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Abstract

We propose a Laplace approximation that
creates a stochastic unit from any smooth
monotonic activation function, using only
Gaussian noise. This paper investigates the
application of this stochastic approximation
in training a family of Restricted Boltzmann
Machines (RBM) that are closely linked to
Bregman divergences. This family, that we
call exponential family RBM (Exp-RBM), is
a subset of the exponential family Harmoni-
ums that expresses family members through
a choice of smooth monotonic non-linearity
for each neuron. Using contrastive divergence
along with our Gaussian approximation, we
show that Exp-RBM can learn useful repre-
sentations using novel stochastic units.

1 Introduction

Deep neural networks (LeCun et al., 2015; Bengio,
2009) have produced some of the best results in
complex pattern recognition tasks where the train-
ing data is abundant. Here, we are interested in
deep learning for generative modeling. Recent years
has witnessed a surge of interest in directed gen-
erative models that are trained using (stochastic)
back-propagation (e.g., Kingma and Welling, 2013;
Rezende et al., 2014; Goodfellow et al., 2014). These
models are distinct from deep energy-based mod-
els – including deep Boltzmann machine (Hinton
et al., 2006) and (convolutional) deep belief network
(Salakhutdinov and Hinton, 2009; Lee et al., 2009)
– that rely on a bipartite graphical model called re-
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stricted Boltzmann machine (RBM) in each layer. Al-
though, due to their use of Gaussian noise, the stochas-
tic units that we introduce in this paper can be po-
tentially used with stochastic back-propagation, this
paper is limited to applications in RBM.

To this day, the choice of stochastic units in RBM has
been constrained to well-known members of the expo-
nential family; in the past RBMs have used units with
Bernoulli (Smolensky, 1986), Gaussian (Freund and
Haussler, 1994; Marks and Movellan, 2001), categori-
cal (Welling et al., 2004), Gamma (Welling et al., 2002)
and Poisson (Gehler et al., 2006) conditional distribu-
tions. The exception to this specialization, is the Rec-
tified Linear Unit that was introduced with a (heuris-
tic) sampling procedure (Nair and Hinton, 2010).

This limitation of RBM to well-known exponential
family members is despite the fact that Welling et al.
(2004) introduced a generalization of RBMs, called Ex-
ponential Family Harmoniums (EFH), covering a large
subset of exponential family with bipartite structure.
The architecture of EFH does not suggest a proce-
dure connecting the EFH to arbitrary non-linearities
and more importantly a general sampling procedure is
missing.1 We introduce a useful subset of the EFH,
which we call exponential family RBMs (Exp-RBMs),
with an approximate sampling procedure addressing
these shortcomings.

The basic idea in Exp-RBM is simple: restrict the
sufficient statistics to identity function. This allows
definition of each unit using only its mean stochastic
activation, which is the non-linearity of the neuron.
With this restriction, not only we gain interpretabil-
ity, but also trainability; we show that it is possible
to efficiently sample the activation of these stochas-

1 As the concluding remarks of Welling et al. (2004)
suggest, this capability is indeed desirable:“A future chal-
lenge is therefore to start the modelling process with the
desired non-linearity and to subsequently introduce auxil-
iary variables to facilitate inference and learning.”
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tic neurons and train the resulting model using con-
trastive divergence. Interestingly, this restriction also
closely relates the generative training of Exp-RBM to
discriminative training using the matching loss and its
regularization by noise injection.

In the following, Section 2 introduces the Exp-RBM
family and Section 3 investigates learning of Exp-
RBMs via an efficient approximate sampling proce-
dure. Here, we also establish connections to dis-
criminative training and produce an interpretation of
stochastic units in Exp-RBMs as an infinite collection
of Bernoulli units with different activation biases. Sec-
tion 4 demonstrates the effectiveness of the proposed
sampling procedure, when combined with contrastive
divergence training, in data representation.

2 The Model

The conventional RBM models the joint probability
p(v, h | W ) for visible variables v = [v1, . . . , vi, . . . , vI ]
with v ∈ V1 × . . . × VI and hidden variables h =
[h1, . . . , hj , . . . hJ ] with h ∈ H1 × . . .×HJ as

p(v, h |W ) = exp(−E(v, h)−A(W )).

