P , at ∼
πE(st), st+1 ∼ P (s′ | st, at)}. In practice, while expert demonstrations can be expensive to acquire,
non-expert data of interactions in the same environment can be more accessible to collect at scale,
and provide additional information about the transition dynamics of the environment. We denote the
offline transitions Doff = {(s, a, s′)} from the same MDP, which is collected by a non-expert policy
with suboptimal performance (e.g., an exploratory policy). We follow latent behavioral cloning (Yang
et al., 2021; Yang & Nachum, 2021) where learning is separated into a pre-training phase, where
a representation ϕ : S × A → Z and a policy decoder πα : S × Z → ∆(A) are learned on the
basis of the suboptimal dataset Doff, and a downstream imitation phase that learns a latent policy
πZ : S → ∆(Z) using the expert dataset Dπ∗

. With SPEDER, we perform latent behavior cloning
as follows:

1. Pretraining Phase: We pre-train ϕ(s, a) and µ(s′) on Doff by minimizing the objective (10).
Additionally, we train a policy decoder πα(a | s, ϕ(s, a)) that maps latent action representations to
actions in the original action space, by minimizing the action decoding error:

Es∼doff
P
[− log πα(a | s, ϕ(s, a))]

2. Downstream Imitation Phase: We train a latent policy πZ : S → ∆(Z) by minimizing the latent
behavioral cloning error:

E(s,a)∼dπ∗
P

[− log πZ(ϕ(s, a) | s)]
At inference time, given the current state s ∈ S , we sample a latent action representation z ∼ πZ(s),
then decode the action a ∼ πα(a | s, z).

4 THEORETICAL ANALYSIS

In this section, we establish generalization properties of the proposed representation learning algo-
rithm, and provide sample complexity and error bounds when the proposed representation learning
algorithm is applied to online exploration and offline policy optimization.

4.1 NON-ASYMPTOTIC GENERALIZATION BOUND

We first state a performance guarantee on the representation learned with the proposed objective.

Theorem 1. Assume the size of candidate model class |F| < ∞, P ∈ F , and for any P̃ ∈ F ,
P̃ (s′|s, a) ⩽ C for all (s, a, s′). Given the dataset D := {(si, ai, s′i)}ni=1 where (si, ai) ∼ ρ0,
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s′i ∼ P (·|si, ai), the estimator P̂ obtained by empirical surrogate of (9) satisfies the following
inequality with probability at least 1− δ:

E(s,a)∼ρ0
∥P (·|s, a)− P̂ (·|s, a)∥22 ⩽

C ′ log |F|/δ
n

, (13)

where C ′ is a constant that only depends on C, which we will omit in the following analysis.

Note that the i.i.d.data assumption can be relaxed to an assumption that the data generating process is
a martingale process. This is essential for proving the sample complexity of online exploration, as
the data are collected in an adaptive manner. The proofs are deferred to Appendix D.1.

4.2 SAMPLE COMPLEXITIES OF ONLINE EXPLORATION AND OFFLINE POLICY OPTIMIZATION

Next, we establish sample complexities for the online exploration and offline policy optimization
problems. We still assume P ∈ F . As the generalization bound equation 13 only guarantees the
expected L2 distance, we need to make the following additional assumptions on the representation
and reward:
Assumption 2 (Representation Normalization). ∀ϕ ∈ Φ, we have

∫
S
(∫

A ∥ϕ(s, a)∥2 da
)2

ds ⩽ d.

Assumption 3 (Reward Normalization).
∫
S
(∫

A r(s, a) da
)2

ds ⩽ d, where r is the reward function.

A simple example that satisfies both Assumption 2 and 3 is a tabular MDP with features ϕ(s, a)
forming the canonical basis in R|S||A|. In this case, we have d = |S||A|, hence Assumption 2 naturally
holds. Furthermore, since r(s, a) ∈ [0, 1], it is also straightforward to verify that Assumption 3 holds
for a tabular MDP. Such an assumption can also be satisfied for a continuous state space where the
volume of the state space satisfies µ(S) ⩽ d

|A| . Since we need to plan on P̂ , we also assume P̂

is a valid transition kernel. With Assumptions 2 and 3 in hand, we are now ready to provide the
sample complexities of online exploration and offline policy optimization. The proofs are deferred to
Appendix D.2 and D.3.
Theorem 2 (PAC Guarantee for Online Exploration). Assume |A| < ∞. After interacting with the

environment for N = Θ̃
(

d4|A|2
(1−γ)6ϵ2

)
episodes, where Θ̃ omits log-factors, we obtain a policy π s.t.

V π∗

P,r − V π
P,r ⩽ ϵ

with high probability, where π∗ is the optimal policy. Furthermore, note that, we can obtain a sample
from the state visitation distribution dπP via terminating with probability 1− γ for each step. Hence,
for each episode, we can terminate within Θ̃(1/(1− γ)) steps with high probability.
Theorem 3 (PAC Guarantee for Offline Policy Optimization). Let ω = mins,a

1
πb(a|s) where πb is

the behavior policy. With probability 1− δ, for all baseline policies π including history-dependent
non-Markovian policies, we have that

V π
P,r − V π̂

P,r ≲

√
ω2d4C∗

π log(|F|/δ)
(1− γ)6

,

where C∗
π is the relative conditional number under ϕ∗ which measures the quality of the offline data:

C∗
π := sup

x∈R

x⊤E(s,a)∼dπ
P
[ϕ∗(s, a)ϕ∗(s, a)⊤]x

x⊤E(s,a)∼ρb
[ϕ∗(s, a)ϕ∗(s, a)⊤]x

.

5 RELATED WORK

Aside from the family of spectral decomposition representation methods reviewed in Section 2, there
have been many attempts to provide algorithmic representation learning algorithms for RL in different
problem settings. Learning action representations, or abstractions, such as temporally-extended skills,
has been a long-standing focus of hierarchical RL (Dietterich et al., 1998; Sutton et al., 1999; Kulkarni
et al., 2016a; Nachum et al., 2018) for solving temporally-extended tasks. Recently, many algorithms
have been proposed for online unsupervised skill discovery, which can reduce the cost of exploration
and sample complexity of online RL algorithms. A class of methods extract temporally-extended
skills by maximizing a mutual information objective (Eysenbach et al., 2018; Sharma et al., 2019;
Lynch et al., 2020) or minimizing divergences (Lee et al., 2019). Unsupervised skill discovery has
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been also studied in offline settings, where the goal is to pre-train useful skill representations from
offline trajectories, in order to accelerate learning on downstream RL tasks (Yang & Nachum, 2021).
Such methods include OPAL (Ajay et al., 2020), SPiRL (Pertsch et al., 2020), and SkiLD (Pertsch
et al., 2021), which exploit a latent variable model with an autoencoder for skills acquisition; and
PARROT (Singh et al., 2020), which learns a behavior prior with flow-based models. Another offline
representation learning algorithm, TRAIL (Yang et al., 2021), uses a contrastive implementation of
the MLE for an energy-based model to learn state-action features. These algorithms achieve empirical
improvements in different problem settings, such as imitation learning, policy transfer, etc. However,
as far as we know, the coupling between exploration and representation learning has not been well
handled, and there is no rigorous characterization yet for these algorithms.

Another line of research focuses on theoretically guaranteed representation learning in RL, either by
limiting the flexibility of the models or by ignoring the practical issue of computational cost. For
example, (Du et al., 2019a; Misra et al., 2020) considered representation learning in block MDPs,
where the representation can be learned via regression. However, the corresponding representation
ability is exponentially weaker than low-rank MDPs (Agarwal et al., 2020). Ren et al. (2021) exploited
representation from arbitrary dynamics models, but restricted the noise model to be Gaussian. On
the other hand, (Agarwal et al., 2020; Modi et al., 2021; Uehara et al., 2022; Zhang et al., 2022b;
Chen et al., 2022) provably extracted spectral features in low-rank MDPs with exploration, but these
methods rely on a strong computation oracle, which is difficult to implement in practice.

In contrast, SPEDER enjoys both theoretical and empirical advantages. We provide a tractable
surrogate with an efficient algorithm for spectral feature learning with exploration in low-rank MDPs.
We have established its sample complexity and next demonstrate its superior empirical performance.

6 EXPERIMENTS

We evaluate SPEDER on the dense-reward MuJoCo tasks (Brockman et al., 2016) and sparse-reward
DeepMind Control Suite tasks (Tassa et al., 2018). In MuJoCo tasks, we compare with model-based
(e.g., PETS (Chua et al., 2018), ME-TRPO (Kurutach et al., 2018)) and model-free baselines (e.g.,
SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017)), showing strong performance compared
to SoTA RL algorithms. In particular, we find that in the sparse reward DeepMind Control tasks,
the optimistic SPEDER significantly outperforms the SoTA model-free RL algorithms. We also
evaluate the method on offline behavioral cloning tasks in the AntMaze environment using the D4RL
benchmark (Fu et al., 2020), and show comparable results to state-of-the-art representation learning
methods. Additional details about the experiment setup are described in Appendix F.

6.1 ONLINE PERFORMANCE WITH THE SPECTRAL REPRESENTATION

We evaluate the proposed algorithm on the dense-reward MuJoCo benchmark from MBBL (Wang
et al., 2019). We compare SPEDER with several model-based RL baselines (PETS (Chua et al.,
2018), ME-TRPO (Kurutach et al., 2018)) and SoTA model-free RL baselines (SAC (Haarnoja et al.,
2018), PPO (Schulman et al., 2017)). As a standard evaluation protocol in MBBL, we ran all the
algorithms for 200K environment steps. The results are averaged across four random seeds with
window size 20K.

