
Generalized Optimal Reverse Prediction

Martha White and Dale Schuurmans
Department of Computing Science

University of Alberta
{whitem, dale}@cs.ualberta.ca

Abstract

Recently it has been shown that classical super-
vised and unsupervised training methods can be
unified as special cases of so-called “optimal re-
verse prediction”: predicting inputs from target
labels while optimizing over both model param-
eters and missing labels. Although this perspec-
tive establishes links between classical training
principles, the existing formulation only applies
to linear predictors under squared loss, hence
is extremely limited. We generalize the formu-
lation of optimal reverse prediction to arbitrary
Bregman divergences, and more importantly to
non-linear predictors. This extension is achieved
by establishing a generalized form of forward-
reverse minimization equivalence that holds for
arbitrary matching losses. Several benefits fol-
low. First, a new variant of Bregman diver-
gence clustering can be recovered that incor-
porates a non-linear data reconstruction model.
Second, normalized-cut and kernel-based exten-
sions can be formulated coherently. Finally, a
new semi-supervised training principle can be re-
covered for classification problems that demon-
strates some advantages over the state of the art.

1 Introduction

Unsupervised learning has a long history in machine learn-
ing and statistics, focusing on problems of discovering la-
tent structure in data, such as clusters or manifolds. Super-
vised learning has an equally long history, but is normally
considered a distinct learning problem, with separate data
requirements and training principles. For example, dimen-
sionality reduction and clustering methods classically rely

Appearing in Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2012, La Palma,
Canary Islands. Volume XX of JMLR: W&CP XX. Copyright
2012 by the authors.

on principles for re-representing input data, whereas classi-
cal regression and classification methods seek to minimize
prediction error on associated output variables. Although
minimizing prediction error on outputs is not completely
irrelevant to input data reconstruction, the two are distinct
processes and a growing set of separate principles have
been developed for each. Even in a purely probabilistic
setting a similar diversity of training principles exist, par-
ticularly for “discriminative” models [Lasserre et al., 2006;
Druck et al., 2007; Druck and McCallum, 2010b].

Unfortunately, the separation between unsupervised and
supervised training principles cannot be maintained in the
context of semi-supervised learning. Here one must train
on a mix of labeled and unlabeled data and therefore rec-
oncile separate supervised and unsupervised training crite-
ria in a common framework. Given the diversity of super-
vised and unsupervised training principles, it is often un-
clear how they can best be combined. In fact, there remains
a proliferation of proposed approaches [Zhu, 2006] with es-
sentially no theoretical guarantee that exploiting unlabeled
data will even avoid harm [Ben-David et al., 2008; Li and
Zhou, 2011; Nadler et al., 2009]. Recently, some diminish-
ment of research activity on semi-supervised learning has
taken place, with the dominant approaches still being (i)
to use a supervised loss with an unsupervised loss regu-
larizer, which includes many graph-based methods [Belkin
et al., 2006; Corduneanu and Jaakkola, 2006; Zhou et al.,
2004]; (ii) to combine self-supervised training on the unla-
beled data with supervised on the labeled [Bie and Cristian-
ini, 2003; Joachims, 1999]; (iii) to train a joint probability
model generatively [Bishop, 2006; Druck and McCallum,
2010a; Nigam et al., 2000]; and (iv) co-training [Blum and
Mitchell, 1998]. In all cases, supporting theory has been
slower to develop, with few exceptions [Balcan and Blum,
2005; Ben-David et al., 2008].

Xu et al. Xu et al. [2009] provide another perspective on
the problem by first reformulating supervised and unsu-
pervised training principles in a common framework be-
fore combining them in a semi-supervised learning method.
[Xu et al., 2009] demonstrated that several classical su-
pervised and unsupervised training methods, such as least

Generalized Optimal Reverse Prediction

squares regression, principal components analysis, and
k-means clustering, could be equivalently expressed as
so-called “optimal reverse prediction”—predicting inputs
from targets while optimizing over model parameters and
missing labels. Unfortunately, these unifications were
achieved in a very limited setting by restricting attention
to linear predictors and squared loss. The framework did
however yield a semi-supervised learning approach with a
non-trivial guarantee that additional unlabeled data would
help rather than harm the training process.

In this paper we demonstrate that the unification proposed
by [Xu et al., 2009] need not be restricted in such a way.
In particular, we re-express optimal reverse prediction in a
general manner that admits arbitrary Bregman divergence
losses and non-linear transfer functions via matching losses
[Helmbold et al., 2002]. We show that this extension al-
lows: (1) some new unsupervised training principles to
be derived, such as Bregman divergence based clustering
with non-linear data reconstruction; (2) standard extensions
such as kernels and normalized graph-cut criteria to be co-
herently achieved; and (3) a simple new semi-supervised
learning algorithm to be devised that combines supervised
and unsupervised losses in a principled manner, achieving
a very similar guarantee about the benefits of additional un-
labeled data for learning.