This joint probability is a Boltzmann distribution with
a particular energy function E : V × H → R and a
normalization function A. The distinguishing property
of RBM compared to other Boltzmann distributions
is the conditional independence due to its bipartite
structure.

Welling et al. (2004) construct Exponential Family
Harmoniums (EFH), by first constructing independent
distribution over individual variables: considering a
hidden variable hj , its sufficient statistics {tb}b and
canonical parameters {η̃j,b}b, this independent distri-
bution is

p(hj) = r(hj) exp
(∑

b

η̃j,b tb(hj)−A({η̃j,b}b)
)

where r : Hj → R is the base measure and A({ηi,a}a) is
the normalization constant. Here, for notational con-
venience, we are assuming functions with distinct in-
puts are distinct – i.e., tb(hj) is not necessarily the
same function as tb(hj′), for j′ 6= j.

The authors then combine these independent distribu-
tions using quadratic terms that reflect the bipartite
structure of the EFH to get its joint form

p(v, h) ∝ exp
(∑

i,a

ν̃i,a ta(vi) (1)

+
∑
j,b

η̃j,b tb(hj) +
∑
i,a,j,b

W a,b
i,j ta(vi)tb(hj)

)

where the normalization function is ignored and the
base measures are represented as additional sufficient
statistics with fixed parameters. In this model, the
conditional distributions are

p(vi | h) = exp
(∑

a

νi,ata(vj)−A({νi,a}a
)

p(hj | v) = exp
(∑

b

ηj,btb(hj)−A({ηj,b}b
)

where the shifted parameters ηj,b = η̃j,b +∑
i,aW

a,b
i,j ta(vi) and νi,a = ν̃i,a +

∑
j,bW

a,b
i,j tb(hj) in-

corporate the effect of evidence in network on the ran-
dom variable of interest.

It is generally not possible to efficiently sample these
conditionals (or the joint probability) for arbitrary suf-
ficient statistics. More importantly, the joint form of
Equation (1) and its energy function are “obscure”.
This is in the sense that the base measures {r}, depend
on the choice of sufficient statistics and the normaliza-
tion function A(W ). In fact for a fixed set of suffi-
cient statistics {ta(vi)}i, {tb(hj)}j , different compati-
ble choices of normalization constants and base mea-
sures may produce diverse subsets of the exponential
family. Exp-RBM is one such family, where sufficient
statistics are identity functions.

2.1 Bregman Divergences and Exp-RBM

Exp-RBM restricts the sufficient statistics ta(vi) and
tb(hj) to single identity functions vi, hj for all i and
j. This means the RBM has a single weight matrix
W ∈ RI×J . As before, each hidden unit j, receives an
input ηj =

∑
iWi,jvi and similarly each visible unit i

receives the input νi =
∑
jWi,jhj . 2

Here, the conditional distributions p(vi | νi) and p(hj |
ηj) have a single mean parameter, f(η) ∈M, which is
equal to the mean of the conditional distribution. We
could freely assign any desired continuous and mono-
tonic non-linearity f : R → M ⊆ R to represent the
mapping from canonical parameter ηj to this mean pa-
rameter: f(ηj) =

∫
Hj hjp(hj | ηj) dhj . This choice of

f defines the conditionals

p(hj | ηj) = exp
(
−Df (ηj ‖hj) + g(hj)

)
(2)

p(vi | νi) = exp
(
−Df (νi ‖ vi) + g(vi)

)
where g is the base measure and Df is the Bregman
divergence for the function f .

2Note that we ignore the “bias parameters” ν̃i and η̃j ,
since they can be encoded using the weights for additional
hidden or visible units (hj = 1, vi = 1) that are clamped
to one.
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The Bregman divergence (Bregman, 1967; Banerjee
et al., 2005) between hj and ηj for a monotonically
increasing transfer function (corresponding to the ac-
tivation function) f is given by3

Df (ηj ‖hj) = −ηjhj + F (ηj) + F ∗(hj) (3)

where F with d
dηF (ηj) = f(ηj) is the anti-derivative

of f and F ∗ is the anti-derivative of f−1. Substitut-
ing this expression for Bregmann divergence in Equa-
tion (2), we notice both F ∗ and g are functions of hj .
In fact, these two functions are often not separated
(e.g., McCullagh et al., 1989). By separating them
we see that some times, g simplifies to a constant, en-
abling us to approximate Equation (2) in Section 3.1.

