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Abstract

It is known that gradient based MCMC samplers
for continuous spaces, such as Langevin Monte
Carlo (LMC), can be derived as particle versions
of a gradient flow that minimizes KL divergence
on a Wasserstein manifold. The superior effi-
ciency of such samplers has motivated several
recent attempts to generalize LMC to discrete
spaces. However, a fully principled extension of
Langevin dynamics to discrete spaces has yet to
be achieved, due to the lack of well-defined gra-
dients in the sample space. In this work, we show
how the Wasserstein gradient flow can be gen-
eralized naturally to discrete spaces. Given the
proposed formulation, we demonstrate how a dis-
crete analogue of Langevin dynamics can subse-
quently be developed. With this new understand-
ing, we reveal how recent gradient based sam-
plers in discrete spaces can be obtained as spe-
cial cases by choosing particular discretizations.
More importantly, the framework also allows for
the derivation of novel algorithms, one of which,
Discrete Langevin Monte Carlo (DLMC), is ob-
tained by a factorized estimate of the transition
matrix. The DLMC method admits a convenient
parallel implementation and time-uniform sam-
pling that achieves larger jump distances. We
demonstrate the advantages of DLMC on various
binary and categorical distributions.
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1 INTRODUCTION

The Markov Chain Monte Carlo (MCMC) algorithm is one
of the most widely used methods for sampling from in-
tractable distributions (Robert & Casella, 2013). However,
it is known to mix slowly in complex, high-dimensional
models. In response, several gradient based MCMC
methods have been developed over the past decades that
leverage gradient information to guide proposals toward
high probability regions (Neal et al., 2011). By sim-
ulating Langevin dynamics (LD), the Langevin Monte
Carlo method (LMC) (Rossky et al., 1978) and its variants
(Welling & Teh, 2011; Girolami & Calderhead, 2011) have
substantially improved sampling efficiency in both theory
and practice. In seminal work, Jordan et al. (1998) and
Otto (2001) have shown that Langevin dynamics simulate
d
dtρ

t = −∇ρDKL(ρ
t||π), which is a Wasserstein gradient

flow (WGF) that minimizes the KL-divergence to a target
distribution π. This connection not only provides a tool for
algorithm design (Ma et al., 2015; Liu et al., 2019) but also
help theoretical analysis (Cheng & Bartlett, 2018).

Despite these advances, progress in gradient based meth-
ods has generally focused on continuous spaces. Re-
cently, a family of locally balanced (LB) samplers (Zanella,
2020; Grathwohl et al., 2021; Sun et al., 2021a; Zhang
et al., 2022; Sun et al., 2022; Rhodes & Gutmann, 2022)
have leveraged gradient information for proposals in dis-
crete spaces via LB functions, achieving significant suc-
cess. However even though Zanella (2020) and Sun et al.
(2021a) have proved that LB functions are asymptotically
optimal for leveraging gradient information in a proposal
distribution, a principled extension of LMC from continu-
ous to discrete spaces remains lacking in finite dimensional
problems. Consequently, existing LB samplers suffer from
inefficiencies arising from a suboptimal imitation of LMC.
For example, Sun et al. (2021a, 2022) flip multiple sites in

1Work done during an internship at Google.
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order, which prevents parallel implementation; Zhang et al.
(2022) and Rhodes & Gutmann (2022) restrict a Gaussian
proposal to discrete states, which ignores the difference be-
tween continuous diffusion and discrete jump processes.

To migrate LMC from continuous to discrete spaces, we
consider an alternative perspective that lifts the commonly
used particle level to a more principled distribution level
view. In particular, we start from the fact that every
stochastic process Xt has a corresponding probability den-
sity ρt(x) in the Wasserstein manifold (Villani, 2009). In-
stead of designing jump processes as discrete analogues
of the diffusion process in LMC, we instead consider the
Discrete Wasserstein Gradient Flow (DWGF) ρt that min-
imizes the KL-divergence DKL(ρ

t||π) to the target distri-
bution π. We then derive a Discrete Langevin Dynamics
(DLD) Xt as a particle realization of this gradient flow ρt.
Unsurprisingly, previous LB samplers can be interpreted as
different discretizations of Xt, which explains their suc-
cess in finite dimensional problems. However, the key ben-
efit of this alternative perspective is the development of
new algorithms that more faithfully follow the derivation
of LMC from LD in continuous spaces. Using a more ef-
ficient discretization of DLD, we develop a novel sampler,
Discrete Langevin Monte Carlo (DLMC), that factorizes
Xt into sub-processes Xt

n, where for each sub-process, the
transition Ph

n after a simulation time h is estimated and a
new state proposed according to Ph

n (X
t
n, ·). In this way,

DLMC is (i) computationally more efficient than previous
methods, as it decouples dimensions and permits conve-
nient parallel implementation, and (ii) statistically more ef-
ficient, since it uses a time-uniform discretization of DLD.
The main ideas behind the overall framework can be sum-
marized in the following diagram that relates the derivation
of LMC from LD and WGF to their discrete counterparts.

WGF DWGF

LD DLD

LMC DLMC

f2: Fokker-Planck

f3: Section 3.1

f4: Section 3.2

f1: Discretization f5: Section 4.2

f5◦f4◦f3◦f−1
2 ◦f−1

1

An experimental evaluation demonstrates that DLMC
enjoys better proposal quality and greater efficiency
than traditional samplers as well as other LB sam-
plers. These advantages are demonstrated both in sam-
pling and learning tasks involving binary and categori-
cal distributions, including the Bernoulli distribution, Ising
model, Potts model, factorial hidden Markov model, re-
stricted Boltzmann machine, and deep energy based mod-
els (EBMs). Code for reproducing all the experiments
can be found at https://github.com/google-research/google-
research/tree/master/dwgf.

2 PRELIMINARIES

We first revisit the framework of WGF → LD → LMC in
the above diagram, which derives LMC as a discretization
of LD that minimizes the KL-divergence to a target distri-
bution π.

Wasserstein Gradient Flow The Wasserstein manifold

P2(Rd) = {µ : Rd → R≥0 :

∫
Rd

µ(x)dx = 1} (1)

is the set of probability measures on Rd where we define
the distance between two measures µ, ν ∈ P2(Rd) by the
Wasserstein-2 distance (Villani, 2009):

W2(µ, ν) =

(
inf
Π

∫
d2(x, y)dΠ(x, y)

) 1
2

, (2)

s.t.
∫

Π(x, y)dy = µ(x),

∫
Π(x, y)dx = ν(y), (3)

where d(x, y) is the distance on the underlying Euclidean
space Rd, and Π is a joint distribution satisfying the
marginal constraints (3). For a target distribution π and
a current distribution ρ on P2(Rd), the gradient of the KL-
divergence with respect to ρ is:

∇ρDKL(ρ||π) = ∇ · [log π(x)ρ(x)]−∆ρ(x). (4)

A flow ρt on P2(V ) that satisfies

∂

∂t
ρt(x) = −∇ · [log π(x)ρt(x)] + ∆ρt(x), (5)

is the Wasserstein gradient flow (WGF) that minimizes the
KL-divergence to the target distribution π.

Langevin Dynamics Jordan et al. (1998) and Otto (2001)
have established the elegant connection between the WGF
(4) and its particle level realization via the Fokker-Planck
Equation. In particular, assumeXt is a time dependent ran-
dom variable that has movement described by the following
stochastic differential equation:

dXt = ∇ log π(Xt)dt+
√
2dW t, (6)

where W t ∈ Rd is a Wiener process. Then the Fokker-
Planck equation asserts that ρt, the distribution of Xt,
evolves over time in a way that satisfies (5). The stochastic
process in (6) is called Langevin Dynamics (LD).

Langevin Monte Carlo Since LD is a particle realization
of the gradient flow (5), one can use it to efficiently gener-
ate samples from the target distribution π via discrete time
simulation:

Xt+ϵ = Xt + ϵ∇ log π(Xt) +
√
2ϵξ, (7)

https://github.com/google-research/google-research/tree/master/dwgf
https://github.com/google-research/google-research/tree/master/dwgf


Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans

where ξ ∼ N (0, Id) is a standard normally distributed ran-
dom variable. In practice, the discrete time simulation in
(7) has an approximation error, so a Metropolis-Hastings
acceptance test (MH) is commonly used to correct any
bias (Metropolis et al., 1953; Hastings, 1970). Specifically,
given the current state x, proposal distribution Q(x, ·) and
new state y, the MH test accepts y with probability

min{1, π(y)Q(y, x)/π(x)Q(x, y)} (8)

to guarantee the Markov chain is π-reversible. Rewriting
the simulation (7) as a Gaussian proposal distribution

xt+ϵ ∼ Q(x, ·) = N (·;x+ ϵ∇ log π(x), 2ϵI), (9)

one obtains the Langevin Monte Carlo (LMC) sampling al-
gorithm for continuous spaces.