Below, we first formulate reverse prediction with non-
linear transfer functions and use matching losses to re-
cover convex loss functions for a given non-linear trans-
fer. We then demonstrate how to to incorporate regulariza-
tion, kernels and instance weighting into the generalized
framework. We prove that two well known methods, expo-
nential family principal component analysis [Collins et al.,
2002; Gordon, 2003; Canu and Smola, 2006] and cluster-
ing with Bregman divergences [Banerjee et al., 2005], can
be expressed as special cases of the generalized framework.
Along the way we identify several algorithmic corrections
and extensions: (1) that the original exponential family
principal component analysis formulation was not condi-
tionally convex (now providing an equivalent, but condi-
tionally convex formulation using reverse prediction); (2)
how non-linear transfers can be applied to clustering with
Bregman divergences (which currently only allows linear
models); (3) kernelized exponential family principal com-
ponent analysis; and (4) normalized cut using Bregman di-
vergences. We present a simple semi-supervised algorithm
that generalizes Xu et al’s. [2009] algorithm. Interestingly,
we are able to prove a similar variance reduction result that
unlabeled data reduces variance in the error estimate of the
reverse model. Finally, we empirically demonstrate the ad-
vantages of having non-linear transfer functions and a prin-
cipled objective for semi-supervised learning.

2 Preliminaries

To begin, we consider a simple supervised learning set-up.
Assume one is given a t × n input data matrix, X , with
rows corresponding to instances and columns to features,
and corresponding t × k output (label) matrix, Y . Fur-
thermore, assume data are observed as independent rows,
hence we use Xi to denote the ith observation (row) in X ,
and Yi to denote the ith output (row) in Y . Finally, we
adopt a suitable transfer function f that emits non-linear
predictions Ŷ = f(XW), where f is applied row-wise.

To formulate a supervised training problem, we need to se-
lect a training loss, L. Since the data are observed as inde-
pendent rows, the training loss will be expressed as a row-
wise summation, written in shorthand as L(XW,Y) =∑
i L(XiW,Yi). Clearly, the choice of loss function can

be critical. For example, for a sigmoid transfer function,
f(XiW) = 1/(1 + e−XiW) (mapping a row vector to a
row vector), the least squares loss,

∑
i ‖f(XiW) − Yi‖22

can have exponentially many local minima [Auer et al.,
1996]. In general, choosing one loss function for any trans-
fer function will likely result in a nonconvex minimization.

In the context of prediction with non-linear transfer func-
tions, a well known solution to this problem is to use a
matching loss [Gentile and Warmuth, 1999; Helmbold et
al., 2002; Kivinen and Warmuth, 2001]. That is, for any
strictly convex potential function F : Rr → R, where
f = ∇F is the associated transfer function, the correspond-
ing matching loss between a pre-prediction vector ẑ = xŴ
and a target vector y = f(z) for some z is given by

L(ẑ,y) = F (ẑ)− F (z)− f(z)T (ẑ− z) = DF (ẑ||z)

whereDF is the Bregman divergence for potential function
F . Since the loss is a Bregman divergence, it has many use-
ful properties, including (i) L(ẑ,y) = 0 ⇔ ẑ = f−1(y);
(ii) L(ẑ,y) ≥ 0; and (iii) L is convex in the first argu-
ment. Matching losses encompass a wide range of losses,
including least squares (identity transfer), cross entropy
(sigmoidal transfer) and relative entropy (softmax trans-
fer) [Kivinen and Warmuth, 2001]. Given row-wise inde-
pendence, we can denote the matching loss as

L(XW,Y) = DF (XW ||f−1(Y)) = (1)
t∑
i=1

F (f−1(Yi))− F (XiW)− Yi(XiW − f−1(Yi))
T

and the corresponding loss minimization problem as

min
W

L(XW,Y) ≡ min
W

t∑
i=1

F (XiW)− YiWTXT
i . (2)

Thus, in standard supervised learning, non-linear trans-
fers significantly extend modelling power, while matching
losses allow convex training criteria to be recovered for any
transfer that is the gradient of a convex potential.

Martha White and Dale Schuurmans

3 Reverse Prediction with Matching Losses

The first result is that an equivalence can be established be-
tween distinct “forward” and “reverse” supervised training
problems, even in the presence of non-linear transfers de-
fined by potentials. The forward problem seeks to predict
the outputs Y from X , while conversely, the reverse prob-
lem considers predicting the inputs X from Y .