In Table 2, we show that SPEDER achieves SoTA results among all model-based RL algorithms
and significantly improves the prior baselines. We also compare the algorithm with the SoTA
model-free RL method SAC. The proposed method achieves comparable or better performance in
most of the tasks. Lastly, compared to two representation learning baselines (Deep SF (Kulkarni
et al., 2016b) and SPEDE (Ren et al., 2021)), SPEDER also shows superior performance, which
demonstrates the proposed SPEDER is able to overcome the aforementioned drawback of vanilla
spectral representations.

6.2 EXPLORATION IN SPARSE-REWARD DEEPMIND CONTROL SUITE

To evaluate the exploration performance of SPEDER, we additionally run experiments on the
DeepMind Control Suite. We compare the proposed method with SAC, (including a 2-layer, 3-layer
and 5-layer MLP for critic network), PPO, Dreamer-v2 (Hafner et al., 2020), Deep SF (Kulkarni et al.,
2016b) and Proto-RL (Yarats et al., 2021). Since the original Dreamer and Proto-RL are designed
for image-based control tasks, we adapt them to run the state-based tasks and details can be found
at Appendix. F. We run all the algorithms for 200K environment steps across four random seeds
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Table 2: Performance on various MuJoCo control tasks. All the results are averaged across 4 random seeds and
a window size of 20K. Results marked with ∗ is adopted from MBBL (Wang et al., 2019). SPEDER achieves
strong performance compared with baselines.

HalfCheetah Reacher Humanoid-ET Pendulum I-Pendulum

Model-Based RL

ME-TRPO∗ 2283.7±900.4 -13.4±5.2 72.9±8.9 177.3±1.9 -126.2±86.6
PETS-RS∗ 966.9±471.6 -40.1±6.9 109.6±102.6 167.9±35.8 -12.1±25.1
PETS-CEM∗ 2795.3±879.9 -12.3±5.2 110.8±90.1 167.4±53.0 -20.5±28.9
Best MBBL 3639.0±1135.8 -4.1±0.1 1377.0±150.4 177.3±1.9 0.0±0.0

Model-Free RL
PPO∗ 17.2±84.4 -17.2±0.9 451.4±39.1 163.4±8.0 -40.8±21.0
TRPO∗ -12.0±85.5 -10.1±0.6 289.8±5.2 166.7±7.3 -27.6±15.8
SAC∗ (3-layer) 4000.7±202.1 -6.4±0.5 1794.4±458.3 168.2±9.5 -0.2±0.1

Representation RL

DeepSF 4180.4±113.8 -16.8±3.6 168.6±5.1 168.6±5.1 -0.2±0.3
SPEDE 4210.3±92.6 -7.2±1.1 886.9±95.2 169.5±0.6 0.0±0.0
SPEDER 5407.9±813.0 -5.90±0.3 1774.875±129.1 167.4±3.4 0.0±0.0

Ant-ET Hopper-ET S-Humanoid-ET CartPole Walker-ET

Model-Based RL

ME-TRPO∗ 42.6±21.1 1272.5±500.9 -154.9±534.3 160.1±69.1 -1609.3±657.5
PETS-RS∗ 130.0±148.1 205.8±36.5 320.7±182.2 195.0±28.0 312.5±493.4
PETS-CEM∗ 81.6±145.8 129.3±36.0 355.1±157.1 195.5±3.0 260.2±536.9
Best MBBL 275.4±309.1 1272.5±500.9 1084.3±77.0 200.0±0.0 312.5±493.4

Model-Free RL
PPO∗ 80.1±17.3 758.0±62.0 454.3±36.7 86.5±7.8 306.1±17.2
TRPO∗ 116.8±47.3 237.4±33.5 281.3±10.9 47.3±15.7 229.5±27.1
SAC∗ (3-layer) 2012.7±571.3 1815.5±655.1 834.6±313.1 199.4±0.4 2216.4±678.7

Representation RL

DeepSF 768.1±44.1 548.9±253.3 533.8±154.9 194.5±5.8 165.6±127.9
SPEDE 806.2±60.2 732.2±263.9 986.4±154.7 138.2±39.5 501.6±204.0
SPEDER 1806.8±1488.0 2267.6±554.3 944.8±354.3 200.2±1.0 2451.5±1115.6

Table 3: Performance on various DeepMind Suite Control tasks. All the results are averaged across four
random seeds and a window size of 20K. Comparing with SAC, our method achieves even better performance
on sparse-reward tasks. Results are presented in mean ± standard deviation across different random seeds.

cheetah run cheetah run sparse walker run walker run sparse humanoid run hopper hop

Model-Based RL Dreamer 542.0 ± 27.7 499.9±73.3 337.7±67.2 95.4±54.7 1.0±0.2 46.1±17.3

Model-Free RL

PPO 227.7±57.9 5.4±10.8 51.6±1.5 0.0±0.0 1.1±0.0 0.7±0.8
SAC (2-layer) 222.2±41.0 32.4±27.8 183.0±23.4 53.5±69.3 1.3±0.1 0.4±0.5
SAC (3-layer) 595.2±96.0 419.5±73.3 700.9±36.6 311.5±361.4 1.2±0.1 28.6±19.5

SAC (5-layer) 566.3±123.5 364.1±242.3 716.9±35.0 276.1±319.3 8.2±13.8 31.1±31.8

Representation RL
DeepSF 295.3±43.5 0.0±0.0 27.9±2.2 0.1±0.1 0.9±0.1 0.3±0.1

Proto RL 305.5±37.9 0.0±0.0 433.5±56.8 46.9±34.1 0.3±0.6 1.0±0.2
SPEDER 593.7±95.1 425.5 ± 42.8 690.4±20.5 683.2±96.0 11.5±5.4 119.8±89.6

with a window size of 20K. From Table 3, we see that SPEDER achieves superior performance
compared to SAC using the 2-layer critic network. Compared to SAC and PPO with deeper critic
networks, SPEDER has significant gain in tasks with sparse reward (e.g., walker-run-sparse
and hopper-hop).

6.3 IMITATION LEARNING PERFORMANCE ON ANTMAZE NAVIGATION

We additionally experiment with using SPEDER features for downstream imitation learning. We
consider the challenging AntMaze navigation domain (shown in Figure 3) from the D4RL (Fu et al.,
2020), which consists of a 8-DoF quadraped robot whose task is to navigate towards a goal position
in the maze environment. We compare SPEDER to several recent state-of-the-art for pre-training
representations from suboptimal offline data, including OPAL (Ajay et al., 2020), SPiRL (Pertsch
et al., 2020), SkiLD (Pertsch et al., 2021), and TRAIL (Yang et al., 2021). For OPAL, SPiRL, and
SkiLD, we use horizons of t = 1 and t = 10 for learning temporally-extended skills. For TRAIL,
we report the performance of the TRAIL energy-based model (EBM) as well as the TRAIL Linear
model with random Fourier features (Rahimi & Recht, 2007).

Following the behavioral cloning setup in (Yang et al., 2021), we use a set of 10 expert trajectories of
the agent navigating from one corner of the maze to the opposite corner as the expert dataset Dπ∗

. For
the suboptimal dataset Doff, we use the “diverse” datasets from D4RL (Fu et al., 2020), which consist
of 1M samples of the agent navigating from different initial locations to different goal positions.
We report the average return on AntMaze tasks, and observe that SPEDER achieves comparable
performance as other state-of-the-art representations on downstream imitation learning in Figure 4.
The comparison and experiment details can be found in Appendix F.
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7 CONCLUSION
We have proposed a novel objective, Spectral Decomposition Representation (SPEDER), that factor-
izes the state-action transition kernel to obtain policy-independent spectral features. We show how to
use the representations obtained with SPEDER to perform sample efficient online and offline RL,
as well as imitation learning. We provide a thorough theoretical analysis of SPEDER and empirical
comparisons on multiple RL benchmarks, demonstrating the effectiveness of SPEDER.
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A MORE RELATED WORK

Representation learning in RL has attracted more attention in recent years. Within model-based
RL (MBRL), many methods for learning representations of the reward and the dynamics have been
proposed. Several recent MBRL methods learn latent state representations to be used for planning in
latent space as a way to improve model-based policy optimization (Oh et al., 2017; Silver et al., 2018;
Racanière et al., 2017; Hafner et al., 2019).

Beyond MBRL, there also exist many algorithms for learning useful state representations to accelerate
RL. For example, recent works have introduced unsupervised auxiliary losses to significantly improve
RL performance (Pathak et al., 2017; Oord et al., 2018; Laskin et al., 2020; Jaderberg et al., 2016).
Contrastive losses (Oord et al., 2018; Anand et al., 2019; Srinivas et al., 2020; Stooke et al., 2021),
which encourage similar states to be closer in embedding space, where the notion of similarity
is usually defined in terms of temporal distance (Anand et al., 2019; Sermanet et al., 2018) or
image-based data augmentations (Srinivas et al., 2020), also show promising performance. Within
goal-conditioned RL (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017), various
representation learning algorithms have been proposed to handle high-dimensional observation
and goal spaces, such as using a variational autoencoder (Nair et al., 2018; Pong et al., 2019), or
representations that explicitly capture useful information for control, while ignoring irrelevant factors
of variation in the observation (Ghosh et al., 2018; Lee et al., 2020).