Example 2.1. Let f(ηj) = ηj be a linear neu-
ron. Then F (ηj) = 1

2η
2
j and F ∗(hj) = 1

2h
2
j , giving

a Gaussian conditional distribution p(hj | ηj) =
e−

1
2 (hj−ηj)2−g(hj), where g(hj) = − log(

√
2π) is a

constant.

2.2 The Joint Form

So far we have defined the conditional distribution of
our Exp-RBM as members of, using a single mean pa-
rameter f(ηj) (or f(νi) for visible units) that repre-
sents the activation function of the neuron. Now we
would like to find the corresponding joint form and the
energy function.

The problem of relating the local conditionals to the
joint form in graphical models goes back to the work
of Besag (1974).It is easy to check that, using the more
general treatment of Yang et al. (2012), the joint form
corresponding to the conditional of Equation (2) is

p(v, h |W ) = exp
(
vT ·W · h (4)

−
∑
i

(
F ∗(vi) + g(vi)

)
−
∑
j

(
F ∗(hj) + g(hj)

)
−A(W )

)

where A(W ) is the joint normalization constant. It
is noteworthy that only the anti-derivative of f−1, F ∗

3 The conventional form of Bregman divergence is
Df (ηj ‖hj) = F (ηj) − F (f−1(hj)) − hj(ηj − f−1(hj)),
where F is the anti-derivative of f . Since F is strictly
convex and differentiable, it has a Legendre-Fenchel dual
F ∗(hj) = supηj 〈hj , ηj〉 − F (ηj). Now, set the deriva-
tive of the r.h.s. w.r.t. ηj to zero to get hj = f(ηj),
or ηj = f−1(hj), where F ∗(hj) is the anti-derivative of
f−1(hi). Using the duality to switch f and f−1 in the
above we can get F (f−1(hj)) = hjf

−1(hj) − F ∗(hj). By
replacing this in the original form of Bregman divergence
we get the alternative form of Equation (3).

appears in the joint form and F is absent. From this,
the energy function is

E(v, h) = −vT ·W · h (5)

+
∑
i

(
F ∗(vi) + g(vi)

)
+
∑
j

(
F ∗(hj) + g(hj)

)
.

Example 2.2. For the sigmoid non-linearity
f(ηj) = 1

1+e−ηj , we have F (ηj) = log(1 + eηj ) and
F ∗(hj) = (1 − hj) log(1 − hj) + hj log(hj) is the
negative entropy. Since hj ∈ {0, 1} only takes ex-
treme values, the negative entropy F ∗(hj) evaluates
to zero:

p(hj | ηj) = exp
(
hjηj − log(1 + exp(ηj)) + g(hj)

)
(6)

Separately evaluating this expression for hj = 0
and hj = 1, shows that the above conditional is
a well-defined distribution for g(hj) = 0, and in
fact it turns out to be the sigmoid function itself –
i.e., p(hj = 1 | ηj) = 1

1+e−ηj . When all conditionals
in the RBM are of the form Equation (6) – i.e., for
a binary RBM with a sigmoid non-linearity, since
{F (ηj)}j and {F (νi)}i do not appear in the joint
form Equation (4) and F ∗(0) = F ∗(1) = 0, the joint
form has the simple and the familiar form p(v, h) =
exp

(
vT ·W · h−A(W )

)
.

3 Learning

A consistent estimator for the parameters W , given
observations D = {v(1), . . . , v(N)}, is obtained by
maximizing the marginal likelihood

∏
n p(v(n) | W ),

where the Equation (4) defines the joint probability
p(v, h). The gradient of the log-marginal-likelihood
∇W

(∑
n log(p(v(n) |W ))

)
is

1
N

∑
n

Ep(h|v(n),W )[h · (v(n))T ] − Ep(h,v|W )[h · vT ](7)

where the first expectation is w.r.t. the observed data
in which p(h | v) =

∏
j p(hj | v) and p(hj | v) is given

by Equation (2). The second expectation is w.r.t. the
model of Equation (4).