To relate these two problems we need the following def-
initions. For a strictly convex potential F , let F ∗(y) =
supz z

Ty−F (z) denote its Fenchel conjugate. Intuitively,
the value of the Fenchel conjugate at a point y is the inter-
cept of the line with slope y that is tanget to F , which must
be unique in this case by the strict convexity of F . The as-
sociated transfer function, f∗ = ∇F ∗, satisfies f∗ = f−1

(Lemma 4 in the Appendix). Since the forward loss can
be written L(XW,Y) =

∑
iDF (XiW ||f∗(Yi)), the cor-

responding reverse loss for the transfer, f , can be written

R(X,Y U) = DF∗(Y U ||f(X)) = (3)
t∑
i=1

F ∗(YiU)− F ∗(f(Xi))−Xi(YiU − f(Xi))
T (4)

yielding the corresponding reverse loss minimization

min
U

R(X,Y U) ≡ min
U

t∑
i=1

F ∗(YiU)−XiU
TY Ti . (5)

Although the reverse training problem (5) is not identical to
the forward training problem (2), one can establish a unique
correspondence between their optimal solutions; that is,
given U∗ one can uniquely recover W ∗ and vice versa.
For the special case of an identity transfer f(z) = z and
corresponding squared loss, Xu et al. [2009] have already
demonstrated that a unique correspondence exists between
the minimizers of (2) and (5). However, that result was es-
tablished by a reduction to linear algebraic properties that
are no longer available. Instead we generalize the result
by showing that the correspondence can still be established
between the unique optimal solutions to the forward and
reverse problems under an arbitrary matching loss with a
non-linear transfer f .

Theorem 1 (Forward-Reverse Equivalence) Given a t×
n input matrix X and a t × k output matrix Y , such that
t > rank(X) = n and t > rank(Y) = k, there exist unique
global minimizers

W ∗ = arg min
W

DF (XW ||f−1(Y)) (6)

U∗ = arg min
U

DF∗(Y U ||f(X)) (7)

where XT f(XW ∗) = XTY = f−1(Y U∗)TY. (8)

(Proof given in the Appendix.1) Although in general the
1All proofs not in the main body are given in the Appendix.

relationship between W ∗ and U∗ is implicit, in some cases
an explicit conversion can be recovered.

Corollary 2 If X has full row rank, then

W ∗ = X−1f−1(X−T f−1(Y U∗)TY).

This reverse loss minimization problem will play a key
role in formulating unsupervised training principles, and
relating them to the stated supervised training principles.
Before addressing unsupervised learning in detail in Sec-
tion 4, we first demonstrate that the generalized form of re-
verse prediction still admits standard regularizers, kernels,
and instance weighting.

3.1 Extensions

Regularization, kernels and instance weighting are widely-
used extensions that are essential for effective practical per-
formance of learning algorithms. In particular, they aide
overfitting avoidance, extend modeling power, and enable
appropriate emphasis to be placed on data points, respec-
tively. It is not obvious, however, whether all three of
these extensions can be accommodated within the reverse
training framework while preserving solution equivalence
to forward training, as established above. Fortunately, by
exploiting the relationship (8), one can show that all of
the desired correspondences can in fact be preserved under
such extensions.

First, note that for regularization, if one adds a strictly con-
vex, differentiable regularizer, R : Rn×k, to the forward
training problem

arg min
W

DF (XW ||f−1(Y)) + αR(W) (9)

one immediately obtains the solution equivalence

XT f(XW ∗) + α∇R(W ∗) = f−1(Y U∗)TY (10)

between (5) and (9). This allows an optimal W ∗ to be
uniquely recovered from an optimal U∗ under the same
conditions as Theorem 1.

Second, re-expressing the training problem in a reproduc-
ing kernel Hilbert space (RKHS) is an important extension:
kernels increase modeling power and enable a large, even
infinite number of features. Note that one cannot simply in-
corporate a kernel into a non-linear transfer function: inner
products, for example, are not invertible. However, from
the representer theorem [Kimeldorf and Wahba, 1971], the
regularized loss (9) must admit an RKHS embedding pro-
vided the regularizer is of the form R = Ω(h(WTW))
for a function h that is matrix nondecreasing [Argyriou et
al., 2009].2 This form incorporates many useful regulariz-
ers, including the commonly used Frobenius norm (‖W‖2F)

2A function h is matrix non-decreasing if M � N implies
h(M) ≥ h(N) for M � 0 and N � 0.