Beyond these representations on the state space, there are other kinds of representations that are
designed for specific tasks. For example, Touati & Ollivier (2021) proposed to deal with the reward
transfer task by learning a reward-dependent feature F (s, a, r) such that the greedy policy with
respect to F (s, a, r)⊤r is optimal under r.

B IMPLEMENTATION DETAILS

In this section, we provide more implementation details of SPEDER for online exploration.

• Representation Learning. We parameterize the representation network ϕθ(s, a) and µ(s′), and
optimize the representation in Line 6 in Algorithm 1 with the data collected in the replay buffer D,
via minimizing the following objective:

L(ϕ, µ) := − 1

|D|
∑

(si,ai,si+1)∈D

[
ϕ(si, ai)

⊤µ(si+1)p(si+1)
]
+

1

2d|Dbase|
∑

sj∈Dbase

[
p(sj)µ(sj)

⊤µ(sj)
]

+
λortho

|D|2
∑

(si,ai)∼D

∑
(s′i,a

′
i)∼D

 ∑
j,k∈[d]

(
ϕj(si, ai)ϕk(si, ai)−

δjk
d

)(
ϕj(s

′
i, a

′
i)ϕk(s

′
i, a

′
i)−

δjk
d

)
+

λprob

|D|
∑

(si,ai)∈D


log

1

|Dbase|
∑

sj∈Dbase

ϕ(si, ai)
⊤µ(sj)

2
 ,

where p(s) is a base measure on the state space and |Dbase| = {sj} where sj ∼ p(s), λortho and
λprob are coefficients of the regularizers that can help enforce ϕ to be orthogonal (see Wu et al.
(2018) for more details) and ϕ(s, a)⊤µ(s′) to be a valid conditional density (see Ma & Collins
(2018) for more details) accordingly.

• Planning module. We implement Line 9 in Algorithm 1 with SAC algorithm (Haarnoja et al.,
2018) upon the learned feature. Specifically,

– We parameterize the critic network Qθ as a two-layer MLP on top of the representation
ϕθ(s, a), whose parameter will be frozen.

– The critic network and the actor network in SAC are both updated with the samples collected
in the replay buffer.

• Exploration bonus. We can optionally add the exploration bonus (Line 8 in Algorithm 1) as we
discussed in the main text.
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C ALGORITHM FOR OFFLINE POLICY OPTIMIZATION

For completeness, we include the algorithm for offline policy optimization with SPEDER here.

Algorithm 2 Offline Policy Optimization with SPEDER

1: Input: Regularizer λ, Parameter α, Model class F , Dataset D sampled from the stationary
distribution of the behavior policy πb.

2: Learn representation ϕ̂(s, a) with D via equation 10.
3: Set the empirical covariance matrix

Σ̂ =
∑

(s,a)∈D

ϕ̂(s, a)ϕ̂(s, a)⊤ + λI.

4: Set the reward penalty: b̂(s, a) = α

√
ϕ̂(s, a)⊤Σ̂−1ϕ̂(s, a).

5: Solve π̂ = argmaxπ V
π
P̂ ,r−b̂

.

6: Return π̂

D PROOF DETAILS

D.1 NON-ASYMPTOTIC GENERALIZATION BOUND

In this subsection, we consider the non-asymptotic generalization bound for the ℓ2 minimization,
which is necessary for the proof of series of key lemmas (Lemma 7 and Lemma 15) that are used
in the PAC guarantee of the online and offline reinforcement learning. For simplicity, we denote
the instance space as X and the target space as Y , and we want to estimate the conditional density
p(y|x) = f∗(x, y). Assume we are given a function class F : (X × Y) → R with f∗ ∈ F , as well
as the data D := {(xi, yi)}ni=1, where xi ∼ Di(x1:i−1, y1:i−1), yi ∼ p(·|xi) and Di is some data
generating process that depends on the previous samples (a.k.a a martingale process). We define the
tangent sequence D′ := {(x′

i, y
′
i)} where x′

i ∼ Di(x1:i−1, y1:i−1) and y′i ∼ p(·|x′
i). Consider the

estimator obtained by following minimization problem:

f̂ =argmin
f∈F


n∑

i=1

−2f(xi, yi) +

n∑
i=1

∑
y∈Y

f2(xi, y)

 , (14)

where the summation over the counting measure of Y for discrete case can be replaced by the
integration over the Lebesgue measure of Y for continuous case. We first prove the following
decoupling inequality motivated by Lemma 24 of (Agarwal et al., 2020).

Lemma 4. Let L(f,D) =
∑n

i=1 ℓ(f, (xi, yi)), D′ is a tangent sequence of D and f̂(D) be any
estimator taking random variable D as input with range F . Then

ED

[
exp

(
−L(f̂(D),D)− logED′ [exp[−L(f̂(D),D′)]]− log |F|

)]
⩽ 1.

Proof. Let π be the uniform distribution over F and g : F → R be any function. Define the following
probability measure over F : µ(f) = exp g(f)∑

f∈F exp(g(f)) . Then for any probability distribution π̂ over F ,
we have:

0 ⩽KL(π̂∥µ)

=
∑
f∈F

π̂(f) log
π̂(f)

µ(f)

=
∑
f∈F

[π̂(f) log π̂(f)− π̂(f)g(f)] + log
∑
f∈F

exp(g(f))

16



Published as a conference paper at ICLR 2023

=
∑
f∈F

[π̂(f) log π̂(f) + π̂(f) log |F|]−
∑
f∈F

π̂(f)g(f) + logEf∼π exp(g(f))

=KL(π̂∥π)−
∑
f∈F

π̂(f)g(f) + logEf∼π exp(g(f))

⩽ log |F| −
∑
f∈F

π̂(f)g(f) + logEf∼π exp(g(f)).

Re-arranging, we have that∑
f

π̂(f)g(f)− log |F| ⩽ logEf∼π exp(g(f)).

Take g = −L(f,D)− logED′ [exp(−L(f,D′))], π̂(f) = 1f̂(D), we obtain that for any D,

−L(f̂(D),D)− logED′ exp(−L(f̂(D),D′))− log |F| ⩽ logEf∼π
exp(−L(f̂(D),D))

ED′ exp(−L(f̂(D),D′))
.

We exponentiate both sides and take the expectation over D, which gives

ED

[
exp

(
−L(f̂(D),D)− logED′

[
exp(−L(f̂(D),D′))

]
− log |F|

)]
⩽ Ef∼πED

exp(−L(f̂(D),D))

ED′ exp
[
−L(f̂(D),D′)

∣∣D] .
Note that, conditioned on D, the samples in the tangent sequence D′ are independent, which leads to

ED′ exp
[
−L(f̂(D),D′)

∣∣D] = n∏
i=1

exp
(
E(xi,yi)∼Di

[−l(f, (xi, yi))]
)
.

As a result, we can peel off terms from n down to 1 and cancel out terms in the numerator. Hence,
we have

ED

[
− exp

(
L(f̂(D),D)− logED′

[
exp

(
−L(f̂(D),D′)

)]
− log |F|

)]
⩽ 1,

which concludes the proof.

Theorem 5. Assume |F| < ∞, f∗ ∈ F and ∥f(x, y)∥∞ ⩽ C, ∀f ∈ F . Then with probability at
least 1− δ, we have

n∑
i=1

Exi∼Di∥f∗ − f∥22 ⩽ C ′ log |F|/δ,

where C ′ only depends on C.

With Chernoff’s method, we have that

− logED′

[
exp

(
−L(f̂(D),D′)

)]
⩽ L(f̂(D),D) + log |F|+ log 1/δ.

Take

l(f, (xi, yi)) = 2(f∗(xi, yi)− f(xi, yi)) +
∑
y∈Y

(
f(xi, y)

2 − f∗(xi, y)
2
)
,

and

L(f,D) = ρ

 n∑
i=1

2(f∗(xi, yi)− f(xi, yi)) +

n∑
i=1

∑
y∈Y

(
f(xi, y)

2 − f∗(xi, y)
2
) ,

where ρ > 0 is a constant to determine later. As f̂(D) is obtained by minimizing L(f,D), and
f∗ ∈ F , we have L(f̂(D),D) ⩽ L(f∗,D) ⩽ 0. Furthermore, as D′ is the tangent sequence of D,
direct computation shows

− logED′

[
exp

(
−L(f̂(D),D′)

)]
⩽ log

|F|
δ

.
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We now relate the term − logED′

[
exp

(
−L(f̂(D),D′)

)]
with our target

∑n
i=1 Exi∼Di

∥f̂(xi, ·)−
f∗(xi, ·)∥22 using the method introduced in Zhang (2006).

Note that
∑

y∈Y f(x, y) = 1, as ∥f∥∞ ⩽ C, with a straightforward application of Hölder’s inequality,
we have that

∑
y∈Y f(x, y)2 ⩽ C. We then consider the term

Eyi∼f∗(xi,y)

[
l(f, (xi, yi))

2
]
+ Eyi∼f(xi,y)

[
l(f, (xi, yi))

2
]

=4
∑
y∈Y

[
(f(xi, y) + f∗(xi, y))(f(xi, y)− f∗(xi, y))

2
]
− 3

∑
y∈Y

(f∗(xi, y)
2 − f(xi, y)

2)

2

⩽
∑
y∈Y

(
(f(xi, y)− f∗(xi, y))

2
)8C + 3

∑
y∈Y

(f(xi, y) + f∗(xi, y))
2


⩽20C

∑
y∈Y

(
(f(xi, y)− f∗(xi, y))

2
)

=20CEyi∼f∗(x,y) [l(f, (xi, yi))] .