When discriminatively training a neuron f(
∑
iWi,jvi)

using input output pairs D = {(v(n), h
(n)
j )}n, in order

to have a loss that is convex in the model parame-
ters W:j , it is common to use a matching loss for the
given transfer function f (Helmbold et al., 1999). This
is simply the Bregman divergence Df (f(η(n)

j )‖h(n)
j ),

where η
(n)
j =

∑
iWi,jv

(n)
i . Minimizing this match-

ing loss corresponds to maximizing the log-likelihood
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unit name non-linearity f(η) Gaussian approximation conditional dist p(h | η)
Sigmoid (Bernoulli) Unit (1 + e−η)−1 - exp{ηh− log(1 + exp(η))}

Noisy Tanh Unit (1 + e−η)−1 − 1
2 N (f(η), (f(η)− 1/2)(f(η) + 1/2)) exp{ηh− log(1 + exp(η)) + ent(h) + g(h)}

ArcSinh Unit log(η +
√

1 + η2) N (sinh−1(η), (
√

1 + η2)−1) exp{ηh− cosh(h) +
√

1 + η2 − η sin−1(η) + g(h)}
Symmetric Sqrt Unit (SymSqU) sign(η)

√
|η| N (f(η),

√
|η|/2) exp{ηh− |h|3/3− 2(η2) 3

4 /3 + g(h)}
Linear (Gaussian) Unit η N (η, 1) exp{ηh− 1

2 (η2)− 1
2 (h2)− log(

√
2π)}

Softplus Unit log(1 + eη) N (f(η), (1 + e−η)−1) exp{ηh− 2Li2(−eη)− h log(1− eh) + y log(eη − 1) + g(h)}
Rectified Linear Unit (ReLU) max(0, η) N (f(η), I(η > 0)) -

Rectified Quadratic Unit (ReQU) max(0, η|η|) N (f(η), I(η > 0)η) -
Symmetric Quadratic Unit (SymQU) η|η| N (η|η|, |η|) exp{ηh− |η|3/3− 2(h2) 3

4 /3 + g(h)}
Exponential Unit eη N (eη, eη) exp{ηh− eη − h(log(y)− 1) + g(h)}

Sinh Unit 1
2 (eη − e−η) N (sinh(η), cosh(η)) exp{ηh− cosh(η) +

√
1 + h2 − h sin−1(h) + g(h)}

Poisson Unit eη - exp{ηh− eη − y!}

Table 1: Stochastic units, their conditional distribution (Equation (2)) and the Gaussian approximation to this distribu-
tion. Here Li(·) is the polylogarithmic function and I(cond.) is equal to one if the condition is satisfied and zero otherwise.
ent(p) is the binary entropy function.

of Equation (2), and it should not be surprising that
the gradient ∇W:j

(∑
nDf (f(η(n)

j )‖h(n)
j )
)

of this loss
w.r.t. W:j = [W1,j , . . . ,WM,j ]∑

n

f(η(n)
j )(v(n))T − h

(n)
j (v(n))T

resembles that of Equation (7), where f(η(n)
j ) above

substitutes hj in Equation (7).

However, note that in generative training, hj is not
simply equal to f(ηj), but it is sampled from the ex-
ponential family distribution Equation (2) with the
mean f(ηj) – that is hj = f(ηj) + noise. This extends
the previous observations linking the discriminative
and generative (or regularized) training – via Gaussian
noise injection – to the noise from other members of
the exponential family (e.g., An, 1996; Vincent et al.,
2008; Bishop, 1995) which in turn relates to the reg-
ularizing role of generative pretraining of neural net-
works (Erhan et al., 2010).

Our sampling scheme (next section) further suggests
that when using output Gaussian noise injection for
regularization of arbitrary activation functions, the
variance of this noise should be scaled by the
derivative of the activation function.

3.1 Sampling

To learn the generative model, we need to be able to
sample from the distributions that define the expecta-
tions in Equation (7). Sampling from the joint model
can also be reduced to alternating conditional sam-
pling of visible and hidden variables (i.e., block Gibbs
sampling). Many methods, including contrastive di-
vergence (CD; Hinton, 2002), stochastic maximum
likelihood (a.k.a. persistent CD Tieleman, 2008) and
their variations (e.g., Tieleman and Hinton, 2009;
Breuleux et al., 2011) only require this alternating
sampling in order to optimize an approximation to the
gradient of Equation (7).