Generalized Optimal Reverse Prediction

and trace norm(‖W‖tr). Thus, xTW can be represented as∑
i αik(xi,x) for some given values {x1, . . . ,xm}. For

a least squares regularizer, for example, since the form of
W = XA, the kernelized form of Equation (9) becomes

arg min
A
DF (KA||f−1(Y)) + α tr(AATK). (11)

Using the corresponding reverse loss DF∗(Y B||f(K)) we
obtain the equivalence

KT f(KA∗) + 2αKA∗ = f−1(Y B∗)TY. (12)

Finally, one can easily incorporate instance weights in the
formulations while still preserving unique forward-reverse
solution correspondences. Note that the Fenchel dual of
Fλ(x) = λF (x) is given by F ∗λ (y) = λF ∗(y/λ) for
λ > 0, with corresponding gradients fλ(x) = λf(x) and
f∗λ(y) = f−1(y/λ). Despite the modified conjugates, the
reverse problem simplifies to adding instance weights to
the original reverse loss. To illustrate, consider an instance
weighted version of the forward loss minimization problem

minW
∑t
i=1 λiDF (XiW ||f−1(Yi))

= minW
∑t
i=1DFλi

(XiW ||f−1
λ (λiYi)). (13)

Using the above identity, we conclude that the correspond-
ing reverse loss can be expressed

DF∗
λi

(λiYiUi||fλi(Xi))

= λiF
∗(λiYiUλ

−1
i)− λiF ∗(λif(Xi)λ

−1
i)

− f−1(λif(Xi)λ
−1
i)(λiYiU − λif(Xi))

= λiF
∗(YiU)− λiF ∗(f(Xi))

− λif−1(f(Xi))(YiU − f(Xi)).

This yields the same results as minimizing λiDF∗ ; i.e.

minU
∑t
i=1DF∗

λi
(λiYiUi||fλ(Xi))

≡ minU
∑t
i=1 λiDF∗(YiU ||f(Xi) (14)

therefore forward-reverse solution equivalence is retained.

4 Unsupervised Learning

In supervised learning, re-expressing standard forward
training criteria in corresponding reverse formulations ap-
pears superfluous. However, for unsupervised learning the
reverse formulation is necessary, since the forward opti-
mization for unsupervised learning is vacuous, while the
reverse optimization is not. Notice that for any W , Z can
be set to Z = f(XW) to obtain DF (XW ||f∗(Z)) = 0
(a vacuous result). The same is not true of U and Z in
DF∗(ZU ||f(X)), assuming k < n.

Importantly, the same forward-reverse equivalence can be
maintained for unsupervised learning. By Theorem 1, first

jointly learning a reverse model and labels, U∗ and Z∗,
fixing Y = Z∗ then optimizing the forward loss, is guar-
anteed to produce the unique optimal forward model, W ∗,
corresponding to Z∗ and U∗. In this section, we exploit
this generality to extend and improve existing unsupervised
learning within the reverse prediction framework.

4.1 Exponential Family PCA

In standard prinicipal component analysis (PCA), one
seeks to minimize the negative log likelihood between the
data, X , and estimated parameters, θ, with the assumption
that P (x|θ) is normally distributed. In exponential family
PCA, this distribution can instead be any regular exponen-
tial family (also called natural exponential family):

PF∗(x|θ) = exp(xTθ − F ∗(θ))p0(x)

where F ∗ is commonly thought of as the cumulant func-
tion. Examples of natural exponential families include the
Gaussian, gamma, chi-square, beta, Weibull, Bernoulli and
Poisson distributions Banerjee et al. [2005]. Furthermore,
many distributions can also be approximated with exponen-
tial families, greatly extending the applicability of PCA.

Collins et al. [2002] claimed (without proof) that this loss
could be expressed through a Bregman distance:

− logP (x|θ) = − logP0(x)− F (x) +DF (x||f−1(θ))

⇒ min
z

min
U
− log(P (xT |zTU))

≡ min
z

min
U

DF (xT ||f−1(zTU)) (15)

with θT = zTU . Here z is the low dimensional represen-
tation of x and U is the projection matrix onto the z space.
The first equality results from the fact that f−1(θ)θ =
F (f−1(θ)) + F ∗(θ). Banerjee et al. [2005] proved that
this relationship was valid for regular exponential families.

Notice that the optimization on DF (x||f−1(θ)) is not nec-
essarily convex, as Bregman divergences are only guaran-
teed to be convex in the first argument. In the following,
we illustrate that exponential family PCA is an instance of
reverse prediction, framed now as a convex optimization.