3 DISCRETE LANGEVIN FRAMEWORK

Given a finite set V = {1, 2, ...,M}, a distribution on V is
an M-dimensional vector. These vectors form a manifold
as the set of M − 1 dimensional simplex:

P(V ) =
{
ρ ∈ RM :

M∑
i=1

ρi = 1, ρi ≥ 0
}
. (10)

For a point ρ ∈ P(V ), the associated tangent space at ρ
(Do Carmo & Flaherty Francis, 1992) is

TρP(V ) =
{
σ ∈ RM :

M∑
i=1

σi = 0
}
. (11)

We assume the target distribution π ∈ P(V ) is determined
by an energy function f , such that

πi = exp(−fi)/
∑
k∈V

exp(−fk). (12)

Each state x ∈ V corresponds to a distribution ρ0 ∈ P(V )
as a one-hot vector with the k-th site equal to 1. To find
efficient MCMC algorithms for drawing samples xt from
a target π, we first consider the gradient flow ρt that mini-
mizes the KL-divergence DKL(ρ

t||π).

3.1 Discrete Wasserstein Gradient Flow

The gradient flow depends on both the loss function
DKL(ρt||π) and the metric in the space. To established
the Wasserstein distance in P(V ), we follow Chow et al.
(2012, 2017) to rewrite the Wasserstein distance in the
language of fluid dynamics via Benamou-Brenier formula
(Benamou & Brenier, 2000):

W 2
2 (ρ

0, ρ1) := inf
v

{∫ 1

0

⟨vt, vt⟩ρtdt :
dρt

dt
= −∇ · (ρtvt)

}
,

(13)

where v ∈ Rd → Rd is a vector field on Rd, and ⟨v, v⟩ρ =
1
2

∫
⟨v(x), v(x)⟩ρ(x)dx is the total kinetic energy.

On P(V ), we have a natural generalization of the vector
field v : V → RM , where vi = (vij)

M
j=1 characterize

the amount of the transportation from node i to node j.
For the divergence and inner product, instead of using the
canonical form, we first introduce the conductance

cij(ρ) = cji(ρ) ≥ 0 (14)

between two nodes i, j ∈ V , depending on the current dis-
tribution ρ, to characterize the conductivity. Then we define
the divergence of a vector field v as:

divρ(v) := −
(∑

i ̸=j

cij(ρ)vji

)M
j=1

∈ TρP(V ), (15)

and inner product between two vector fields u, v as:

⟨u, v⟩ρ :=
1

2

∑
i,j

cij(ρ)uijvij . (16)

Such a divergence divρ(·) and inner product ⟨·, ·⟩ρ induce a
2-Wasserstein distance W2(ρ, ν) via the Benamou-Brenier
formula in (13) and make the manifold a Riemannian man-
ifold P2(V ) (Chow et al., 2012).

W 2
2 (ρ

0, ρ1) := inf
v

{∫ 1

0

⟨vt, vt⟩ρtdt :
dρt

dt
= divρt(vt)

}
.

(17)
Now, we can characterize the Wasserstein gradient flow in
Theorem 3.1; see Appendix A for a complete proof.

Theorem 3.1. On P2(V ), the gradient flow that minimizes
the KL-divergence DKL(ρ

t||π) is:

dρt

dt
=
(∑

i ̸=j

cij(ρ
t)(fi+log ρti−fj − log ρtj)

)M
j=1

. (18)

3.2 Discrete Langevin Dynamics

Equation (18) gives a discrete analogue of the Wasserstein
gradient flow (5). Naturally, the discrete analogue of the
Langevin dynamics should be a Markov jump process, as
a particle level realization of (18). Denote such a Markov
jump process as Xt, with rate matrix Qt. Then the Kol-
mogorov forward equation that characterizes the distribu-
tion ρt for Xt is given by:

dρt

dt
= ρtQt =

(∑
i

ρtiQ
t
ij

)M
j=1

. (19)

When cij(ρ) = cij is a constant, computing the rate Qt

via (18) and (19) requires knowledge of the current distri-
bution ρt, which is typically intractable. However, we find
that, inspired by physics, a proper choice of cij(ρ) as the
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conductance in nonequilibrium chemical reactions (Qian &
Beard, 2005) can avoid computing ρt. In particular, set

cij(ρ) = wij
g(πj/πi)ρi − g(πi/πj)ρj
fi + log ρi − fj − log ρj

, (20)

where wij satisfying wij = wji ∈ R is an inherent vari-
ability between i and j, independent of π and ρ; and g(·) is
the locally balanced (LB) function satisfying g(a) = ag( 1a )
broadly used in recent LB samplers (Zanella, 2020); a more
detailed derivation of cij(ρ) is given in Appendix B.4. Such
a cij(ρ) can significantly simplify (18) to

dρt

dt
=

∑
i̸=j

wij

[
ρtig

(
πj
πi

)
− ρtjg

(
πi
πj

)]M

j=1

. (21)

In this case, we can set the rate matrix Qt in (19) as a
tractable, time homogeneous matrix Q such that:

Qij =

 wijg
(

πj

πi

)
, i ̸= j

−
∑

k ̸=i wikg
(

πk

πi

)
, i = j

. (22)

Accordingly, the Markov jump process Xt associated with
the Wasserstein gradient flow (18) can be characterized as
a differential equation with respect to the transition proba-
bilities:

d

dh
P(Xt+h = j|Xt = i) = wijg

(
πj
πi

)
. (23)

Since the Markov jump process determined by (23) gives a
particle realization of the DWGF in (21), we refer to it as
discrete Langevin dynamics (DLD).

4 SAMPLING ALGORITHM

Next, we study how to efficiently simulate the DLD to sam-
ple from a discrete space. We consider the state space
V = CN = {1, ..., C}N , where N is the dimension and
C is a code book with elements represented by one-hot vec-
tors. We follow the commonly used assumption (Grath-
wohl et al., 2021; Sun et al., 2021a; Zhang et al., 2022) that
the energy function f(·) in (12) is differentiable. Since the
approximation error of ⟨∇f(x), y − x⟩ for f(y) − f(x) is
repaired by the MH test (8), we ignore such differences in
this section.

Generally, there exist many different choices for simulat-
ing the DLD. For example, the Gillespie algorithm (Gille-
spie, 1977) can simulate a continuous-time trajectory ex-
actly, but is computationally expensive. In this work, since
we are only interested in the target distribution π, we can
focus on more efficient MCMC algorithms.

4.1 Casting Previous Samplers as DLD

We first show that previous locally balanced (LB) samplers
are essentially simulating the discrete Langevin dynamics
(DLD) by choosing particular discretizations.

Single Jump Consider a special case V = {0, 1}N . De-
note x, y ∈ V as the current and the next state, LB-1
(Zanella, 2020) and GWG (Grathwohl et al., 2021) set

wxy = 1{
∑N

n=1 ∥xn−yn∥=1}; (24)

that is to say, wxy = 1 if and only if there exists an index
n, such that yn ̸= xn and for any other i = 1, ..., n−1, n+
1, ..., N , xi = yi. Such a weight w restricts the new state
y to lie within the 1-Hamming ball of x. Then, LB-1 and
GWG propose the new state y with probability

q(x, y) ∝ wxyg

(
π(y)

π(x)

)
. (25)

Such a categorical distribution is exactly the first transition
probability for Xt satisfying DLD (23). Specifically, we
denote the jumping time of Xt as J1, ..., Jm, ..., and as-
sume Xt jumps to y from x at time Jm, then we have

P(XJm = y|XJm−1 = x) ∝ wxyg

(
π(y)

π(x)

)
. (26)

A more detailed derivation for (26) is given in Appendix
B.1. Hence, one can claim that LB-1 and GWG propose
the new state by simulating the first jump of DLD.