Here, we are interested in sampling from p(hj | ηj)
and p(vi | νi) as defined in Equation (2), which is
in general non-trivial. However some members of the
exponential family have relatively efficient sampling
procedures (Ahrens and Dieter, 1974). One of these
members that we use in our experiments is the Poisson
distribution.

Example 3.1. For a Poisson unit, a Poisson dis-
tribution

p(hj | λ) = λhj

hj !
e−λ (8)

represents the probability of a neuron firing hj
times in a unit of time, given its average rate is
λ. We can define Poisson units within Exp-RBM
using fj(ηj) = eηj , which gives F (ηj) = eηj and
F ∗(hj) = hj(log(hj)−1). For p(hj | ηj) to be prop-
erly normalized, since hj ∈ Z+ is a non-negative
integer, F ∗(hj) + g(hj) = log(hj !) ≈ F ∗(hj) (us-
ing Sterling’s approximation). This gives p(hj |
ηj) = exp

(
hjηj−eηj − log(hj !)

)
which is identical

to distribution of Equation (8), for λ = eηj . This
means, we can use any available sampling routine
for Poisson distribution to learn the parameters for
an exponential family RBM where some units are
Poisson. In Section 4, we use a modified version
of Knuth’s method (Knuth, 1969) for Poisson sam-
pling.

By making a simplifying assumption, the following
Laplace approximation demonstrates how to use Gaus-
sian noise to sample from general conditionals in Exp-
RBM, for “any” smooth and monotonic non-linearity.

Proposition 3.1. Assuming a constant base measure
g(hi) = c, the distribution of p(hj ‖ ηj) is to the second
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order approximated by a Gaussian

exp
(
−Df (ηj ‖hj) + c

)
≈ N (hj | f(ηj), f ′(ηj) )

(9)

where f ′(ηj) = d
dηj f(ηj) is the derivative of the acti-

vation function.

Proof. The mode (and the mean) of the conditional
Equation (2) for ηj is f(ηj). This is because the Breg-
man divergence Df (ηj‖hj) achieves minimum when
hj = f(ηj). Now, write the Taylor series approxi-
mation to the target log-probability around its mode

log( p(ε+ f(ηj) | ηj ))
= log(−Df (ηj‖ε+ f(ηj))) + c

= ηjf(ηj)− F ∗(f(ηj))− F (ηj)

+ ε(ηj − f−1(f(ηj)) + 1
2ε

2( −1
f ′(ηj)

) +O(ε3)

= ηjf(ηj)− (ηjf(ηj)− F (ηj))− F (ηj)

+ ε(ηj − ηj) + 1
2ε

2( −1
f ′(ηj)

) +O(ε3)

= −1
2

ε2

f ′(ηj)
+O(ε3)

(10a)

(10b)

(10c)

In Equation (10a) we used the fact that d
dyf
−1(y) =

1
f ′(f−1(y)) and in Equation (10b), we used the conju-
gate duality of F and F ∗. Note that the final unnor-
malized log-probability in Equation (10c) is that of a
Gaussian, with mean zero and variance f ′(ηj). Since
our Taylor expansion was around f(ηj), this gives us
the approximation of Equation (9).

3.1.1 Sampling Accuracy

To exactly evaluate the accuracy of our sampling
scheme, we need to evaluate the conditional distri-
bution of Equation (2). However, we are not aware
of any analytical or numeric method to estimate the
base measure g(hj). Here, we replace g(hj) with g̃(ηj),
playing the role of a normalization constant. We then
evaluate

p(hj | ηj) ≈ exp
(
−Df (ηj ‖hj) + g̃(ηj)

)
(11)

where g̃(ηj) is numerically approximated for each
ηj value. Figure 1 compares this density against
the Gaussian approximation p(hj | ηj) ≈
N ( f(ηj), f ′(ηj) ). As the figure shows, the densities
are very similar.

- 20 - 10 10 20

2

4

6

8

10

12

Figure 2: Numerical approximation to the integral∫
Hj

exp
(
− Df (ηj‖hj)

)
dhj for the softplus unit f(ηj) =

log(1 + eηj ), at different ηj.