Definition 3 A regular exponential family distribution,
PF∗(x|θ), has F ∗(x) = ln(g(x)) with g : Xn → R+

a continuous exponentially convex function with X open
and F ∗ strictly convex. DF∗ is a regular Bregman diver-
gence. A continuous function g : Xn → R+ is exponen-
tially convex function iff it is a Laplace transform of a non-
negative finite measure. Examples include exp(ax+ bx2),
(exp(x)− 1)/x, x−n and sinh(x)/x [Ehm et al., 2003].

Lemma 4 With ŷ = f(ẑ) and y = f(z),

DF (ẑ||z) = DF∗(y||ŷ). (16)

Martha White and Dale Schuurmans

Theorem 5 For DF∗ a regular Bregman divergence, then
unconstrained reverse prediction

minZ minU DF∗(ZU ||f(X)) (17)

is equivalent to regular exponential family principal com-
ponents analysis (EPCA).

Proof: From Banerjee et al. [2005], we know that mini-
mizing the log likelihood for regular exponential families
corresponds to minimizing a regular Bregman divergence
in Equation 15. This is not a convex minimization, but us-
ing Lemma 4, we convert the minimization to a dual space.

DF∗(ZU ||f(X)) = DF (f−1(f(X))||f−1(ZU))

= DF (X||f−1(ZU))

because (F ∗)∗ = F . Therefore, the reverse prediction op-
timization is equivalent to EPCA.

Moreover, based on the previous kernel extensions for gen-
eralized reverse prediction, one can extend exponential
family PCA to kernel exponential family PCA.

Corollary 6 Kernelized reverse prediction with regular
Bregman divergences

min
Z

min
U

DF∗(ZU ||f(K)) (18)

is equivalent to kernel EPCA.

Thus far, we have illustrated how a generalized reverse pre-
diction framework enables improvements and extensions
for exponential family PCA. We next present some useful
modifications to Bregman clustering using other insights
offered by the framework.

4.2 Clustering with Bregman Divergences

Banerjee et al. [2005] generalized the centroid-based hard
clustering problem to clustering using any Bregman diver-
gence. We will once again find that Bregman clustering is
an instance of reverse prediction, despite the fact that they
reach their generalization using the idea of Bregman infor-
mation rather than reverse prediction. More importantly,
however, the formulation of Bregman clustering expressed
in [Banerjee et al., 2005] only permits linear transfers (as
seen in Theorem 7). Under reverse prediction, we will be
able to provide a new Bregman clustering formulation that
incorporates non-linear transfers.

Theorem 7 Constrained reverse prediction with any Breg-
man divergence and non-transfered ZU :

min
Z:Z∈{0,1}t×k, Z1=1

min
U

DF∗(f(ZU)||f(X)) (19)

is equivalent to clustering with Bregman divergences.

Proof: For Z = {Z ∈ {0, 1}t×k | Z1 = 1}, k-means
clustering with Bregman divergences was framed under the
minimization minZ∈Z minU DF (X||ZU) [Banerjee et al.,
2005]. Thus, we can apply the same argument as in Th. 5.

Since Z is a discrete {0, 1} variable, Banerjee et al. [2005]
show how the optimization for Bregman clustering can be
simplified to a simple k-means algorithm. Using a similar
insight, we can formulate a correspondingly efficient form
of Bregman divergence clustering that incorporates a non-
linear transfer between ZU and Y :

DF∗(ZU ||f(X)) = DF (X||f∗(ZU))

= DF (X||Zf∗(U)) (20)
=⇒ min

Z∈Z
min

U∈Dom(f∗)
DF∗(ZU ||f(X)) (21)

= min
Z∈Z

min
M∈Dom(f)⊂Rn×k

DF∗(X||ZM) (22)

= min
Z∈Z

min
M∈Dom(f)

k∑
j=1

∑
i:Zij=1

DF∗(Xi:||ZM:j) (23)

= min
Z∈Z

∑
j

1

1TZ:j

∑
i:Zij

Xi:. (24)

(The proof for the simplification of the inner maximiza-
tion is given in the Appendix.) Algorithm 1 illustrates our
modified Bregman clustering algorithm which now permits
non-linear transfers.

Banerjee et al. [2005] also extend their algorithm to mix-
ture models (relaxed constraints on Z ∈ [0, 1]), by using
regular Bregman divergences. Algorithm 2 gives the new
objective and corresponding updates for our mixture model
clustering algorithm with non-linear transfers, using simi-
lar arguments to those above. Note that as ρ → ∞, the
update converges to the hard clustering update.