Multiple Jumps Denote the current state as σ0 ∈ V and
the path length as L. PAS (Sun et al., 2021a, 2022) propose
a new state σL ∈ V along the auxiliary path σ. Specifically,
they sequentially propose σl−1 = x, σl = y from

q(x, y) ∝ wxyg

(
π(y)

π(x)

)
. (27)

Similar to the analysis of single jump samplers, for process
Xt with the first jump after Jl−1 occurs at time Jl, we have:

P(XJl = y|XJl−1 = x) ∝ wxyg
(π(y)
π(x)

)
. (28)

Hence, one can claim that PAS propose a new state by sim-
ulating the first L jumps of DLD.

Parallel Jumps Denote the current state as x ∈ V . Re-
cent work (Zhang et al., 2022; Rhodes & Gutmann, 2022)
has generalized the Gaussian proposal in LMC (9) to dis-
crete spaces by restricting the proposal distribution to dis-
crete points:

q(x, y) ∝
∏N

n=1 exp(−rn(x, yn)) (29)

rn(x, yn) = ⟨yn − xn,
∂

∂xn
f(x)⟩+ ∥xn−yn∥

2α (30)
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where each dimension for y = (y1, ..., yN ) are sampled in-
dependently, which allows convenient parallel implemen-
tation. The proposal (29) can be seen as setting

wxy = 1, h = exp
(
− 1

2α

)
(31)

and using the forward Euler’s method to approximate (23)
with simulation time h:

P(Xt+h
n = yn|Xt = x) ∝ hwxyg

(π(x\n, yn)
π(x\n, xn)

)
. (32)

This value is correct when yn ̸= xn. However, such a
Gaussian proposal, copied from a continuous diffusion pro-
cess, does not use the correct diagonal rate for a discrete
jump process. In particular, (29) has

P(Xt+h
n = xn|Xt = x) ∝ 1, (33)

which corresponds to a rate rn(x, xn) = 0 on the di-
agonal in the rate matrix. However, in a jump process,
the correct rate on the diagonal should be rn(x, xn) =
−
∑

yn ̸=xn
r(x, yn) the negative summation of the off-

diagonal entries. Such a mismatch reduces the quality of
the proposal distribution; see Appendix B.2 for a more de-
tailed discussion. Also, one can effectively improve the
sampling efficiency via correcting the rate in diagonal; see
more results in Appendix C.

4.2 Discrete Langevin Monte Carlo

The framework induced by the discrete Wasserstein gradi-
ent flow (DWGF) in (21) provides a more principled way to
design gradient based MCMC algorithms by estimating the
transition probability matrix. In particular, since the gra-
dient flow is a Markov jump process, we have the closed
form for the transition:

ρt+h = ρtPh, Ph = exp(Qh), (34)

for Q ∈ RCN×CN

in (22). Of course, it is impractical
to directly calculate the matrix exponential exp(Qs) for a
large rate matrix Q. Instead, by factorizing the jump pro-
cess Xt = (Xt

1, X
t
2, ..., X

t
N ) = (xt1, x

t
2, ..., x

t
N ), one can

simulate each sub-processes Xt
n with initial value xtn, in-

dependently. In this case, the distribution ρtn for Xt
n has

the following closed form expression for the transition:

ρt+h
n = ρtnP

h
n (x

t), Ph
n (x

t) = exp(Qn(x
t)h), (35)

where the rate matrix Qn(x
t) ∈ RC×C depends on the

current state xt. In particular, for index i ̸= j ∈ C, the rate
matrix Qn(x

t) satisfies

Qn(x
t)(i, j) = wijg

(
π(xt\n, j)/π(x

t
\n, i)

)
. (36)

For simplicity, we will drop the xt and only use Ph
n (i, j),

Qn(i, j) when this does not cause ambiguity. For the bi-
nary case C = 2, denoting α = Qn(1, 2) and β =

Algorithm 1: DLMC MH step
Input: current state xt, step time h, target π
Output: new state xt+h

1 for n=1, ..., N do // Run in parallel

2 Calculate xtn-row of P̃h
n (x

t) in (39)
3 Sample yn ∝ P̃h

n (x
t)(xtn, yn)

4 end

5 Compute A = min{1, π(y)
∏N

n=1 P̃h
n (y)(yn,x

t
n)

π(x)
∏N

n=1 P̃h
n (xt)(xt

n,yn)
}

6 if rand(0, 1) < A then xt+h = y else xt+h = xt;

Qn(2, 1), then the transition matrix Ph
n has a closed form

expression (37):

Ph
n =

(
β

α+β + α
α+β e

−(α+β)h α
α+β − α

α+β e
−(α+β)h

β
α+β − β

α+β e
−(α+β)h α

α+β + β
α+β e

−(α+β)h

)
.

(37)
One can sample yn from the xtn-th row of P g

n , a categorical
distribution, for n = 1, ..., N in parallel. Hence, the new
state y = (y1, ..., yN ) can be efficiently obtained.

For the categorical case C > 2, we do not have a simple
closed form expression of Ph

n for all C. Instead, we gener-
alize the expression in (37). Denote

νn(x
t)(j) = π(xt\n, j)/

∑C
i=1 π(x

t
\n, i) (38)

as the stationary distribution induced by Qn(x
t). For sim-

plicity, we drop xt and only use νn(j) when this does not
cause ambiguity. We approximate the transition as:

P̃h
n (i, j) =

{
νn(i) +

∑
k ̸=i νn(k)e

−h
Qn(i,k)
νn(k) , i = j

νn(j)− νn(j)e
−h

Qn(i,j)
νn(j) , i ̸= j

.

(39)
Such an approximation is consistent with the special case
C = 2 in (37), and satisfies the boundary conditions
P̃ 0
n = P 0

n , P̃∞
n = P∞

n , d
dh P̃

h
n |h=0 = d

dhP
h
n |h=0 for ar-

bitrary C. Hence, Equation (39) provides a better approx-
imation than the forward Euler’s method. In practice, we
find (39) does not lose much proposal quality compared to
calculating the matrix exponential for Ph

n in (35). On the
other hand, we only need to compute the xtn-row in P̃h

n ,
with computational cost is O(C). This is much more effi-
cient than a generic numerical approximation of the matrix
exponential with cost O(C3) (Al-Mohy & Higham, 2010).

In a concurrent work (Sun et al., 2023), the “globally bal-
anced” phenomenon is observed, where using g(a) = aα

with α ∈ (0.5, 1] can have better performance than that
with α = 0.5 in some distributions. Such a phenomenon
occurs when the target distribution is nearly factorized, for
example Bernoulli distribution in section 6.2. In DLMC,
the selection of α is implicitly done when tuning the simu-
lation time h. Specifically, when h is small, the transition
probability (39) is equivalent with using forward Euler’s
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method with g(a) = a
1
2 . When h is large, the transition

probability degenerates to the stationary distribution ν in
(38), whose value can be obtained by using g(a) = a. This
explains the “globally balanced” phenomenon is originated
from a large simulation time of DLD.

Combining the DLD and the discretization via (39), we
obtain the Discrete Langevin Monte Carlo (DLMC) algo-
rithm. The discritization in (39) not only provides a factor-
ized proposal distribution for parallel computing, but also
gives a time-uniform slicing of DLD. By contrast, PAS
(Sun et al., 2021a, 2022) only flips a fixed number of sites
in each MH step, thereby has a simulation time that de-
pends on the current state. Specifically, PAS has a shorter
simulation time at states with a larger jump rate, and longer
simulation time at states with a smaller jump rate. Conse-
quently, PAS realizes a non-uniform time slicing of DLD,
which leads to more proposal rejections in comparison to
DLMC; see Appendix B.3 for more details. Pseudo code
for an MH step of DLMC is given in Algorithm 1.