As Eyi∼f(xi)

[
l(f, (xi, yi))

2
]
⩾ 0, we can conclude that

Eyi∼f∗(xi,y)

[
l(f, (xi, yi))

2
]
⩽ (20CEyi∼f∗(x,y) [l(f, (xi, yi))] .

Furthermore, it is straightforward to see |l(f, (xi, yi))| ⩽ 3C. With the last bound in Proposition 1.2
in Zhang (2006), we have that

logED′

[
exp

(
−L(f̂(D),D′)

)]
=

n∑
i=1

logE(xi,yi)∼Di
[exp(−ρl(f, (xi, yi)))]

⩽− ρ

n∑
i=1

E(xi,yi)∼Di
[l(f, (xi, yi))] +

exp(3ρC)− 3ρC − 1

9C2
E(xi,yi)∼Di

[
l(f, (xi, yi))

2
]

⩽−
(
ρ− 20(exp(3ρC)− 3ρC − 1)

9C

) n∑
i=1

E(xi,yi)∼Di
∥f̂(xi, ·)− f∗(xi, ·)∥22.

As exp(x)− x− 1 ≈ 0.5x2 as x → 0, we know there exists sufficiently small ρ that only depends
on C, such that 9ρC > 20(exp(3ρC)− 3ρC − 1). Hence, we know that,

E(xi,yi)∼Di
∥f̂(xi, ·)− f∗(xi, ·)∥22 ⩽

9C

9ρC − 20(exp(3ρC)− 3ρC − 1)
log

|F|
δ

.

Compared with the MLE guarantee For discrete domain, as L2 norm is always bounded by L1

norm, our guarantee is weaker than the guarantee of MLE used in (Agarwal et al., 2020; Uehara
et al., 2022). However, for general cases, L1 and L2 does not imply each other, and hence we cannot
directly compare our theoretical guarantee with the MLE guarantee. Nevertheless, our method is
easier to optimize compared to the MLE, which makes it a preferable practical choice.

D.2 PAC BOUNDS FOR ONLINE REINFORCEMENT LEARNING

Before we start, we first state some basic properties of MDP that can be obtained from the definition
of the related terms. For the state visitation distribution, a straightforward computation shows that

dπP (s) = (1− γ)ρ(s) + γEs̃∼dπ
P ,ã∼π(·|s̃)P (s|s̃, ã).

Meanwhile, we have that

V π
P,r =

1

1− γ
Es∼dπ

P ,a∼π(·|s)[r(s, a)].
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For now, we assume P̂n(·, ·) is a valid probability measure, P ∈ F , and the following two inequalities
hold ∀n ∈ N+ with probability at least 1− δ:

Es∼ρn,a∼U(A)∥P̂n(·|s, a)− P (·|s, a)∥22 ⩽ζn

Es∼ρ′
n,a∼U(A)∥P̂n(·|s, a)− P (·|s, a)∥22 ⩽ζn

Proof Sketch Our proof is organized as follows:

• Based on Theorem 5, we prove a one-step back inequality for the learned model (Lemma 7),
which is further used to show the optimisticity, i.e., the policy planning on the learned model
with the additional bonus upper bound the optimal value up to some error term (Lemma 9).

• We then bound the cumulative regret of the adaptive chosen policy (Lemma 13) based on the
established optimisticity, and further exploit a one-step back inequality for the true model
(Lemma 10) and standard elliptical potential lemma (Lemma 20).

• With standard regret to PAC conversion, we obtain the final PAC guarantee (Theorem 14).

We first state the following basic property for the value function:
Lemma 6 (L2 norm of V π

P,r). For any policy π, we have that

∥V π
P,r∥2 ⩽

√
2d

(
1 +

dγ2

(1− γ)2

)
≲

d

1− γ

Proof. From the properties of low-rank MDP, we know there exists wπ, ∥wπ∥2 ⩽
√
d

1−γ and
Qπ

P,r(s, a) = ϕ∗(s, a)⊤wπ
h . Then we have

∥V π
P,r∥22 =

∫
S
V π(s)2 ds

=

∫
S

(∫
A
π(a|s)(r(s, a) + γQπ

P,r(s, a)) da

)2

ds

⩽
∫
S

(∫
A
r(s, a) + γQπ

P,r(s, a) da

)2

ds

⩽2

∫
S

[∫
A
r(s, a) da

]2
ds+ 2γ2

[∫
A
Qπ

P,r(s, a) da

]2
ds

⩽2d+
2dγ2

(1− γ)2

∫
S

[∫
A
∥ϕ∗(s, a)∥2 da

]2
ds

⩽2d

(
1 +

dγ2

(1− γ)2

)
≲

d2

(1− γ)2
,

which concludes the proof.

Before we proceed to the proof, we first define the following terms. Let ρn(s) = 1
n

∑n
i=1 d

πi

P∗(s).
With slightly abuse of notation, we also use ρn(s, a) =

1
n

∑n
i=1 d

πi

P∗(s, a), and use ρ′n to denote the
marginal distribution of s′ for the triple (s, a, s′) ∼ ρn(s)U(a)P ∗(s′|s, a). For notation simplicity,
we denote

Σρn×U(A),ϕ =nEs∼ρn,a∼U(A)

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λnI,

Σρn,ϕ =nE(s,a)∼ρn

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λnI,

Σ̂n,ϕ =nE(s,a)∼Dn

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λnI.

The following lemmas will be helpful when we demonstrate the effectiveness of our bonus:
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Lemma 7 (One-step back inequality for the learned model). Assume g : S ×A → R satisfies that
∥g∥∞ ⩽ B∞,

∥∥∫
A g(·, a) da

∥∥
2
⩽ B2, then we have that∣∣∣E(s,a)∼dπ

P̂n

{g(s, a)}
∣∣∣ ⩽√(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}

+ γ
√

n|A|Es∼ρ′
n,a∼U(A) {g2(s, a)}+B2

2nζn + λnB2
∞d · E(s̃,ã)∼dπ

P̂n

[∥∥∥ϕ̂n(s̃, ã)
∥∥∥
Σ−1

ρn×U,ϕ̂n

]
.

Proof. Note that

E(s,a)∼dπ
P̂n

{g(s, a)} = γE(s̃,ã)∼dπ
P̂n

,s∼P̂n(·|s̃,ã),a∼π(·|s){g(s, a)}+ (1− γ)Es∼ρ,a∼π(·|s){g(s, a)}.

For the second term, note that dπP (s) ⩾ (1− γ)ρ(s), hence

(1− γ)Es∼ρ,a∼π(·|s){g(s, a)}

⩽(1− γ)
√
Es∼ρ,a∼π(·|s){g2(s, a)}

=(1− γ)

√
Es∼ρn,a∼U(A)

{
ρ(s)π(a|s)|A|

ρn(s)
g2(s, a)

}
⩽
√
(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}.

For the first term, we have that

E(s̃,ã)∼dπ
P̂n

,s∼P̂n(·|s̃,ã),a∼π(·|s){g(s, a)}

=E(s̃,ã)∼dπ
P̂n

ϕ̂n(s̃, ã)
⊤
[∫

S×A
µ̂n(s)π(a|s)g(s, a) dsda

]
⩽E(s̃,ã)∼dπ

P̂n

∥∥∥ϕ̂n(s̃, ã)
∥∥∥
Σ−1

ρn×U,ϕ̂n

∥∥∥∥∫
S×A

µ̂n(s)π(a|s)g(s, a) dsda
∥∥∥∥
Σ

ρn×U,ϕ̂n

,

where for the inequality we use the generalized Cauchy-Schwartz inequality. Note∥∥∥∥∫
S×A

µ̂n(s)π(a|s)g(s, a) dsda
∥∥∥∥2
Σ

ρn×U,ϕ̂n

=nEs̃∼ρn,ã∼U(A)

[(∫
S×A

P̂n(s|s̃, ã)π(a|s)g(s, a) dsda
)2
]
+ λn

∥∥∥∥∫
S×A

µ̂n(s)π(a|s)g(s, a) dsda
∥∥∥∥2

⩽2nEs̃∼ρn,ã∼U(A)

[(∫
S×A

P (s|s̃, ã)π(a|s)g(s, a) dsda
)2
]

+ 2nEs̃∼ρn,ã∼U(A)

[(∫
S×A

(P̂n(s|s̃, ã)− P (s|s̃, ã))π(a|s)g(s, a) dsda
)2
]
+ λnB

2
∞d.

With Jensen’s inequality, we have

Es̃∼ρn,ã∼U(A)

[(∫
S×A

P (s|s̃, ã)π(a|s)g(s, a) dsda
)2
]

⩽Es̃∼ρn,ã∼U(A),s∼P (·|s̃,ã),a∼π(·|s)
{
g2(s, a)

}
=Es∼ρ′

n,a∼π(·|s)
{
g2(s, a)

}
⩽|A|Es∼ρ′

n,a∼U(A)

{
g2(s, a)

}
Meanwhile,

Es̃∼ρn,ã∼U(A)

[(∫
S×A

(P̂n(s|s̃, ã)− P (s|s̃, ã))π(a|s)g(s, a) dsda
)2
]

20



Published as a conference paper at ICLR 2023

⩽Es̃∼ρn,ã∼U(A)

[∥∥∥P̂n(·|s̃, ã)− P (·|s̃, ã)
∥∥∥2
2

∥∥∥∥∫
A
π(a|·)g(·, a) da

∥∥∥∥2
2

]

⩽Es̃∼ρn,ã∼U(A)

[∥∥∥P̂n(·|s̃, ã)− P (·|s̃, ã)
∥∥∥2
2

∥∥∥∥∫
A
g(·, a) da

∥∥∥∥2
2

]
⩽B2

2ζn,

where the last inequality is due to Theorem 5. Substitute back, we obtain the desired result.