As an important note, a popular algorithm for clustering
speech data in the signal processing community (Linde-
Buzo-Gray algorithm) and information-theoretic cluster-
ing are special cases of Bregman clustering depending on
the choice of Bregman divergence [Banerjee et al., 2005].
Therefore, the above unification and non-linear transfer re-
sults apply to these algorithms as well. It is important to
notice that these reverse losses can either be used with or
without a non-linear transfer: the Bregman divergence al-
lows different distribution assumptions on the underlying
data, but the modeling power can be reduced without the
ability to use the non-linear transfers.

Theorem 8 Probabilistic constrained reverse prediction
with regular Bregman divergences and non-transferredZU

min
Z:Z∈[0,1]t×k, Z1=1

min
U

DF∗(f(ZU)||f(X)) (25)

is equivalent to mixture model clustering with Breg. div.

Generalized Optimal Reverse Prediction

Algorithm 1 ReverseBregmanHardClustering(X, k,DF)

1: Initialize M (e.g. k randomly selected rows from X)
2: while (change in DF (X||M)) > tolerance do
3: E-Step: ∀i ∈ {1, . . . , t} :
4: Z(i, arg minj DF (X(i, :)||M(:, j))) = 1
5: M-Step: ∀j ∈ {1, . . . , k} :
6: M:j = 1

1TZ:j

∑
i:Zij=1Xi:

7: end while

Algorithm 2 ReverseBregmanSoftClustering(X, k,Df)

1: Initialize M (e.g. k randomly selected rows from X)
2: err(M,p) = −

∑
i log

(∑
j pj exp(−ρDF (Xi:||M:j))

)
3: while (change in err(M,P)) > tol do
4: //Shift Breg. divergence with min to avoid underflow
5: E-Step: Zij = pj exp[−ρ(DF (Xi:||M:j)
6: −minj DF (Xi:||M:j))]
7: Zij = Zij/

∑
j Zij //normalize Z

8: M-Step: M = diag(ZT1)ZTX
9: p = 1

tZ
T1

10: end while

As with exponential family PCA, one can add regulariza-
tion and kernels to Bregman divergence clustering. Adding
instance weights results in a more interesting extension:
Bregman normalized cut. Under an identity transfer func-
tion (producing a least-squares matching loss), [Xu et al.,
2009] illustrated that constrained weighted reverse predic-
tion was equivalent to normalized graph-cut with weights
diag(K1). For other transfer functions, we obtain a ver-
sion of normalized graph-cut generalized to Bregman di-
vergences. Weighting with the kernel matrix intuitively
places the most representative points as cluster centers,
since the error is high for classifying those points incor-
rectly; the sum of edge weights across cuts in the adjacency
graph, therefore, should be correspondingly low. We ex-
pect this extension to have similar properties to normalized
cut, such as balanced clustering [Joachims, 2003].

With the generalized reverse prediction framework de-
veloped here, connections between existing unsupervised
learning algorithms and related gaps have become much
more apparent. Similarly, in the next section, we show how
the generalized reverse prediction framework can also offer
new insights and algorithms for semi-supervised learning.

5 Semi-supervised Learning

We have seen that both supervised and unsupervised learn-
ing can be expressed as minimizing a reverse Bregman re-
construction loss. Consequently, as in [Xu et al., 2009],
one can perform semi-supervised learning in a unified way
using a reverse loss for both labeled and unlabeled data:

min
Z

min
U

DF∗(YLU ||f(XL))/tL +

µ DF∗(ZU ||f(XU))/tU . (26)

Here (XL, YL) and XU denote the labeled and unlabeled
data, tL and tU denote the respective number of examples,
and the parameter µ trades off between the two losses.

Despite the simplicity of the objective in Equation (26), it
has not apparently been investigated in the literature previ-
ously. This could be due to the fact that it has been typical
to combine a forward loss on the labeled data and a re-
verse loss (or regularizer) on the unlabeled data [Belkin et
al., 2006; Kulis et al., 2009; Zhou et al., 2004]. Given the
above discussion, such an approach seems heuristic. A lo-
cal solution to Equation (26) can be obtained by alternating
between optimizing Z and U . We provide pseudocode for
semi-supervised clustering and semi-supervised regression
in the Appendix.

In the next section, we provide a variance reduction argu-
ment showing that more unlabeled data cannot harm the
algorithm in a particular sense. In the experiments, we
demonstrate the efficacy of the above semi-supervised for-
mulation with a simple alternating minimization.

6 Reverse Loss Decomposition

When using semi-supervised learning, it is important to
consider whether adding unlabeled data strictly helps.
There is empirical and theoretical evidence that unlabeled
data can actually harm the performance of current semi-
supervised learning methods [Ben-David et al., 2008; Li
and Zhou, 2011; Nadler et al., 2009]. In the following,
we demonstrate that the specific semi-supervised approach
proposed here should reduce variance in the error estimate,
and at worst will not decrease performance over strictly us-
ing the labeled data.