5 RELATED WORK

Gradient based MCMC algorithms that simulate Langevin
dynamics (Rossky et al., 1978; Girolami & Calderhead,
2011; Welling & Teh, 2011) or Hamiltonian dynamics (Du-
ane et al., 1987; Neal et al., 2011; Hoffman et al., 2014),
can substantially improve sampling efficiency in both the-
ory and practice. The seminal work of Jordan et al. (1998)
and Otto (2001) shows that the Langevin dynamics simu-
lates the gradient flow on the 2-Wasserstein space P2(RD)
(Villani, 2009). Subsequent work has directly studied the
Wasserstein gradient flow (Mokrov et al., 2021) or ex-
tended the result to Hamiltonian dynamics (Ambrosio &
Gangbo, 2008; Liu et al., 2019; Chow et al., 2020) and
particle variational inference (Chen et al., 2018; Liu et al.,
2019). By contrast, the corresponding theory for sam-
pling algorithms in discrete spaces is less well understood.
Mielke (2011); Maas (2011); Chow et al. (2012) introduce
2-Wasserstein distances on finite graphs via the Benamou-
Brenier formula (Benamou & Brenier, 2000). However,
these works do not investigate Langevin dynamics or sam-
pling algorithms in discrete space.

A number of samplers for discrete spaces construct invert-
ible mappings between discrete and continuous spaces via
auxiliary variables, uniform dequantization, or VAE flow
(Zhang et al., 2012; Pakman & Paninski, 2013; Nishimura
et al., 2017; Han et al., 2020; Jaini et al., 2021). Such meth-
ods work in some scenarios, but a key challenge is that em-
bedding the discrete space in a continuous space can de-
stroy the inherent discrete structure, resulting in irregular
target distributions in the continuous space such that com-
promises performance in high dimensional discrete spaces
(Grathwohl et al., 2021).

Another group of methods work directly on discrete spaces.

Dai et al. (2020); Titsias & Yau (2017) augment the dis-
crete space with an auxiliary variable, but still rely on slow
Gibbs sampling for improvement. Zanella (2020) intro-
duces an informed proposal for discrete spaces, and proves
that a family of locally balanced (LB) functions is asymp-
totically optimal. Following this work, Grathwohl et al.
(2021); Sun et al. (2021a); Zhang et al. (2012); Rhodes
& Gutmann (2022); Sun et al. (2022, 2023) propose var-
ious LB samplers. Despite these LB samplers substantially
improving sampling efficiency in discrete spaces by mim-
icking LMC, their lack of a principled connection to the
discrete Langevin dynamics (DLD) results in sub-optimal
proposal distribution designs. We note that special cases
of DLD (23) have been mentioned in previous work (Sohl-
Dickstein et al., 2009; Power & Goldman, 2019) but with-
out realizing the connection to gradient flow.

6 SAMPLING FROM CLASSICAL EBMS

6.1 Settings

Models We demonstrate the advantage of DLMC in sam-
pling tasks on four classical models: the Bernoulli model
(Bernoulli), Ising model (Ising) (Ising, 1924), factorial
hidden Markov model (FHMM) (Ghahramani & Jordan,
1995), and the restricted Boltzmann machine (RBM) (Mc-
Clelland et al., 1987). For each model, we use a binary
version C = 2 with high or low temperature, a 4-category
version C = 4, and an 8-category version C = 8. Com-
pared to the low temperature model, the high temperature
model is smoother and has larger entropy. Here we only re-
port the results on high temperature version and 8-category
version. More description of the models and additional re-
sults are given in Appendix C.

Baselines We consider the LB samplers GWG (Grath-
wohl et al., 2021), PAS (Sun et al., 2022), and DMALA
(Zhang et al., 2022). Note that, for PAS, we follow the
implementation in Sun et al. (2022), which is computation-
ally more efficient compared to the PAS in the original pa-
per (Sun et al., 2021a). Also, NCG (Rhodes & Gutmann,
2022) is equivalent to DMALA, so we do not report results
for NCG. For these LB samplers, we consider two com-
monly used weight functions g(a) =

√
a and g(a) = a

a+1 .
Also, we select the optimal hyperparameters by tuning the
average acceptance rate to 0.574 following the result (Sun
et al., 2022). In particular, we tune U , how many sites to
flip per MH step for PAS, α, the step size for DMALA, and
h, the simulation time for DLMC. Although the optimality
for 0.574 is only proved for PAS, we find it robustly pro-
duce good results for DMALA and DLMC, so we still use
this technique.

We also compare with classical discrete samplers: random
walk Metropolis (RWM), the Hamming Ball sampler (HB)
(Titsias & Yau, 2017), and block Gibbs (BG). Following
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Grathwohl et al. (2021), we use a block size of 10 and ham-
ming distance 1 for HB, and a block size of 2 for BG. Sil-
imar to PAS, we also select an optimal U , how many sites
to flip per MH step, for RWM by setting the average accep-
tance rate to 0.234 to achieve the otpimal efficiency (Sun
et al., 2022).

Metrics We use effective sample size (ESS) to evaluate
each sampler (Lenth, 2001). To reduce the effects of im-
plementation, we report ESS normalized by the number of
energy evaluations, and the running time. For methods re-
quires gradients, we count each gradient backpropagation
as one call of the energy function as they have the sim-
ilar computational cost. The former measure ignores the
computational cost for sampling a new state from the pro-
posal distribution and focuses on proposal quality. The lat-
ter measure reflects proposal efficiency. For each setting
and sampler, we run 100 chains for 100,000 steps, with
50,000 burn-in steps to ensure the chain mixes.

6.2 Results

Bernoulli and Categorical The Bernoulli distribution is
the simplest distribution in a discrete space, consisting of
independent binary random variables. The categorical dis-
tribution is a simple generalization to categorical random
variables. For x ∈ CN , the energy function is:

f(x) =

N∑
n=1

⟨xn, θn⟩ (40)

We report the results in the first row of Figure 1. We can see
that the DLMC significantly outperforms all the other sam-
plers. On Bernoulli and categorical distributions, DLMC
has ESS with respect to energy evaluation larger than 104.
Since each step of DLMC requires 4 evaluations of energy
function, it basically means the 50k samples collected by
DLMC are independent. The reason is that DLMC does
not lose accuracy in factorizing. With a simulation time
large enough, the proposal distribution in (39) is exactly
the target distribution.

Another interesting observation is that, compared to PAS,
DMALA has a smaller ESS with respect to the number of
energy evaluations, but a larger ESS with respect to the
running time. The reason is that DMALA does not cor-
rectly simulate the WGF, which reduces its proposal qual-
ity. PAS generates the new state by constructing an aux-
iliary path sequentially, where the lack of parallelism re-
duces efficiency.

Ising and Potts The Ising model (Ising, 1924) is a math-
ematical model of ferromagnetism in statistical mechanics.
It consists of binary random variables arranged in a lattice
graph G = (V,E) and allows each node to interact with
its neighbors. The Potts model (Potts, 1952) is a general-

ization of the Ising model where the random variables are
categorical. The energy function is:

f(x) = −
N∑

n=1

⟨xn, θn⟩ − λ
∑

(i,j)∈E

δ(xi, xj) (41)

We report the results in the second row of Figure 1. We
can see that the advantage of DLMC narrows compared to
Bernoulli model, as Ising and Potts models are not factor-
ized, but the gap is still significant. Also, one can notice
an interesting phenomenon that all LB samplers, except for
DLMC, have large ESS with g(a) = a

a+1 in binary models
and with g(a) =

√
a in categorical models.

FHMM The Factorial Hidden Markov Model (Ghahra-
mani & Jordan, 1995) uses latent variables to characterize
time series data. In particular, it assumes the continuous
data y ∈ RL is generated by hidden state x ∈ CL×K . When
C = 2, we call it a binary FHMM (binFHMM) and when
C > 2, we call it a categorical FHMM (catFHMM). The
probability function is:

p(x) = p(x1)

L∏
l=2

p(xt|xt−1) (42)

p(y|x) =
L∏

l=1

N (yt;

K∑
k=1

⟨Wk, xl,k⟩+ b;σ2) (43)

We report the results in the third row of Figure 1. Sim-
ilar to the Ising model, we can see that all LB samplers
demonstrate good efficiency and DLMC still leads the per-
formance. In FHMM, we can see that using g(a) =

√
a

is more efficient than using g(a) = a
a+1 across all LB

samplers. One possible reason is that using g(a) =
√
a

is more likely to jump to high probability states that makes
the sampling more efficient on smooth target distributions,
but less robust on nonsmooth target distributions (Living-
stone & Zanella, 2019).