Lemma 8 (Concentration of the bonus term). Let λn = Θ(d log(n|F|/δ)), and define:

Σρn×U,ϕ =nEs∼ρn,a∼U(A)ϕ(s, a)ϕ(s, a)
⊤ + λnI,

Σ̂n,ϕ =
∑
i∈[n]

ϕ(si, ai)ϕ(si, ai)
⊤ + λnI.

Then there exists absolute constant c1 and c2, such that

∀n ∈ N+,∀ϕ ∈ Φ, c1∥ϕ(s, a)∥Σ−1
ρn×U,ϕ

⩽ ∥ϕ(s, a)∥Σ̂−1
n,ϕ

⩽ c2∥ϕ(s, a)∥Σ−1
ρn×U,ϕ

which holds with probability at least 1− δ.

Proof. See (Uehara et al., 2022, Lemma 11).

With these lemmas, we are now ready to show the optimism.
Lemma 9 (Optimism). Let

αn =Θ

(
d
√
|A|nζn
1− γ

)
,

λn =Θ(d log(n|F|/δ)) ,
then for any policy π we have

V π
P̂n,r+bn

⩾ V π
P,r −

√√√√2|A|d
(
1 + γ2d

(1−γ)2

)
ζn

(1− γ)
.

Proof. With the simulation lemma (i.e., Lemma 19), we have that

V π
P̂n,r+bn

− V π
P,r

=
1

1− γ
E(s,a)∼dπ

P̂n

[
bn(s, a) + γEP̂n(s′|s,a)

[
V π
P,r(s

′)
]
− γEP (s′|s,a)

[
V π
P,r(s

′)
]]

.

Consider the function g on S ×A defined as follows:

g(s, a) :=
∣∣∣EP (s′|s,a)

[
V π
P,r(s

′)
]
− EP̂n(s′|s,a)

[
V π
P,r(s

′)
]∣∣∣ .

With Hölder’s inequality, we have that ∥g∥∞ ⩽ 2
1−γ . Furthermore, as

g(s, a) ⩽ϕ∗(s, a)⊤
∫
S
µ∗(s′)V π

P,r(s
′) ds′ + ϕ̂n(s, a)

⊤
∫
S
µ̂⊤
n (s

′)V π
P,r,h+1(s

′) ds′

⩽ ∥ϕ∗(s, a)∥
∥∥∥∥∫

S
µ∗(s′)V π

P,r(s
′) ds′

∥∥∥∥+ ∥∥∥ϕ̂n(s, a)
∥∥∥∥∥∥∥∫

S
µ̂⊤
n (s

′)V π
P,r(s

′) ds′
∥∥∥∥

⩽

√
d

1− γ

(
∥ϕ∗(s, a)∥+

∥∥∥ϕ̂n(s, a)
∥∥∥)

where the first inequality is due to the triangle inequality; the second inequality is from the Cauchy-
Schwartz inequality; and the last inequality comes from the fact that ∥V π

P,r∥∞ ⩽ 1
1−γ . Thus, we

have ∥∥∥∥∫
A
g(·, a) da

∥∥∥∥2
2

=

∫
S

(∫
A
g(s, a) da

)2

ds
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⩽
d

(1− γ)2

∫
S

(∫
A
∥ϕ∗(s, a)∥ da+

∫
A
∥ϕ̂n(s, a)∥ da

)2

ds

⩽
4d2

(1− γ)2
,

where the last inequality is due to Assumption 2 and the fact that (a+ b)2 ⩽ 2(a2 + b2). Invoking
Lemma 7, we have that

E(s,a)∼dπ
P̂n

{g(s, a)} ⩽
√
(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}

+ γ

√
n|A|Es∼ρ′

n,a∼U(A) {g2(s, a)}+
4d2

(1− γ)2
nζn +

4λnd

(1− γ)2
· E(s̃,ã)∼dπ

P̂n

[∥∥∥ϕ̂n(s̃, ã)
∥∥∥
Σ−1

ρn×U,ϕ̂n

]
.

Note that

Es∼ρn,a∼U(A){g2(s, a)}

=Es∼ρn,a∼U(A)

(∫
S

(
P (s′|s, a)− P̂n(s

′|s, a)
)
V π
P,r(s

′) ds′
)2

⩽Es∼ρn,a∼U(A)

∥∥∥P (·|s, a)− P̂n(·|s, a)
∥∥∥2
2

∥∥V π
P,r

∥∥2
2

⩽2d

(
1 +

dγ2

(1− γ)2

)
ζn,

where the first inequality is due to the Hölder’s inequality and the last inequality is due to Lemma 6.
With the selected hyperparameters and Lemma 8, we conclude the proof.

To further provide the regret bound, we need the following analog of Lemma 7. Note that, here we
don’t require ρ′n.

Lemma 10 (One-step back inequality for the true model). Assume g : S × A → R satisfies that
∥g∥∞ ⩽ B∞, then we have that∣∣∣E(s,a)∼dπn

P
{g(s, a)}

∣∣∣ ⩽√(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}

+
√
nγ|A|Es∼ρn,a∼U(A) {g2(s, a)}+ λnγ2B2

∞d · E(s̃,ã)∼dπn
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρn,ϕ∗

]
.

Proof. Note that

E(s,a)∼dπn
P

{g(s, a)}
=γE(s̃,ã)∼dπn

P ,s∼P (·|s̃,ã),a∼π(·|s){g(s, a)}+ (1− γ)Es∼ρ,a∼π(·|s){g(s, a)}.

For the second term, note that dπP (s) ⩾ (1− γ)ρ(s), hence

(1− γ)Es∼ρ,a∼π(·|s){g(s, a)}

⩽(1− γ)
√
Es∼ρ,a∼π(·|s){g2(s, a)}

=(1− γ)

√
Es∼ρn,a∼U(A)

{
ρ(s)π(a|s)|A|

ρn(s)
g2(s, a)

}
⩽
√
(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}.

For the first term, we have that

E(s̃,ã)∼dπn
P ,s∼P (·|s̃,ã),a∼π(·|s){g(s, a)}

=E(s̃,ã)∼dπn
P

ϕ∗(s̃, ã)⊤
[∫

S×A
µ∗(s)π(a|s)g(s, a) dsda

]
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⩽E(s̃,ã)∼dπn
P

∥ϕ∗(s̃, ã)∥Σ−1
ρn,ϕ∗

∥∥∥∥∫
S×A

µ∗(s)π(a|s)g(s, a) dsda
∥∥∥∥
Σρn,ϕ∗

,

where for the inequality we use the generalized Cauchy-Schwartz inequality. Note∥∥∥∥∫
S×A

µ∗(s)π(a|s)g(s, a) dsda
∥∥∥∥2
Σρn,ϕ∗

=nE(s̃,ã)∼ρn

[(∫
S×A

P (s|s̃, ã)π(a|s)g(s, a) dsda
)2
]
+ λn

∥∥∥∥∫
S×A

µ∗(s)π(a|s)g(s, a) dsda
∥∥∥∥2

⩽nE(s̃,ã)∼ρn,s∼P (·|s,a),a∼π(·|s){g2(s, a)}+ λnB
2
∞d,

where in the last inequality we use Jensen’s inequality. Note that

E(s̃,ã)∼ρn,s∼P (·|s,a),a∼π(·|s){g2(s, a)}

⩽
1

γ
E(s̃,ã)∼ρn,s∼P∗(·|s,a),a∼π(·|s){g2(s, a)}

⩽
|A|
γ

Es∼ρn,a∼U(A){g2(s, a)}

Substituting this back, we obtain the desired result.

We also need the following properties on the bonus and the value function when we plan on the
learned model with the bonus.
Lemma 11 (Norm of the Bonus). We have that

∥bn(s, a)∥∞ ⩽
αn√
λn

≲

√
d|A|

1− γ
,

∥∥∥∥∫
A
bn(·, a) da

∥∥∥∥ ⩽
αn

√
d√

λn

≲
d
√
|A|

1− γ
.

Proof. Note that, Σ̂n,ϕ̂n
≳ λnI , and as a result, we have

∥∥∥Σ̂−1

n,ϕ̂n

∥∥∥
op

⩽ 1
λn

. Recall bn(s, a) =

αn

∥∥∥ϕ̂n(s, a)
∥∥∥
Σ̂−1

n,ϕ̂n

, we know

b2n(s, a) = α2
nϕ̂n(s, a)Σ̂

−1

n,ϕ̂n
ϕ̂n(s, a) ⩽

α2
n∥ϕ̂n(s, a)∥22

λn
⩽

α2
n

λn
,

as well as ∥∥∥∥∫
A
bn(·, a) da

∥∥∥∥2
=α2

n

∥∥∥∥∫
A
∥ϕ̂n(·, a)∥Σ̂−1

n ,ϕ̂n
da

∥∥∥∥2
=α2

n

∫
S

(∫
A
∥ϕ̂n(·, a)∥Σ̂−1

n ,ϕ̂n
da

)2

ds

⩽
α2
n

λn

∫
S

(∫
A
∥ϕ̂n(s, a)∥ da

)2

ds

⩽
α2
nd

λn
,

Combined with the fact that αn√
λn

= Θ

(√
d|A|

1−γ

)
, we conclude the proof.