Definition 9 (Affine set) A set Ω is affine if for any
x1, . . . , xn ∈ Ω and a1, . . . , an ∈ R, we have∑n
i=1 aixi ∈ Ω. Every affine set is convex.

Definition 10 (Generalized Pythagorean Theorem)
[Murata et al., 2004] For x1, x2 ∈ X and Ω an affine
set, let PΩ(x) = arg minω∈ΩDF (ω||x) be the Bregman
projection, then

DF (x1||x2) = DF (x1||PΩ(x2)) +DF (PΩ(x2)||x2).

For reverse semi-supervised learning, we define the sub-
space based on the current reverse model, U : Ω =
{zU | zU ∈ f(X)}, where X is the space of all possi-
ble input vectors, x. For an affine set Z , ZU is guaran-
teed to be affine. Examples of transfers that enable Z to
be affine include f(x) = x, f(x) = log2(x) + 1/ log(2)
(KL divergence) and the relaxed sigmoid, f(x) = sign(x) ·
log(|x|/θ + 1) (θ ∈ R). A sufficient thought not necessary
condition to make the image affine is for f to be surjective
on Rk. In the following theorem, we provide our variance
reduction argument for this class of transfer functions.

Martha White and Dale Schuurmans

Theorem 11 For any XL, XU , YL, U and transfer func-
tion, f , with resulting affine feature set, Z , then for
R(X,Y U) = DF∗(Y U ||f(X))

E[R(XL, YLU)/tL]

= E[R(X,Z∗U)/tS] + E[R(Z∗LU, YLU)/tL] (27)

where X=[XL;XU] and Z∗=arg min
Z∈Z

DF∗(ZU ||f(X)) .

Therefore, with more unlabeled data, the variance of the es-
timate of the first expected value in the loss decomposition
is decreased, monotonically reducing the variance of the
supervised learning error estimate. With a reduced vari-
ance estimate of the loss, one is closer to optimizing the
true loss and should obtain an improved solution.

If we only want to consider convex rather than affine sets,
the Generalized Pythagoras Theorem changes to an in-
equality on the losses

DF (x1||x2) ≥ DF (x1||PΩ(x2)) +DF (PΩ(x2)||x2).

Unfortunately, this inequality does not provide any guar-
antees for unlabeled data. The cosine law might enable a
similar variance reduction argument if specific properties
of the convex set and transfer are known:

DF (x1, x2) = DF (x1, x3) +DF (x3, x2)

− (x1 − x3)T (∇F (x2)−∇F (x3)).

7 Semi-supervised Learning Experiments

In this section, we explore two main points: (1) the utility
of non-linear transfers, and (2) the general performance of
our principled semi-supervised algorithm. For regression
and classification, we generate synthetic data to assess the
importance of having the correct transfer function; to test
generality, we use real-world data. We report transductive
error as some competitors are solely transductive.

Regression Experiments: For regression, we generate
synthetic data with three transfer functions: (i) Y = XW ,
(ii) Y = (XW)3 and (iii) Y = exp(XW). The data is
generated in reverse with Y and U generated from (0, 1)-
Gaussians and X set to X = f−1(Y U+noise). We also
report results on three UCI datasets: kin-32fh (n=34, k =
1), puma-8nm (n = 8, k =1) and California housing (n =
5, k =1). We compare our approach against transductive
regression [Cortes and Mohri, 2007] and also include su-
pervised (kernel) least-squares as a baseline comparison.
We use limited memory BFGS to optimize our objectives.

To better evaluate the algorithms, we automatically tune
parameters using transductive error on the unlabeled data
for each algorithm on each dataset. In practice, parameters
are usually tuned using cross-validation on only labeled
examples; this approach, however, can have confounding

effects due to lack of labeled data for evaluation. Since
cross-validation on labeled examples is a high-variance es-
timate of the true performance of different parameter set-
tings, using the transductive error enables us to more accu-
rately select parameters for each algorithm on each dataset.
For both regression and classification, we included cross
validation results on one real dataset (the starred dataset)
to illustrate that cross validation can be used in practice.
We tuned the trade-off parameter µ ∈ [1e-3, 1e-2, 1e-1]
(above µ = 1, performance degrades). For transductive
regression, we tuned over λ, C1 and C2 and fixed r as rec-
ommended in their paper. All algorithms were tuned over
using no kernel, a linear kernel and Gaussian kernels with
widths in [0.01, 0.1, 1, 5, 10].