3.2 Bernoulli Ensemble Interpretation

This section gives an interpretation of Exp-RBM in
terms of a Bernoulli RBM with an infinite collection of
Bernoulli units. Nair and Hinton (2010) introduce the
softplus unit, f(ηj) = log(1+eηj ), as an approximation
to the rectified linear unit (ReLU) f(ηj) = max(0, ηj).
To have a probabilistic interpretation for this non-
linearity, the authors represent it as an infinite series
of Bernoulli units with shifted bias:

log(1 + eηj ) =
∞∑
n=1

σ(ηj − n+ .5) (12)

where σ(x) = 1
1+e−x is the sigmoid function.

This means that the sample yj from a softplus
unit is effectively the number of active Bernoulli
units. The authors then suggest using hj ∼
max(0,N (ηj , σ(ηj)) to sample from this type of unit.
In comparison, our Proposition 3.1 suggests using
hj ∼ N (log(1 + eηj ), σ(ηj)) for softplus and hj ∼
N (max(0, ηj), step(ηj)) – where step(ηj) is the step
function – for ReLU. Both of these are very similar to
the approximation of (Nair and Hinton, 2010) and we
found them to perform similarly in practice as well.

Note that these Gaussian approximations are assum-
ing g(ηj) is constant. However, by numerically ap-
proximating

∫
Hj exp

(
− Df (ηj‖hj)

)
dhj , for f(ηj) =

log(1 + eηj ), Figure 2 shows that the integrals are
not the same for different values of ηj , showing that
the base measure g(hj) is not constant for ReLU. In
spite of this, experimental results for pretraining ReLU
units using Gaussian noise suggests the usefulness of
this type of approximation.

We can extend this interpretation as a collection of
(weighted) Bernoulli units to any non-linearity f . For
simplicity, let us assume limη→−∞ f(η) = 0 and
limη→+∞ f(η) =∞4, and define the following series of
Bernoulli units:

∑∞
n=0 ασ(f−1(αn)), where the given

4The following series and the sigmoid function need
to be adjusted depending on these limits. For example,
for the case where hj is antisymmetric and unbounded
(e.g., f(ηj) ∈ { sinh(ηj), sinh−1(ηj), ηj |ηj |}), we need
to change the domain of Bernoulli units from {0, 1} to
{−.5,+.5}. This corresponds to changing the sigmoid to
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(a) ArcSinh unit (b) Sinh unit (c) Softplus unit (d) Exp unit

Figure 1: Conditional probability of Equation (11) for different stochastic units (top row) and the Gaussian approximation
of Proposition 3.1 (bottom row) for the same unit. Here the horizontal axis is the input ηj =

∑
i
Wi,jvi and the vertical

axis is the stochastic activation hj with the intensity p(hj | ηj). see Table 1 for more details on these stochastic units.

Figure 3: reconstruction of ReLU by as a series of
Bernoulli units with shifted bias.

parameter α is the weight of each unit. Here, we are
defining a new Bernoulli unit with a weight α for each
α unit of change in the value of f . Note that the un-
derlying idea is similar to that of inverse transform
sampling (Devroye, 1986). At the limit of α→ 0+ we
have

f(ηj) ≈ α
∞∑
n=0

σ(ηj − f−1(αn)) (13)

that is ĥj ∼ p(hj | ηj) is the weighted sum of active
Bernoulli units. Figure 4(a) shows the approximation
of this series for the softplus function for decreasing
values of α.

4 Experiments and Discussion

We evaluate the representation capabilities of Exp-
RBM for different stochastic units in the following
two sections. Our initial attempt was to adapt An-
nealed Importance Sampling (AIS; Salakhutdinov and
Murray, 2008) to Exp-RBMs. However, estimation of

hyperbolic tangent 1
2 tanh( 1

2ηj). In this case, we also need
to change the bounds for n in the series of Equation (13)
to ±∞.

Figure 4: Histogram of hidden variable activities on the
MNIST test data, for different types of units. Units with
heavier tails produce longer strokes in Figure 5. Note that
the linear decay of activities in the log-domain correspond
to exponential decay with different exponential coefficients.

the importance sampling ratio in AIS for general Exp-
RBM proved challenging. We consider two alterna-
tives: 1) for large datasets, Section 4.1 qualitatively
evaluates the filters learned by various units and; 2)
Section 4.2 evaluates Exp-RBMs on a smaller dataset
where we can use indirect sampling likelihood to quan-
tify the generative quality of the models with different
activation functions.