Lemma 12 (L2 norm of V π
P̂n,r+bn

). For any policy π, we have that

∥∥∥V π
P̂n,r+bn

∥∥∥ ⩽

√√√√
3d+

3α2
nd

λn
+

3d2γ2
(
1 + αn√

λn

)2
(1− γ)2

≲
d1.5

√
|A|

(1− γ)2
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Proof. We have∥∥∥V π
P̂n,r+bn

∥∥∥2
=

∫
S

(
V π
P̂n,r+bn

(s)
)2

ds

=

∫
S

(∫
A
π(a|s)

(
r(s, a) + bn(s, a) + γQπ

P̂n,r+bn
(s, a)

)
da

)2

ds

⩽
∫
S

(∫
A

(
r(s, a) + bn(s, a) + γQπ

P̂n,r+bn
(s, a)

)
da

)2

ds

⩽3

∫
S

(∫
A
[r(s, a)]

2
da

)
ds+ 3

∫
S

∫
A

[
αn

∥∥∥ϕ̂n(s, a)
∥∥∥
Σ−1

ρn,ϕ̂n

da

]2
da

 ds

+ 3γ2

∫
S

(∫
A

[
Qπ

P̂n,r+bn
(s, a)

]2
da

)2

ds

⩽3d+
3α2

nd

λn
+

3d2γ2
(
1 + αn√

λn

)2
(1− γ)2

≲
d3|A|

(1− γ)4
,

which concludes the proof.

Now we are ready to prove the following regret bounds and obtain the final PAC guarantee.

Lemma 13 (Regret). With probability at least 1− δ, we have that

N∑
n=1

V π∗

P,r − V πn

P,r ≲

√
Nd4|A|2 log(N |F|/δ)

(1− γ)6
log

(
1 +

N

d2 log(N |F|/δ)

)
.

Proof. Standard decomposition shows

V π∗

P,r − V πn

P,r

⩽V π∗

P̂n,r+bn
+

√√√√2|A|d
(
1 + γ2d

(1−γ)2

)
ζn

(1− γ)
− V πn

P,r

⩽V πn

P̂n,r+bn
− V πn

P,r +

√√√√2|A|d
(
1 + γ2d

(1−γ)2

)
ζn

(1− γ)

⩽
1

1− γ
E(s,a)∼dπn

P

[
bn(s, a) + γEP̂n(s′|s,a)[V

πn

P̂n,r+bn
(s′)]− γEP (s′|s,a)[V

πn

P̂n,r+bn
(s′)]

]

+

√√√√2|A|d
(
1 + γ2d

(1−γ)2

)
ζn

(1− γ)
.

Applying Lemma 10 to E(s,a)∼dπn
P

{bn(s, a)}, we have that

E(s,a)∼dπn
P

{bn(s, a)}

⩽
√
(1− γ)|A|Es∼ρn,a∼U(A){b2n(s, a)}

+
√
nγ|A|Es∼ρn,a∼U(A){b2n(s, a)}+ γ2α2

ndE(s̃,ã)∼dπn
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρn,ϕ∗

]
.
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Note that

Es∼ρn,a∼U(A)

∥∥∥ϕ̂n(s, a)
∥∥∥2
Σ−1

ρn,ϕ̂n

=Es∼ρn,a∼U(A)

[
ϕ̂n(s, a)

⊤Σ−1

ρn,ϕ̂n
ϕ̂n(s, a)

]
=Tr

(
Es∼ρn,a∼U(A)

[
ϕ̂n(s, a)ϕ̂n(s, a)

⊤
] (

nEs∼ρn,a∼U(A)

[
ϕ̂n(s, a)ϕ̂n(s, a)

⊤
]
+ λnI

)−1
)

⩽
d

n
,

hence, with the concentration of the bonus, we have

E(s,a)∼dπn
P

{bn(s, a)} ≲

√
(1− γ)α2

nd|A|
n

+
√
γα2

nd|A|+ γ2α2
nd · E(s̃,ã)∼dπn

P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρn,ϕ∗

]
.

We then consider the remaining term. With a slightly abuse of notation, define g(s, a) :=∣∣∣EP̂n(s′|s,a)V
πn

P̂n,r+bn
(s′)− EP (s′|s,a)V

πn

P̂n,r+bn
(s′)
∣∣∣. With Hölder’s inequality, we know that

∥g(s, a)∥∞ ⩽ 2
∥∥∥V πn

P̂n,r+bn

∥∥∥
∞

⩽
2

(
1+ αn√

λn

)
1−γ ≲

√
d|A|

(1−γ)2 . Applying Lemma 10 to

E(s,a)∼dπn
P

{g(s, a)}, we have that

E(s,a)∼dπn
P

{g(s, a)}

⩽
√
(1− γ)|A|Es∼ρn,a∼U(A){g2(s, a)}

+

√
nγ|A|Es∼ρn,a∼U(A){g2(s, a)}+

4γ2d
(√

λn + αn

)2
(1− γ)2

E(s̃,ã)∼dπn
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρn,ϕ∗

]
.

Note that

Es∼ρn,a∼U(A){g2(s, a)}

=Es∼ρn,a∼U(A)

[(∫
S

(
P̂n(s

′|s, a)− P (s′|s, a)
)
V πn

P̂n,r+bn
(s′)

)2
]

⩽Es∼ρn,a∼U(A)

[∥∥∥P̂n(·|s, a)− P (·|s, a)
∥∥∥2 ∥∥∥V πn

P̂n,r+bn

∥∥∥2]

⩽3d

1 +
α2
n

λn
+

dγ2
(
1 + αn√

λn

)2
(1− γ)2

 ζn ≲
d3|A|ζn
(1− γ)4

Hence,

E(s,a)∼dπn
P

{g(s, a)} ≲
√

(1− γ)d3|A|2ζn

+

√
d3|A|2nζn
(1− γ)4

+
d3|A|nζn
(1− γ)4

E(s̃,ã)∼dπn
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρn,ϕ∗

]
.

Finally, with Lemma 20 and notice that λ1 ⩽ λ2 ⩽ · · · ⩽ λN , we have that

N∑
n=1

E(s̃,ã)∼dπn
P

∥ϕ∗(s̃, ã)∥Σ−1
ρn,ϕ∗

⩽

√
NTr

((
E(s̃,ã)∼dπn

P
ϕ∗(s̃, ã) (ϕ∗(s̃, ã))

⊤
)
Σ−1

ρn,ϕ∗

)
⩽

√
Nd log

λN +N

λ1

25



Published as a conference paper at ICLR 2023

Combine the previous terms and take the dominating terms out, we have that

N∑
n=1

V π∗

P,r − V πn

P,r ≲

√
Nd4|A|2 log(N |F|/δ)

(1− γ)6
log

(
1 +

N

d2 log(N |F|/δ)

)
,

which concludes the proof.

Theorem 14 (PAC Guarantee). After interacting with the environments for N = Θ̃
(

d4|A|2
(1−γ)6ϵ2

)
episodes, we can obtain an ϵ-optimal policy with high probability. Furthermore, with high probability,
for each episode, we can terminate within Θ̃(1/(1− γ)) steps.

Proof. It directly follows from the standard regret to PAC reduction. See Jin et al. (2018); Uehara
et al. (2022) for the detail.

D.3 PAC BOUNDS FOR OFFLINE REINFORCEMENT LEARNING

Proof Sketch Similar to the online counterpart, our proof for offline setting is organized as follows:

• We show the policy obtained by planning on the learned model with additional penalty lower
bound the optimal value up to some error term (Lemma 16), with the help of an analog of
the one-step back inequality for the learned model in the offline setting (Lemma 15) based
on Theorem 5.

• We then show the PAC guarantee (Theorem 18) with an analog of the one-step back inequality
for the true model in the offline setting (Lemma 17).

We first prove the analog of Lemma 7 in the offline setting.
Lemma 15 (One-step back inequality for the learned model in the offline setting). Let ω =
maxs,a{1/πb(a|s)}. Assume g : S × A → R satisfies that ∥g∥∞ ⩽ B∞, ∥

∫
A g(·, a) da∥2 ⩽ B2,

then we have that∣∣∣E(s,a)∼dπ
P̂
{g(s, a)}

∣∣∣ ⩽√(1− γ)ωE(s,a)∼ρb
{g2(s, a)}

+ γ
√

nωE(s,a)∼ρb
{g2(s, a)}+B2

2nζn + λnB2
∞d · Es̃,ã∼dπ

P̂

[∥∥∥ϕ̂(s̃, ã)∥∥∥
Σ−1

ρb,ϕ

]
.

Proof. Note that

E(s,a)∼dπ
P̂
{g(s, a)} = γE(s̃,ã)∼dπ

P̂
,s∼P̂ (·|s̃,ã),a∼π(·|s){g(s, a)}+ (1− γ)Es∼ρ,a∼π(·|s){g(s, a)}.

For the second term, we have that

(1− γ)Es∼ρ,a∼π(·|s){g(s, a)}

⩽(1− γ)
√
Es∼ρ,a∼π(·|s){g2(s, a)}

=(1− γ)

√
Es∼ρb,a∼πb(·|s)

{
ρ(s)π(a|s)
ρb(s)π(a|s)

g2(s, a)

}
⩽
√
ω(1− γ)|A|Es∼ρb,a∼πb(·|s)g

2(s, a).