RBM The Restricted Boltzmann Machine (Smolensky,
1986) is an unnormalized latent variable model, with a vis-
ible random variable v ∈ CN and a hidden random variable
h ∈ {0, 1}M . When C = 2, we call it a binary RBM
(binRBM) and when C > 2, we call it a categorical RBM
(catRBM). The energy function is:

f(v) =
∑
h

[
−

N∑
n=1

⟨vn, θn⟩ −
M∑

m=1

βmhm

−
∑
n,m

⟨hmθm,n, vn⟩
]

(44)

Unlike the previous three models, where the parameters are
hand designed, we train binRBM on MNIST (LeCun et al.,
1998) and catRBM on Fashion-MNIST (Xiao et al., 2017)
using contrastive divergence (Hinton, 2002). The learned
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Figure 1: Effective Sample Size (↑) on Various Distributions in log scale

RBMs have stronger multi-modality compared to previous
models and are harder to sample from. We report the re-
sults in the fourth row of Figure 1. We can see that DLMC
is significantly more efficient than all the other samplers
with respect to both number of energy evaluations and the
running time. Also, we can see that in binRBM, although
g(a) = a

a+1 is significantly more efficient in other LB sam-
plers, DLMC still has larger ESS using g(a) =

√
a.

7 LEARNING DEEP EBMS

Deep energy-based models (EBMs) have gained increasing
popularity. Recent advances including tempered Langevin
samplers (Nijkamp et al., 2020), large persistent chains (Du
& Mordatch, 2019), and amortized sampling (Dai et al.,
2019, 2020), which have enabled deep EBMs to become a
competitive approach for generative modeling (Song et al.,
2020; Sun et al., 2021b; Xie et al., 2021; Bakhtin et al.,
2021). However, learning an EBM is challenging. Given
data sampled from a true distribution π, we maximize the
likelihood of the target distribution πθ(x) ∝ e−fθ(x) pa-
rameterized by θ. The gradient of the likelihood is:

∇θ log πθ(x) = Eπ[∇θfθ(x)]− Eπθ
[∇θfθ(x)] (45)

The first expectation can be estimated using the data from
the true distribution. The second expectation requires sam-

ples from the current model, which is are typically ob-
tained via MCMC. The speed of EBM training is deter-
mined by how fast the MCMC algorithm can obtain a good
estimate of the second expectation. Following Grathwohl
et al. (2021) and Sun et al. (2021a), we train deep EBMs
parameterized by residual networks (He et al., 2016) on bi-
nary and grayscale image datasets using PCD (Tieleman,
2008) with a replay buffer (Du & Mordatch, 2019). The
grayscale images were treated as 1-of-256 categorical data.

We present the test-set likelihoods in Table 1 and Table
2. Likelihoods are estimated using annealed importance
sampling (Neal, 2001). Since the quality of the learned
EBMs will be similar as long as the sampler is good enough
with certain steps per model update, we measure the ef-
ficiency of samplers by the minimum number of MCMC
steps needed to chain a decent EBM. We compare the per-
formance of DLMC to Variational Autoencoder (Kingma
& Welling, 2013), an RBM, a deep belief network (DBN)
(Hinton, 2009) and EBMs trained by Gibbs, GWG (Grath-
wohl et al., 2021), PAS (Sun et al., 2021a, 2022), and
DMALA (Zhang et al., 2022). We use weight function
g(t) =

√
t for all LB samplers. On all datasets, the DLMC

samplers enable deep EBMs to become competitive on high
dimensional discrete data. We also present long-run sam-
ples from the EBMs trained by DLMC in Figure 2.
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Table 1: Evaluation of effectiveness on learning binary EBMs.

Data Type Dataset VAE VAE RBM DBN EBM EBM EBM EBM EBM
(MLP) (Conv) (GWG) (Gibbs) (PAS) (DMALA) (DLMC)

Binary Static MNIST -86.05 -82.41 -86.39 -85.67 -80.01 -117.17 -79.58 -79.46 -79.13
Dynamic MNIST -82.42 -80.40 − − -80.51 -121.19 -79.59 -79.54 -78.84

log-likelihood ↑ Omniglot -103.52 97.65 -100.47 -100.78 -94.72 -142.06 -90.75 -91.11 -90.84
Caltech Silhouettes -112.08 -106.35 − − -96.20 163.50 -84.56 -87.82 -77.04

Binary MNIST Omniglot Caltech Frey Faces Histopathology

Figure 2: Samples from learned deep EBMs using proposed LBJ sampler.

Table 2: Evaluation on learning categorical EBMs.

Data Type Dataset VAE VAE EBM EBM EBM
(MLP) (Conv) (GWG) (PAS) (DLMC)

Categorical Frey Faces 4.61 4.49 4.65 4.74 4.33
(bits/dim ↓) Histopathology 5.82 5.59 5.08 5.1 4.91

8 DISCUSSION

We have described the discrete Langevin dynamics (DLD)
and showed that it simulates the discrete Wasserstein gradi-
ent flow (DWGF) to minimize the KL-divergence to a target
distribution. Such a view provides an unified framework to
design gradient based samplers for discrete spaces. Based
on this perspective, we proposed a new algorithm, discrete
Langevin Monte Carlo (DLMC), that improves the effi-
ciency of existing locally balanced samplers in both sam-
pling and learning tasks across various discrete distribu-
tions. Despite the success of DLMC presented in this work,
there remain several interesting problems to investigate.

The DWGF and DLD are determined by topological struc-
ture viawij and g(·) (100). Forwij , in complicated discrete
spaces like Hamiltonian cycles, one can resort to powerful
heuristics to construct shortcuts between a current state i
and a new state j. For the weight function, we empirically
evaluated the most commonly used alternatives g(t) =

√
t

and g(t) = t
t+1 in Sec. 6.2 and found that each has its own

advantages on different models. Although Sansone (2021)
has some initial attempts to learn g(·) as a linear combi-
nation of 4 commonly used weight functions, a principled
understanding of the weight function is still missing. In fu-
ture work, we will investigate whether DWGF can be used
as a tool to analyze the choice of g(·).

After obtaining DLD, one can use any kind of discretiza-

tion to obtain a sampling algorithm. Besides the DLMC
and previous LB samplers, there are many other choices.
For example, we can use forward Euler’s method to sim-
ulate DLD, which we call DLMCf. DLMCf can be seen
as DMALA with a corrected diagonal rate. In Appendix
C, we show that DLMCf has comparable performance with
DLMC on several models, and is substantially more effi-
cient than DMALA. Considering fruitful numerical meth-
ods like Heun’s method and Runge-Kutta method can out-
performs forward Euler’s method in many scenarios, we
believe there is ample room to improve the discretization.

Overall, DWGF and DLD provide a new framework for
sampling algorithms in discrete spaces. We believe this is
a milestone for sampling in discrete spaces and expect fur-
ther development upon this framework.
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Appendices

A COMPLETE PROOFS

In order to formally prove theorem 3.1, we need the following two lemmas.

Lemma A.1. For any ρ ∈ P(V ) and any vector field u, the minimizer v∗ = argminv⟨v, v⟩, subject to divρ(v) = divρ(u),
is a potential field ∇Φ. That is, there exists a function Φ : V → R, such that v∗ij = ∇Φij = (Φi − Φj)1{(i,j)∈E}.

We note that a potential field is invariant up to a constant shift, meaning that if Φ is a potential function and Φ′ = Φ+ c =
(Φi + c)Mi=1, then ∇Φ′ = ∇Φ. Hence, we consider an equivalence class [Φ] = {Φ′ ∈ RM : ∃c ∈ R,Φ′ = Φ + c} and
denote PM = {[Φ] : Φ ∈ RM}
Lemma A.2. For any ρ ∈ P(V ), the mapping ζ([Φ]) = divρ(∇Φ) is a linear isomorphism between the set of equivalence
classes PM and the tangent space TρP(V ).

In this case, the isomorphism ζ induces a metric on the tangent space TρP(V ):

Definition A.3. For any ρ ∈ P(V ), we define the inner-product ⟨·, ·⟩ρ on TρP(V ) as follows. Denote Φσ ∈ ζ−1(σ). Then
for arbitrary σ1, σ2 ∈ TρP(V ), define

⟨σ1, σ2⟩ρ =

M∑
i=1

σ1
iΦ

σ2

i (46)

In the following section, we first prove lemma A.1 and lemma A.2, then we justify definition A.3 is well-defined, and
finally we prove theorem 3.1.