Our objective here is to demonstrate that a combi-
nation of our sampling scheme with contrastive di-
vergence (CD) training can indeed produce generative
models for a diverse choice of activation function.

4.1 Learning Filters

In this section, we used CD with a single Gibbs sam-
pling step, 1000 hidden units, Gaussian visible units5,
mini-batches and method of momentum, and selected
the learning rate from {10−2, 10−3, 10−4} using recon-
struction error at the final epoch.

The MNIST handwritten digits dataset (LeCun et al.,
1998) is a dataset of 70,000 “size-normalized and cen-

5Using Gaussian visible units also assumes that the in-
put data is normalized to have a standard deviation of 1.
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Figure 5: Samples from the MNIST dataset (first two
rows) and the filters with highest variance for different Exp-
RBM stochastic units (two rows per unit type). From top
to bottom the non-linearities grow more rapidly, also pro-
ducing features that represent longer strokes.

tered” binary images. Each image is 28×28 pixel, and
represents one of {0, 1, . . . , 9} digits. See the first row
of Figure 5 for few instances from MNIST dataset. For
this dataset we use a momentum of .9 and train each
model for 25 epochs. Figure 5 shows the filters of dif-
ferent stochastic units; see Table 1 for details on differ-
ent stochastic units. Here, the units are ordered based
on the asymptotic behavior of the activation function
f ; see the right margin of the figure. This asymptotic
change in the activation function is also evident from
the hidden unit activation histogram of Figure 4(b),
where the activation are produced on the test set us-
ing the trained model.

These two figures suggest that transfer functions with
faster asymptotic growth, have a more heavy-tailed
distributions of activations and longer strokes for the
MNIST dataset, also hinting that they may be prefer-
able in learning representation (e.g., see Olshausen and
Field, 1997). However, this comes at the cost of train-
ability. In particular, for all exponential units, due
to occasionally large gradients, we have to reduce the
learning rate to 10−4 while the Sigmoid/Tanh unit re-
mains stable for a learning rate of 10−2. Other factors
that affect the instability of training for exponential
and quadratic Exp-RBMs are large momentum and
small number of hidden units. Initialization of the
weights could also play an important role, and sparse
initialization (Sutskever et al., 2013; Martens, 2010)
and regularization schemes (Goodfellow et al., 2013)
could potentially improve the training of these models.
In all experiments, we used uniformly random values
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Figure 6: Samples and the receptive fields of different
stochastic units for from the (top three rows) SVHN
dataset and (bottom three rows) 48 × 48 (non-stereo)
NORB dataset with jittered objects and cluttered back-
ground. Selection of the receptive fields is based on their
variance.

in [−.01, .01] for all unit types. In terms of training
time, different Exp-RBMs that use the Gaussian noise
and/or Sigmoid/Tanh units have similar computation
time on both CPU and GPU.

Figure 6(top) shows the receptive fields for the street-
view house numbers (SVHN) (Netzer et al., 2011)
dataset. This dataset contains 600,000 images of digits
in natural settings. Each image contains three RGB
values for 32 × 32 pixels. Figure 6(bottom) shows
few filters obtained from the jittered-cluttered NORB
dataset (LeCun et al., 2004). NORB dataset contains
291,600 stereo 2× (108× 108) images of 50 toys under
different lighting, angle and backgrounds. Here, we
use a sub-sampled 48 × 48 variation, and report the
features learned by two types of neurons. For learn-
ing from these two datasets, we increased the momen-
tum to .95 and trained different models using up to 50
epochs.

4.2 Generating Samples

The USPS dataset (Hull, 1994) is relatively smaller
dataset of 9,298, 16×16 digits. We binarized this data
and used 90%, 5% and 5% of instances for training,
validation and test respectively; see Figure 7 (first two
rows) for instances from this dataset. We used Tanh
activation function for the 16× 16 = 256 visible units
of the Exp-RBMs6 and 500 hidden units of different
types: 1) Tanh unit; 2) ReLU; 3) ReQU and 4)Sinh
unit.

We then trained these models using CD with 10 Gibbs
sampling steps. Our choice of CD rather than al-
ternatives that are known to produce better genera-
tive models, such as Persistent CD (PCD; Tieleman,

6Tanh unit is similar to the sigmoid/Bernoulli unit, with
the difference that it is (anti)symmetric vi ∈ {−.5,+.5}.