For the first term, we have that

E(s̃,ã)∼dπ
P̂
,s∼P̂ (·|s̃,ã),a∼π(·|s){g(s, a)}

=E(s̃,ã)∼dπ
P̂
ϕ̂(s̃, ã)⊤

[∫
S×A

µ̂(s)π(a|s)g(s, a)
]

⩽E(s̃,ã)∼dπ
P̂

∥∥∥ϕ̂(s̃, ã)∥∥∥
Σ−1

ρb,ϕ̂

∥∥∥∥∫
S×A

µ̂(s)π(a|s)g(s, a) dsda
∥∥∥∥
Σ

ρb,ϕ̂

.
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Note that∥∥∥∥∫
S×A

µ̂(s)π(a|s)g(s, a) dsda
∥∥∥∥2
Σ

ρb,ϕ̂

=nE(s̃,ã)∼ρb

[(∫
S×A

P̂n(s|s̃, ã)π(a|s)g(s, a) dsda
)2
]
+ λ

∥∥∥∥∫
S×A

µ̂(s)π(a|s)g(s, a)
∥∥∥∥2

⩽2nE(s̃,ã)∼ρb

[(∫
S×A

P (s|s̃, ã)π(a|s)g(s, a) dsda
)2
]

+ 2nE(s̃,ã)∼ρb

[(∫
S×A

(
P̂ (s|s̃, ã)− P (s|s̃, ã)

)
π(a|s)g(s, a) dsda

)2
]
+ λB2

∞d.

With Jensen’s inequality, we have

E(s̃,ã)∼ρb

[(∫
S×A

P (s|s̃, ã)π(a|s)g(s, a) dsda
)2
]

⩽E(s̃,ã)∼ρb,s∼P (·|s,a),a∼π(·|s){g2(s, a)}

⩽
ω

γ
E(s,a)∼ρb

{g2(s, a)}.

On the other hand,

E(s̃,ã)∼ρb

[(∫
S×A

(
P̂ (s|s̃, ã)− P (s|s̃, ã)

)
π(a|s)g(s, a) dsda

)2
]

⩽E(s̃,ã)∼ρb

[∥∥∥P̂ (·|s̃, ã)− P (·|s̃, ã)
∥∥∥2
2

∥∥∥∥∫
A
π(a|·)g(·, a) da

∥∥∥∥2
2

]

⩽E(s̃,ã)∼ρb

[∥∥∥P̂ (·|s̃, ã)− P (·|s̃, ã)
∥∥∥2
2

∥∥∥∥∫
A
g(·, a) da

∥∥∥∥2
2

]
⩽B2

2ζn,

where the last inequality is due to Theorem 5. Substituting this back, we obtain the desired result.

Lemma 16 (Pessimism). Let ω = maxs,a{πb(a|s)},

αn =Θ

(
d
√
ωζn

1− γ

)
,

λ =Θ(d log(|F|/δ)),
then we have

V π
P̂ ,r−b

⩽ V π
P,r +

√√√√2ωd
(
1 + γ2d

(1−γ)2

)
ζn

(1− γ)
.

Proof. With the simulation Lemma (i.e., Lemma 19), we have

V π
P̂n,r−b

− V π
P,r

=
1

1− γ
E(s,a)∼dπ

P̂n

[
−b(s, a) + γ

[
EP̂n(s′|s,a)

[
V π
P,r(s

′)
]
− EP (s′|s,a)

[
V π
P,r(s

′)
]]]

.

Consider g(s, a) :=
∣∣∣[EP̂n(s′|s,a)

[
V π
P,r(s

′)
]
− EP (s′|s,a)

[
V π
P,r(s

′)
]]∣∣∣. With Hölder’s inequal-

ity, ∥g∥∞ ⩽ 2
1−γ . Furthermore, with the derivation in the proof of Lemma 9, we know∥∥∫

A g(·, a) da
∥∥
2
⩽

√
2d

1−γ . Applying Lemma 15, we have that

E(s,a)∼dπ
P̂
{g(s, a)} ⩽

√
(1− γ)ωE(s,a)∼ρb

{g2(s, a)}
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+ γ

√
nωE(s,a)∼ρb

{g2(s, a)}+ 2d2

(1− γ)2
log(|F|/δ) + 4λnd

(1− γ)2
· E(s̃,ã)∼dπ

P̂

[∥∥∥ϕ̂(s̃, ã)∥∥∥
Σ−1

ρb,ϕ̂

]
.

With Lemma 6, we know

E(s,a)∼ρb
{g2(s, a)} ⩽ 2d(1 +

dγ2

(1− γ)2
)ζn.

Then, with the selected hyperparameters and Lemma 8, we conclude the proof.

Lemma 17 (One-step back inequality for the true model in the offline setting). Let ω =
maxs,a{πb(a|s)}, assume g : S ×A → R satisfies ∥g∥∞ ⩽ B∞, then we have∣∣∣E(s,a)∼dπ

P
{g(s, a)}

∣∣∣ ⩽√(1− γ)ωE(s,a)∼ρb
{g2(s, a)}

+
√
nγωE(s,a)∼ρb

{g2(s, a)}+ λγ2B2
∞d · E(s̃,ã)∼dπ

P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρb,σ
∗

]
.

Proof. The proof is identical to the proof of Lemma 7.

We now provide the PAC guarantee for the offline setting.
Theorem 18 (PAC Guarantee). With probability 1−δ, ∀ baseline policy π including history-dependent
non-Markovian policies, we have that

V π
P,r − V π̂

P,r ≲

√
ω2d4C∗

π log(|F|/δ)
(1− γ)6

,

where C∗
π is the relative conditional number under ϕ∗, defined as

C∗
π := sup

x∈Rd

x⊤E(s,a)∼dπ
P
[ϕ∗(s, a)ϕ∗(s, a)⊤]x

x⊤E(s,a)∼ρb
[ϕ∗(s, a)ϕ∗(s, a)⊤]x

.

Proof. Standard decomposition shows

V π
P,r − V π̂

P,r

⩽V π
P,r − V π̂

P̂ ,r−b
+

√√√√2ωd
(
1 + γ2d

(1−γ2)

)
ζn)

(1− γ)

⩽V π
P,r − V π

P̂ ,r−b
+

√√√√2ωd
(
1 + γ2d

(1−γ2)

)
ζn

(1− γ)

=E(s,a)∼dπ
P

[
b(s, a) + γEP (s′|s,a)

[
V π
P̂ ,r−b

(s′)
]
− γEP̂ (s′|s,a)

[
V π
P̂ ,r−b

(s′)
]]

+

√√√√2ωd
(
1 + γ2d

(1−γ2)

)
ζn

(1− γ)
.

With Lemma 17 and the identical method used in the proof of Lemma 13, we have that

E(s,a)∼dπ
P
{bn(s, a)} ⩽

√
(1− γ)α2

ndω

n
+
√
γα2

ndω + γ2α2
nd · E(s̃,ã)∼dπ

P

[
∥ϕ∗(s̃, ã)∥Σρb

,ϕ∗

]
.

Furthermore, define g(s, a) :=
∣∣∣EP̂n(s′|s,a)V

πn

P̂n,r+bn
(s′)− EP (s′|s,a)V

πn

P̂n,r+bn
(s′)
∣∣∣. With Lemma 17

and the identical method used in the proof of Lemma 13, we can obtain

E(s,a)∼dπ
P {g(s,a)} ≲

√
(1− γ)d3ω2ζn +

√
d3ω2nζn
(1− γ)4

E(s̃,ã)∼dπ
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρb,ϕ
∗

]
.
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Finally, by the definition of C∗, we have that

E(s̃,ã)∼dπ
P

[
∥ϕ∗(s̃, ã)∥Σ−1

ρb,ϕ
∗

]
⩽

√
E(s̃,ã)∼dπ

P

[
∥ϕ∗(s̃, ã)∥2

Σ−1
ρb,ϕ

∗

]

⩽

√
C∗E(s̃,ã)∼ρb

[
∥ϕ∗(s̃, ã)∥Σ−1

ρb,ϕ
∗

]
⩽

√
C∗d

n
.

Combining the previous terms and taking the dominating terms out, we conclude the proof.

E TECHNICAL LEMMAS

Lemma 19 (Simulation Lemma). With a slightly abuse of notation, we have

V π
P̂n,r+b

− V π
P,r =

1

1− γ
E(s,a)∼dπ

P

[
b(s, a) + γ

[
EP̂n(s′|s,a)[V

π
P̂n,r+b

(s′)]− EP (s′|s,a)[V
π
P̂n,r+b

(s′)]
]]

,

V π
P̂n,r+b

− V π
P,r =

1

1− γ
E(s,a)∼dπ

P̂n

[
b(s, a) + γ

[
EP̂n(s′|s,a)[V

π
P,r(s

′)]− EP (s′|s,a)[V
π
P,r(s

′)]
]]

.

Proof. Note that

Es∼dπ
P ,a∼π(·|s)[f(s, a)]

=(1− γ)Es∼ρ,a∼π(·|s)[f(s, a)] + γEs̃∼dπ
P ,ã∼π(·|s̃),s∼P (·|s̃,ã),ã∼π(·|s̃)[f(s, a)].