A.1 Proof for Lemma A.1

Consider V = {1, ...,M}. Denote F (G) as the set of all vector fields on graph G. The divergence operator divρ maps a
vector field v ∈ F (G) to a vector σ in the tangent space TρP(V ). It is not hard to see that divρ is a surjection, but not an
injection. For a σ ∈ TρP(V ), there are infinite choices of vector field v such that divρ(v) = σ. Lemma A.1 tells us that
for Wasserstein distance defined in (17), we only need to consider vector field v as a potential field.

Proof. We show that given arbitrary vector field u, there exists a potential field ∇Φ has the same divergence and minimizes
the norm. In particular, let us consider the following optimization problem:

min
v

⟨v, v⟩, subject to: divρ(v) = divρ(u) = σ (47)

We introduce the dual variable (λi)
M
i=1 and we have the Lagrangian:

L(v, λ) =
1

2

∑
(i,j)∈E

cijv
2
ij +

M∑
i=1

λi(σi −
∑

j∈N(i)

cjivji − cijvij) (48)

=
∑

(i,j)∈E

[(λi − λj) +
1

2
vij ]cijvij +

M∑
i=1

λiσi (49)

Since u is a solution, the optimization problem (47) is feasible. Since the inner product ⟨v, v⟩ ≥ 0, the optimization
problem (47) is bounded. By Slater’s condition, the strong duality holds and the Lagrangian is minimized at (v∗, λ∗) with
a finite value. Hence, we have v∗ij = λ∗j − λ∗i . When we let Φi = λ∗i , we have v∗ = ∇Φ is a potential field.

A.2 Proof for Lemma A.2

Lemma A.1 tells us that the minimum vector field to realize a divergence is in the form of a potential field. We can notice
that a potential field is invariant up to a constant shifting. That’s to say, if Φ is a potential function and Φ′ = Φ + c =
(Φi + c)Mi=1, then ∇Φ′ = ∇Φ. Hence, we consider a equivalence class [Φ] = {Φ′ ∈ RM : ∃c ∈ R,Φ′ = Φ + c} and we
denote PM = {[Φ] : Φ ∈ RM}. Then, lemma A.2 gives an isomorphism between PM and TρP(V ).
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Proof. We first show ζ([Φ]) = divρ(∇Φ) is well-defined. For arbitrary Φ1,Φ2 ∈ [Φ], we have ∇Φ1 = ∇Φ2, thereby
divρ(∇Φ1) = divρ(∇Φ2). It indicates ζ is well-defined.

Second, we show ζ is linear. We have

ζ(α[Φ1] + β[Φ2]) = ζ([αΦ1 + βΦ2]) (50)

= divρ(∇(αΦ1 + βΦ2)) (51)

= αdivρ(∇Φ1) + βdivρ(∇Φ2) (52)

= αζ([Φ1]) + βζ([Φ2]) (53)

We have (50) holds as

ψ ∈ α[Φ1] + β[Φ2] ⇐⇒∃c1, c2, ψ = α(Φ1 + c1) + β(Φ2 + c2) (54)

⇐⇒∃c, ψ = αΦ1 + βΦ2 + c (55)

⇐⇒ψ ∈ [αΦ1 + βΦ2] (56)

Third, we show that ζ is an injection. By the property shown above, we have

ζ([Φ1]) = ζ([Φ2]) ⇐⇒ ζ([Φ1 − Φ2]) = 0 (57)

That means for any (i, j) ∈ E

(Φ1 − Φ2)j − (Φ1 − Φ2)i = 0 (58)

Since we assume G is connected, it indicates Φ1 = Φ2 + c, hence [Φ1] = [Φ2]. As both PM and TρP(V ) are linear space
with dimension M − 1, we prove ζ is a linear isomorphism.

A.3 Justification for Definition A.3

Lemma A.2 gives an immersion (Do Carmo & Flaherty Francis, 1992) from the tangent space TρP(V ) to the the set of
vector fields F (G). Since we define the inner-product on F (G) in (16), ζ naturally induce the metric on TρP(V ). In this
section, we will first justify ⟨σ1, σ2⟩ρ is valid. Assume Φσ2

,Ψσ2 ∈ ζ−1(σ2), then there exists c, such that Φσ2

= Ψσ2

+ c.
Hence we have:

M∑
i=1

σ1
i (Φ

σ2

i −Ψσ2

i ) = c

M∑
i=1

σ1
i = 0 (59)

It shows that the value of ⟨σ1, σ2⟩ρ does not depends on the choice of the representative Φσ2

, hence it is well-defined.

To show ⟨σ1, σ2⟩ρ is a valid inner-product, we need to check conjugate symmetry, linearity in the first argument, and
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positive-definiteness. For conjugate symmetry, we have:

⟨σ2, σ1⟩ρ =

M∑
i=1

σ2
iΦ

σ1

i (60)

=

M∑
i=1

divρ(∇Φσ1

)iΦ
σ1

i (61)

=

M∑
i=1

∑
j∈N(i)

cij(ρ)(Φ
σ1

i − Φσ1

j )Φσ2

i (62)

=
1

2

M∑
i=1

∑
j∈N(i)

cij(ρ)(Φ
σ1

i − Φσ1

j )Φσ2

i +
1

2

M∑
j=1

∑
i∈N(j)

cij(ρ)(Φ
σ1

i − Φσ1

j )Φσ2

i (63)

=
1

2

M∑
i=1

Φσ2

i

∑
j∈N(i)

cij(ρ)(Φ
σ1

i − Φσ1

j ) +
1

2

M∑
j=1

Φσ2

j

∑
i∈N(j)

cij(ρ)(Φ
σ1

i − Φσ1

j ) (64)

=
1

2

M∑
i=1

Φσ2

i

∑
j∈N(i)

cij(ρ)(Φ
σ1

i − Φσ1

j ) +
1

2

M∑
i=1

Φσ2

i

∑
j∈N(i)

cij(ρ)(Φ
σ1

j − Φσ1

i ) (65)

=
1

2

∑
(i,j)∈E

cij(ρ)(Φ
σ1

i − Φσ1

j )(Φσ2

i − Φσ2

j ) (66)

We can see that (66) does not depend on the order of σ1 and σ2, hence we have:

⟨σ1, σ2⟩ = ⟨σ2, σ1⟩ (67)

The linearity for the first argument is trivial to see. For positive-definiteness, if we have ⟨σ, σ⟩ρ = 0, then by (66), we have:∑
(i,j)∈E

cij(ρ)(Φ
σ
i − Φσ

j )
2 = 0 (68)

Since by our assumption, G is connected and cij(ρ) > 0, it indicates σ = ∇Φσ = 0. Finally, from (66), we can see that:

⟨σ1, σ2⟩ρ = ⟨∇Φσ1

,∇Φσ2

⟩ρ (69)

This means the inner-product we defined in (46) is compatible with the immersion ζ.

A.4 Proof for Theorem 3.1

We prove the theorem in a more general form in terms of free energy F : P2(V ) → R. Once we find the gradient flow for
F , theorem 3.1 can be seen as a special case. In particular, when we define

F (ρ) =

M∑
i=1

ρifi −
M∑
i=1

ρi log ρi (70)

we have F (ρ) = DKL(ρ||π).