Stochastic Neural Networks with Monotonic Activation Functions

da
ta

se
t

Ta
nh

R
eL

R
eQ

Si
nh

Figure 7: Samples from the USPS dataset (first two rows)
and few of the consecutive samples generated from different
Exp-RBMs using rates-FPCD.

2000 4000 6000 8000 10000

Iteration

110

100

90

80

Lo
g 

Li
ke

lih
oo

d

Tanh
ReLU
ReQU
Sinh
training

2000 4000 6000 8000 10000

Iteration

0.86

0.87

0.88

0.89

0.90

0.91

0.92

op
tim

al
 b

et
a

Tanh
ReLU
ReQU
Sinh

Figure 8: Indirect Sampling Likelihood of the test data
(left) and β∗ for the density estimate (right) at different
epochs (x-axis) for USPS dataset.

2008), fast PCD (FPCD; Tieleman and Hinton, 2009)
and (rates-FPCD; Breuleux et al., 2011) is due to
practical reasons; these alternatives were unstable for
some activation functions, while CD was always well-
behaved. We ran CD for 10,000 epochs with three
different learning rates {.05, .01, .001} for each model.
Note that here, we did not use method of momentum
and mini-batches in order to to minimize the number
of hyper-parameters for our quantitative comparison.
We used rates-FPCD 7 to generate 9298 × 90

100 sam-
ples from each model – i.e., the same number as the
samples in the training set. We produce these sam-
pled datasets every 1000 epochs. Figure 7 shows the
samples generated by different models at their final
epoch, for the “best choices” of sampling parameters
and learning rate.

We then used these samples Dsample =
{v(1), . . . , v(N=9298)}, from each model to esti-
mate the Indirect Sampling Likelihood (ISL; Breuleux
et al., 2011) of the validation set. For this, we built a
non-parametric density estimate

p̂(v;β) =
N∑
n=1

256∏
j=1

βI(v(n)
j

=vj)(1− β)I(v
(n)
j
6=vj) (14)

7 We used 10 Gibbs sampling steps for each sample, zero
decay of fast weights – as suggested in (Breuleux et al.,
2011) – and three different fast rates {.01, .001, .0001}.

and optimized the parameter β ∈ (.5, 1) to maxi-
mize the likelihood of the validation set – that is
β∗ = argβ max

∏
v∈Dvalid p̂(v, β). Here, β = .5 defines

a uniform distribution over all possible binary images,
while for β = 1, only the training instances have a
non-zero probability.

We then used the density estimate for β∗ as well as
the best rates-FPCD sampling parameter to evaluate
the ISL of the test set. At this point, we have an
estimate of the likelihood of test data for each hidden
unit type, for every 1000 iteration of CD updates. The
likelihood of the test data using the density estimate
produced directly from the training data, gives us an
upper-bound on the ISL of these models.

Figure 8 presents all these quantities: for each hidden
unit type, we present the results for the learning rate
that achieves the highest ISL. The figure shows the es-
timated log-likelihood (left) as well as β∗ (right) as a
function of the number of epochs. As the number of
iterations increases, all models produce samples that
are more representative (and closer to the training-set
likelihood). This is also consistent with β∗ values get-
ting closer to β∗training = .93, the optimal parameter
for the training set.

In general, we found stochastic units defined using
ReLU and Sigmoid/Tanh to be the most numerically
stable. However, for this problem, ReQU learns the
best model and even by increasing the CD steps to 25
and also increasing the epochs by a factor of two we
could not produce similar results using Tanh units.
This shows that a non-linearities outside the circle
of well-known and commonly used exponential fam-
ily, can sometimes produce more powerful generative
models, even using an “approximate” sampling proce-
dure.

Conclusion

This paper studies a subset of exponential family Har-
moniums (EFH) with a single sufficient statistics for
the purpose of learning generative models. The result-
ing family of distributions, Exp-RBM, gives a freedom
of choice for the activation function of individual units,
paralleling the freedom in discriminative training of
neural networks. Moreover, it is possible to efficiently
train arbitrary members of this family. For this, we
introduced a principled and efficient approximate sam-
pling procedure and demonstrated that various Exp-
RBMs can learn useful generative models and filters.
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