Take f = Qπ
P̂n,r+b

, we have that

V π
P̂n,r+b

=Es∼ρ,a∼π(·|s)

[
Qπ

P̂n,r+b
(s, a)

]
=

1

1− γ

(
Es∼dπ

P ,a∼π(·|s)

[
Qπ

P̂n,r+b
(s, a)

]
− γEs̃∼dπ

P ,ã∼π(·|s̃),s∼P (·|s̃,ã),ã∼π(·|s̃)

[
Qπ

P̂n,r+b
(s, a)

])
=

1

1− γ
Es∼dπ

P ,a∼π(·|s)

[
Qπ

P̂n,r+b
(s, a)− γEs′∼P (·|s,a),a′∼π(·|s′)

[
Qπ

P̂n,r+b
(s′, a′)

]]
.

Substitute back, we have that

V π
P̂n,r+b

− V π
P,r

=
1

1− γ
Es∼dπ

P ,a∼π(·|s)

[
Qπ

P̂n,r+b
(s, a)− γEs′∼P (·|s,a),a′∼π(·|s′)

[
Qπ

P̂n,r+b
(s′, a′)

]
− r(s, a)

]
=

1

1− γ
Es∼dπ

P ,a∼π(·|s)

[
b(s, a) + γ

[
Es′∼P̂n(·|s,a)[V

π
P̂ ,r+b

(s′)]− Es′∼P (·|s,a)[V
π
P̂n,r+b

(s′)]
]]

.

The second equation can be obtained with a similar method, which concludes the proof.

Lemma 20 (Elliptical Potential Lemma). Let M0 = λId×d, Mn = Mn−1 + Gn where Gn is a
symmetric positive definite matrix with ∥Gn∥op ⩽ c, then we have that

N∑
n=1

Tr(GnM
−1
n ) ⩽ log det(MN )− 2d log λ ⩽ d log

(
1 +

Nc

λ

)
.

Proof. By the concavity of log det(·) function and d log det(X)
dX = (X⊤)−1, we know

log det(Mn−1) ⩽ log det(Mn) + Tr(M−1
n (Mn−1 −Mn))

= log det(Mn)− Tr(M−1
n Gn).

Telescoping, we can obtain the first inequality. For the second inequality, note that, with Jensen’s
inequality, we have

log det(Mn) =

d∑
i=1

log σi ⩽ d log
Tr(Mn)

d
⩽ d log(λ+Nc)

where σi is the i-th eigenvalue of Mn.
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F EXPERIMENT DETAILS

F.1 ONLINE SETTING

We list all the hyperparameter and network architecture we use for our experiments. For online
MuJoCo and DM Control tasks, the hyperparameters can be found at Table 4. Therefore, we set
bonus scaling term to 0 for MuJoCo tasks. However, this bonus is critical to the success of DM
Control Suite (especially sparse reward environments). Note that we use exactly the same actor and
critic network architecture for all the algorithms in the DM Control Suite experiment.

For evaluation in Mujoco, in each evaluation (every 5K steps) we test our algorithm for 10 episodes.
We average the results over the last 4 evaluations and 4 random seeds. For Dreamer and Proto-RL,
we change their network from CNN to 3-layer MLP and disable the image data augmentation part
(since we test on the state space). We tried to tune some of their hyperparameter (e.g., exploration
steps in Proto-RL) and report the best number across our runs. However, due to the short time, it is
also possible that we didn’t tune the hyperparameter enough.

Table 4: Hyperparameters used for SPEDER in all the environments in MuJoCo and DM Control
Suite.

Hyperparameter Value

C 1.0
regularization coef 1.0
Bonus Coefficient (MuJoCo) 0.0
Bonus Coefficient (DM Control) 5.0
Actor lr 0.0003
Model lr 0.0003
Actor Network Size (MuJoCo) (256, 256)
Actor Network Size (DM Control) (1024, 1024)
SVD Embedding Network Size (MuJoCo) (1024, 1024, 1024)
SVD Embedding Network Size (DM Control) (1024, 1024, 1024)
Critic Network Size (MuJoCo) (1024, 1)
Critic Network Size (DM Control) (1024, 1)
Discount 0.99
Target Update Tau 0.005
Model Update Tau 0.005
Batch Size 256

F.2 PERFORMANCE CURVES

We provide the performance curves for online DM Control Suite experiments in figure 1. As
we can see in the figures, the proposed SPEDER converges faster and achieve the state-of-the-art
performances in most of the environments, demonstrating the sample efficiency and the ability to
balance of exploration vs. exploitation of SPEDER.

F.3 TRANSITION ESTIMATION VIA SPECTRAL DECOMPOSITION

Figure 2: Estimated Transition via
SPEDER.

We show that the SPEDER objective can learn valid tran-
sitions of the environment. We use a empty-room maze
environment, where the state is the position of the agent
and the action is the velocity. The transition can be ex-
pressed as s′ = s+ at+ ϵ, where t is a fixed time interval
and ϵ ∼ N (0, I). We run SPEDER for 100K steps and
the learned transition heatmap is visualized in Figure 2.
The blue region is the heatmap estimation via spectral de-
composition and S1 is the target position of the agent. The
high density region is centered around the red dot (target
position S1), which means the representation learned by our objective captures the environment
transition. This shows the spectral decomposition can learn a good transition function.

F.4 IMITATION LEARNING
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Figure 3: AntMaze navigation domains
in mazes of medium (left) and large
(right) sizes.

For all methods, we use latent behavioral cloning as de-
scribed in Section 3.2 to pre-train representations on a sub-
optimal dataset Doff, then finetune on the expert dataset
Dπ∗

for downstream imitation learning. We also compare
with baseline behavioral cloning (BC) (Pomerleau, 1998),
which directly learns a policy from the expert dataset
(without latent representations) by maximizing the log-
likelihood objective, E(s,a)∼Pr(Dπ∗ ) [− log π(a | s)].
We report the average return on AntMaze tasks, and ob-
serve that SPEDER achieves comparable performance as other state-of-the-art representations on
downstream imitation learning (Figure 4). We also observe that the normalized marginalization
regularization equation 11 helps performance (Figure 5). We provide the performance curves for
imitation learning in Figures 6 and 7.

For TRAIL, OPAL, SPiRL, SKiLD, and BC, we used the same hyperparameters as reported in Yang
et al. (2021). For all methods, we pre-trained the representations for 200K steps using Adam optimizer
with a learning rate of 3e-4 and batch size 256. For latent behavioral cloning, we train the latent
policy πZ for 1M iterations using a learning rate of 1e-4 for BC, SPiRL, SkiLD, and OPAL, and
3e-5 for SPEDER and TRAIL (both EBM and Linear). We found that decaying the BC learning rate
helped prevent overfitting for all methods. We evaluate the policy every 10K iterations by rolling out
the policy in the environment for 10 episodes, and recording the average return. The representations
ϕ and action decoder πα were frozen during downstream behavioral cloning. All imitation learning
results are reported over 4 seeds.

Both the action decoder πα and the latent policy πZ are parameterized as a multivariate Gaussian
distribution, with the mean and variance approximated using a two-layer MLP network with hidden
layer size 256.

For SPEDER and TRAIL, ϕ and µ are parameterized as a 2-layer MLP with hidden layer size 256,
and a Swish activation function (Ramachandran et al., 2017) at the end of each hidden layer. We ran a
sweep of embedding dimensions d ∈ {64, 256} and found that d = 64 worked best for TRAIL, and
d = 256 worked best for SPEDER. For SPEDER, we ran a sweep of coefficients for each loss term
in equation 10, and summarize the coefficients used in Table 5. For TRAIL Linear, we used a Fourier
dimension of 8192, which has been provided more preference, while still performing worse.

For SPiRL, SkiLD and OPAL, we used an embedding dimension of 8, which was reported to work
best (Yang et al., 2021). The trajectory encoder is parameterized as a bidirectional RNN, and the skill
prior is parameterized as a Gaussian network following (Ajay et al., 2020). SPiRL and SkiLD are
adapted for downstream behavioral cloning by minimizing the KL divergence between the latent
policy and the skill prior.
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Figure 1: Performance Curves for online DM Control Suite.

31



Published as a conference paper at ICLR 2023

Table 5: Loss coefficients used for SPEDER equation 10. We denote the loss coefficients as a1 for
the Ep(s′)

[
µ(s′)⊤µ(s′)

]
/(2d) term; a2 for the E(s,a)∼ρ0

[
ϕ(s, a)ϕ(s, a)⊤

]
= Id/d term; and a3 for

the additional normalization regularization term in equation 11.

SPEDER w/o normalization SPEDER w/ normalization equation 11

Domain a1 a2 a1 a2 a3

antmaze-large-diverse 0.1 0.1 0.01 0.01 1.
antmaze-large-play 0.01 0.01 1. 0.01 1.

antmaze-medium-diverse 1. 0.01 0.1 1. 0.1
antmaze-medium-play 1. 0.01 1. 0.1 1.

Figure 4: Average return on imitation learning tasks from D4RL AntMaze (Fu et al., 2020). BC
corresponds to behavioral cloning on the expert dataset without latent representations. All other
methods pre-train representations on a suboptimal dataset, and then finetune on an expert dataset.

Figure 5: Ablation of SPEDER with vs. without normalized marginalization regularization equa-
tion 11.

Figure 6: After pre-training, we train latent behavioral cloning on top of the learned representations
for 1M iterations. BC refers to direct behavioral cloning on the expert dataset without latent
representations. The corresponding barplot of the final performance is provided in Figure 4.

Figure 7: Performance curve of downstream behavioral cloning for SPEDER with vs. without
normalized marginalization regularization equation 11. The corresponding barplot of the final
performance is provided in Figure 5.
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