Proof. The gradient flow in terms of the free energy is:

dρ

dt
= −∇ρF (ρ) (71)

By lemma A.2, for any σ ∈ TρP2(V ), we have Φσ ∈ ζ−1(σ) such that σ = divρ(Φσ). On the left hand side, we have:

⟨dρ
dt
, σ⟩ =

M∑
i=1

dρi
dt

Φσ
i (72)
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On the right hand side, we have:

⟨∇ρF (ρ), σ⟩ =
M∑
i=1

∂F (ρ)

∂ρi

∑
j∈N(i)

cij(ρ)(Φ
σ
i − Φσ

j ) (73)

=

M∑
i=1

∂F (ρ)

∂ρi

∑
j∈N(i)

cij(ρ)Φ
σ
i −

M∑
i=1

∂F (ρ)

∂ρi

∑
j∈N(i)

cij(ρ)Φ
σ
j (74)

=

M∑
i=1

Φσ
i

∑
j∈N(i)

cij(ρ)
∂F (ρ)

∂ρi
−

M∑
j=1

Φσ
j

∑
i∈N(j)

cij(ρ)
∂F (ρ)

∂ρi
(75)

=

M∑
i=1

Φσ
i

∑
j∈N(i)

cij(ρ)
∂F (ρ)

∂ρi
−

M∑
i=1

Φσ
i

∑
j∈N(i)

cij(ρ)
∂F (ρ)

∂ρj
(76)

=

m∑
i=1

 ∑
j∈N(i)

cij(ρ)
(∂F (ρ)
∂ρi

− ∂F (ρ)

∂ρj

)Φσ
i (77)

Hence we have:
M∑
i=1

dρi
dt

Φσ
i = −

m∑
i=1

 ∑
j∈N(i)

cij(ρ)
(∂F (ρ)
∂ρi

− ∂F (ρ)

∂ρj

)Φσ
i (78)

holds for arbitrary Φσ . Then we prove:

dρi
dt

=
∑

j∈N(i)

cij(ρ)

(
∂F (ρ)

∂ρj
− ∂F (ρ)

∂ρi

)
(79)

Plug in the value of free energy in (70), we have:

dρi
dt

=
∑

j∈N(i)

cij(ρ)[fj + log ρj − fi − log ρi] (80)

Thus we prove the theorem.

B SAMPLER DETAILS

We discuss different discretizations for DLD. Since we decompose the Markov jump process into independent sub-
processes Xt

n, the distribution satisfies the following equation:

d

dt
ρtn = ρtnQn(x

t), (81)

where xt is the current state. The rate matrix Qn satisfies:

Qn(x
t)(i, j) =


wijg

(
π(xt

\n,j)

π(xt
\n,i)

)
, i ̸= j

−
∑

k ̸=i wikg

(
π(xt

\n,k)

π(xt
\n,i)

)
, i = j

(82)

Accordingly, the transition matrix satisfies:

d

dh
Ph
n (x

t) = Ph
nQn(x

t), P 0
n(x

t) = IC (83)

which has the following closed form solution:

Ph
n (x

t) = exp(

∫ h

0

Qn(x
t)ds) = exp(Qn(x

t)h) (84)

To simplify the notation, we drop xt, n, and only use Q(i, j), Ph(i, j) if it does not cause ambiguity.
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B.1 Single Jump

We show that the first jump satisfies a categorical distribution. We define the holding time

Si := inf
t
{t > 0 : X(0) = i,X(t) ̸= i} (85)

as the time the process X(t) stays at state x. We first show that Sx is memoryless. That’s to say:

P(Si > r + t|Si > t,X(0) = i) = P(Si > r + t|X(t) = i) = P(Si > r|X(0) = i) (86)

Since the only continuous memoryless distribution is exponential distribution, we know Sx satisfies an exponential distri-
bution λe−λt. To estimate λ, we have:

λ = − d

dt
|t=0e

−λt = − d

dt
|t=0P(Si > t|X(0) = i) = lim

h→0

1− P(Si > h|X(0) = i)

h
(87)

= lim
h→0

1− P(X(h) = i|X(0) = i) + o(h)

h
= lim

h→0

1− (1 + qiih+ o(h))

h
= −qii (88)

To derive the transition probability, we condition on the holding time belongs to a small interval (t, t+ h], and let h → 0,
we have:

P̃ij = lim
h→0

P(X(t+ h) = j|X(0) = i, t < Si ≤ t+ h) (89)

= lim
h→0

P(X(t+ h) = j|X(t) = i, t < Si ≤ t+ h) (90)

= lim
h→0

P(X(t+ h) = j|X(t) = i)

P(t < Si ≤ t+ h|X(t) = i)
(91)

= lim
h→0

qijh+ o(h)

−qiih+ o(h)
(92)

= −qij
qii

(93)

Hence, the first jump that leaves state i to j ∈ N(i) satisfies the multinomial distribution q(i, j) ∝ wijg(πj/πi).

B.2 DLMCf

One of the most straightforward methods to estimate Ph is forward Euler’s method. Specifically, we can let:

P̃h
f = P 0 + h

d

dh
P 0 = P 0 + hQ (94)

where we use f to indicate the method is based on forward Euler. The transition matrix can be written as:

P̃h
f =


1− h

∑
j ̸=1Q(1, j) hQ(1, 2) · · · hQ(1, C)

hQ(2, 1) 1− h
∑

j ̸=2Q(2, j) · · · hQ(2, n)
...

...
. . .

...
hQ(n, 1) hQ(n, 2) · · · 1− h

∑
j ̸=C Q(C, j)

 (95)

One constraint we should take care of is that we need to restrict the simulation time h such that the diagonal of P̃h is
always non-negative.

Comparison with DMALA The DLMCf can be seen as a correction of DMALA (Zhang et al., 2022). Specifically,
choosing h = exp(− 1

2 ), the transition matrix P̃h
DMALA of DMALA has the same off-diagonal value as P̃h

f . However, the
diagonal of the P̃h

DMALA is always 1. This systematic mismatch reduces the efficiency DMALA. After correction, DLMCf
has substantial improvements in efficiency. See more results in Appendix C.
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B.3 DLMC

We denote the stationary distribution for Xt
n as

νn(x
t)(j) =

π(xt\n, j)∑
i∈C π(x

t
\n, i)

(96)

Again, we drop xt and only use ν(j) if it does not cause ambiguity. The transition matrix for (39) can be written as:

P̃h
n =


ν(1) +

∑
j ̸=1 ν(j)e

−h
Q(1,j)
ν(j) ν(2)− ν(2)e−h

Q(1,2)
ν(2) · · · ν(C)− ν(C)e−h

Q(1,C)
ν(C)

ν(1)− ν(1)e−h
Q(2,1)
ν(1) ν(2) +

∑
j ̸=2 ν(j)e

−h
Q(2,j)
ν(j) · · · ν(C)− ν(C)e−h

Q(2,C)
ν(C)

...
...

. . .
...

ν(1)− ν(1)e−h
Q(n,1)
ν(1) ν(2)− ν(2)e−h

Q(n,2)
ν(2) · · · ν(C) +

∑
j ̸=C ν(j)e

−h
Q(C,j)
ν(C)

 (97)

We can notice that when C = 2, the estimation

P̃h =

[
ν(1) + ν(2)e−h

Q(1,2)
ν(2) ν(2)− ν(2)e−h

Q(1,2)
ν(2)

ν(1)− ν(1)e−h
Q(2,1)
ν(1) ν(2) + ν(1)e−h

Q(2,1)
ν(1)

]
= Ph

n (98)

is exact. For C > 2, We have:

P̃ 0
n = IC = P 0

n , P̃∞
n = νT 1 = P∞

n ,
d

dh
P̃h
n |h=0 = Qn =

d

dh
P̃h
n |h=0 (99)

Comparison with PAS The PAS (Sun et al., 2021a, 2022) flips a given number of sites R per M-H step. As a results, it
is equivalent with simulating the DLD via non-uniform time slice. Specifically, when the current state xt has small jump
rate Q, to flip R sites, PAS needs to simulate a longer time h+ > h in this M-H step. On the contrary, when the current
state xt has large jump rate Q, PAS needs to simulate a shorter time h− < h in this M-H step. Consequently, the Markov
chain obtained by PAS is more self correlated than DLMC. Also, since the PAS chain is likely to sample more frequently at
the states with larger jump rates, M-H test need to reject more proposals to guarantee the chain is π-reversible. As a result,
DLMC will be more efficient than PAS; see results in Appendix C. One disadvantage of DLMC is that, the simulation time
h needed for transient and stationary phases are very different (Christensen et al., 2005), which makes tuning the scaling
via average acceptance rate less robust comparing to PAS.

B.4 Choice of Conductance

Inspired by physics, we can define the conductance as

cij(ρ) =
mij(ρ)−mji(ρ)

log(mij(ρ))− log(mji(ρ))
, ∀j ̸= i. (100)

The logarithmic mean in (100) is known as conductance in the stoichiometric network theory of chemical reactions (Qian
& Beard, 2005), where mij represents the amount of the transition from i to j, such that the numerator is the flux and
the denominator is the driving force in nonequilibrium systems (Beard & Qian, 2007). We assume that the amount of the
transition

mij(ρ) = wijg(
πj
πi

)ρi, ∀j ̸= i, (101)

is only determined by the transition speed wijg(
πj

πi
) multiplying the current amount ρi. Here, wij satisfies wij = wji as

an inherent scalar that measure the variability between i and j, independent with both the target distribution π and current
distribution ρ. The second term g(

πj

πi
) is an external force caused by the target probability ratio and also relies on the choice

of the weight function g(·). Furthermore, a reasonable assumption is that the transition should reach the equilibrium at the
target distribution:

mij(π) = mji(π). (102)

Plug (101) into (102), one can solve

g(
πj
πi

) =
πj
πi
g(
πi
πj

) ⇒ g(t) = tg(
1

t
), t > 0, (103)
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which is exactly the locally balanced (LB) function used in recent locally balanced samplers (Zanella, 2020). Plug (101)
and (103) in (100), one can rewrite the conductance as:

cij(ρ) = wij
g(πj/πi)ρi − g(πi/πj)ρj
fi + log ρi − fj − log ρj

. (104)

C EXPERIMENTAL DETAILS

We focus on discrete spaces of the form V = XD where X = {e1, ..., en} is a finite set of one-hot vectors. We evaluate
our methods on Bernoulli model, Ising model, factorial hidden Markov model and restricted Boltzmann machine. For each
model, we consider both binary and categorical versions. For binary model, we use one high temperature setting and one
low temperature setting. For categorical model, we use n = 4 and n = 8. We report the detailed descriptions of the models
and corresponding results in the following. The running time for all methods across all models are summarized in Table 3.

Table 3: Running time (second) for all samplers on all target distributions with 100k steps

Mehtod hb-10-1 bg-2 rwm gwg dmala pas dlmc dlmcf

Bernoulli (low) 144 61 76 231 153 406 213 149
Bernoulli (high) 143 61 73 197 156 245 217 150

Bernoulli (n = 4) 351 112 500 115 150 514 184 170
Bernoulli (n = 8) 794 458 501 121 161 526 231 194

Ising (low) 203 101 149 491 490 557 548 476
Ising (high) 205 106 158 519 514 589 584 507

Potts (n = 4) 484 198 412 409 452 824 494 476
Potts (n = 8) 1335 1022 428 416 451 832 486 470

binFHMM (low) 216 141 228 490 476 555 542 469
binFHMM (high) 216 141 228 495 475 559 549 474

catFHMM (n = 4) 450 204 492 398 433 800 470 450
catFHMM (n = 8) 1490 1168 499 393 436 804 475 456

binRBM 144 83 105 225 235 304 296 229
binRBM 142 82 102 229 234 305 298 229

catRBM (n = 4) 783 357 369 195 236 590 269 255
catRBM (n = 8) 2721 2283 389 276 304 684 322 313

C.1 Bernoulli Model

The Bernoulli distribution is the simplest distribution in a discrete space, where each site is independent with others. For
x ∈ CN , the energy function is:

f(x) =

N∑
n=1

⟨xn, θd⟩ (105)

where θd ∈ RC . Across all settings, we use the entries in θn independently sampled from centered normal distribution
N (0, σ2). For binary model we considerD = 10000. We use σ2 = 0.125 in the high temperature setting and σ2 = 12.5 in
the low temperature setting. For categorical model, we consider D = 2000. We use σ2 = 1.125 for both n = 4 and n = 8.
The results are reported in Figure 3 and Figure 4. We can see that DLMC and DLMCf have substantial better efficiencies
compared to other samplers. The weight function g(t) = t

t+1 has better performance compared to g(t) =
√
t as proved in

Zanella (2020). Moreover, the advantage of g(t) = t
t+1 is more significant when the target distributions are sharper, which

is consistent with the observation in continuous space (Livingstone & Zanella, 2019).

C.2 Ising Model

The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical mechanics. It consists of binary
random variables arranged in a lattice graph G = (V,E) and allows node to interact with its neighbors. The Potts model
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Figure 3: Evaluation on Bernoulli Models

(Potts, 1952) is a generalization of the Ising model where the random variables are categorical. The energy function for
Ising model and Potts model can be described as:

f(x) = −
N∑

n=1

⟨xn, θn⟩ − λ
∑

(i,j)∈E

δ(xi, xj) (106)

where θd ∈ Rn, δ(x, y) = 1{x=y}. For Ising model, we consider N = 2500 where G is a 50 × 50 square lattice, and we
follow the settings in Zanella (2020). In high temperature setting, we use θd ∼ uniform(−2, 1) for the outer part of the
lattice graph, and θd ∼ uniform(−1, 2) for the inner part of the lattice graph. The connection strength is chosen as λ = 0.5.
In low temperature setting, we use θd ∼ uniform(−4, 2) for the outer part of the lattice graph, and θd ∼ uniform(−2, 4)
for the inner part of the lattice graph. The connection strength is chosen as λ = 1.0. For potts model, we considerN = 900
where G is a 30 × 30 square lattice. For both C = 4, 8, we use entries in external field θdi ∼ uniform(−1.5, 1.5) − 0.5 i

C

for the outer part of the lattice graph, and θdi ∼ uniform(−1.5, 1.5) + 0.5 i
C for the inner part of the lattice graph, where

i = 1, ..., C. The connection strength is chosen as λ = 1.0. The results are reported in Figure 5 and Figure 6. We can
see that all LB samplers exhibit good performance. Among them, DLMC and DLMCf are the most efficient. The weight
functions g(t) =

√
t and g(t) = t

1+t each demonstrate advantages for different samplers.

C.3 Factorial Hidden Markov Model

FHMM (Ghahramani & Jordan, 1995) uses latent variables to characterize time series data. In particular, it assumes the
continuous data y ∈ RL is generated by hidden state x ∈ CL×K . The probability function is:

p(x) = p(x1)

L∏
l=2

p(xt|xt−1), p(y|x) =
L∏

l=1

N (yt;

K∑
k=1

⟨Wk, xl,k⟩+ b;σ2) (107)

In particular, for binary model, we consider P(x1 = 0) = 0.9,P(xt = xt−1|xt−1) = 0.8, σ = 2.0. We use L =
200,K = 10 for high temperature setting and L = 100,K = 20 in low temperature setting. For categorical model, we
use p(x1|x1 ̸= 0) and p(xt|xt−1, xt ̸= xt−1) as uniform distribution and we use L = 200, K = 10. We report the results
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Figure 4: Evaluation on Categorical Models

in Figure 7 and Figure 8. Similar to the Ising model, we can see that all locally balanced samplers demonstrate good
performance. In FHMM, LBP has an efficiency very close to the DLMC samplers. We believe this is because the energy
change rate is stable in FHMM and the magnitude of the gradient changes steadily. Hence the Hamming distance works
as a good metric. We also note that the weight function g(t) =

√
t is systematically better than g(t) = t

t+1 on FHMM.
This is consistent with the observation in Livingstone & Zanella (2019) that g(t) =

√
t performs better on smooth target

distributions and g(t) = t
t+1 performs better on nonsmooth target distributions, although Livingstone & Zanella (2019)

focus on the sampling in continuous spaces.

C.4 Restricted Boltzmann Machine

The RBM is an unnormalized latent variable model, with a visible random variable v ∈ CN and a hidden random variable
h ∈ {0, 1}M . When v is binary, we call it a binary RBM (binRBM) and when v is categorical, we call it a categorical
RBM (catRBM). The energy function of both binRBM and catRBM (Tran et al., 2011) can be written as:

f(v) =
∑
h

− N∑
n=1

⟨vn, θn⟩ −
M∑

m=1

βmhm −
∑
d,m

⟨hmθm,d, vn⟩

 (108)

Unlike the previous three models, where the parameters are hand designed, we train binary RBM on MNIST (LeCun et al.,
1998) and categorical RBM on Fashion-MNIST (Xiao et al., 2017) using contrastive divergence Hinton (2002). Across
all settings, we have D = 784. For binary models, we use M = 25 for high temperature setting and M = 200 for low
temperature setting. For categorical models, we useM = 100. We report the results in Figure 9 and Figure 10. The learned
RBMs have stronger multi-modality compared to previous models. We can see that, as before, DLMC and DLMCf lead in
proposal quality, while DLMC is the most efficient overall.
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Figure 6: Evaluation on Potts Models
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Figure 8: Evaluation on catFHMM
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Figure 9: Evaluation on binRBM
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