The results in Table 1 clearly indicate that using the correct
transfer function is crucial to performance. For each of the
synthetic datasets, optimizing with the transfer used to gen-
erate the synthetic data performs significantly better than
the other algorithms and objectives, verifying our expecta-
tions. The synthetic results for the exponential transfer are
particularly illustrative: errors are drastically amplified for
non-exponential data (the wrong transfer can significantly
impede prediction), but much lower for exponential data.

These insights and properties transfer to performance on
real datasets. On the kin-32fh dataset, using an expo-
nential transfer considerably improved performance. This
surprising improvement likely occurred because the kin-
32fh outputs were all positive and the exponential trans-
fer enforces Yij ∈ R+. On the mainly linear simulated
robot-arm dataset, puma-8nm, the three linear approaches
are comparable. The highly nonlinear California housing
dataset, however, illustrates some interesting phenomena.
First, the addition of kernels is important for modeling: the
transductive regression algorithm leverages the wide range
of kernels well for modeling (as reducing the number of
widths causes it’s performance to degrade below super-
vised learning). Second, the nonlinear cube transfer in-
terestingly performed the best out of the three transfers,
illustrating that adding nonlinear transfers to the reverse
prediction framework empirically as well as theoretically
increases the breadth of applicable datasets.

Classification Experiments: For classification, we gener-
ated synthetic data with three transfer functions: (i) Y =
XW , (ii) Y = (1 + exp(−XW))−1 (sigmoid) and (iii)
Y = exp(XW)(1T exp(XW))−1 (softmax). The data
was generated by selecting uniformly random classes for Y
and drawing U from a Gaussian distribution for the iden-
tity transfer and from a uniform distribution for sigmoid
and softmax, with rows of U and the noise normalized for
softmax. For sigmoid and softmax,X = f−1((1−σ)Y U+
σ·noise). We also tested on three real datasets: the Wiscon-
sin breast cancer (WBC) dataset with (n=10, k=2), LINK,
a WebKB dataset with (n=1051, k=2), and SetStr, a semi-
supervised benchmark dataset with (n = 15, k=2).

Generalized Optimal Reverse Prediction

Table 1: Average transductive error of semi-supervised regression techniques on a variety of datasets, with (n, k, tu) and
tl = 20, over 5 splits of the data. Parameters were tuned with cross-validation on the Parkinson’s dataset (starred).

SYN-GAUSS SYN-CUBED SYN-EXP KIN-32FH PUMA-8NM CALHOUSING*
N=30, K=5, U=200 N=20, K=3, U=200 N=5, K=2, U=200 N=34, K=1, U=100 N=8, K=1, U=100 N=5, K=1, U=300, tl=50

SUP-KERNEL 2e-14 ± 4.4e-15 0.246 ± 0.030 408 ± 116.9 0.759 ± 0.249 27.36 ± 1.858 133.3 ± 10.01
TRANS-REG 3E-06 ± 2E-06 0.244 ± 0.0672 1039 ± 304.7 0.766 ± 0.254 27.04 ± 3.270 119.6 ± 10.64
TRANS-REG 3E-06 ± 8.9E-07 0.244 ± 0.030 1039 ± 136.2 0.766 ± 0.113 27.04 ± 1.462 119.6 ± 4.758
SEMI EUC 6e-31 ± 8.9e-32 0.120 ± 0.003 1423 ± 95.61 0.524 ± 0.042 28.91 ± 1.420 129.5 ± 7.101
SEMI CUBED 1.91 ± 0.752 3e-05 ± 2.6e-06 348.1 ± 34.03 2.19 ± 0.152 4300 ± 2733. 127.1 ± 6.064
SEMI EXP 2E+18 ± 1.341 5E+83 ± 4.024 1.7e-4 ± 0.000 0.222 ± 0.014 3E+18 ± 1.788 138.5 ± 4.006

Table 2: Average transductive percent misclassification error of semi-supervised classification techniques on synthetic and
real-world datasets, given (n, k, tu) and tl = 10, over 20 splits. Euc, Sig and Soft correspond to objectives with identity,
sigmoid and softmax transfers. Hard (Soft) corresponds to hard (soft) clustering. Hard/Soft Sig NC is Bregman normalized
cut with a sigmoid transfer. Parameters were tuned with cross-validation on the SetStr dataset (starred) with tl = 50.

SYN-GAUSS SYN-SIGMOID SYN-SOFTMAX WBC LINK SETSTR*
N=30, K = 5, U=100 N=10, K=3, U=100 N=10, K = 3, U=100 N=10, K = 2, U=50 N=1051, K=2, U=200 N=15, K=2, U=400

SUP-KERNEL 3.70 ± 0.450 27.7 ± 1.621 29.9 ± 4.136 11.2 ± 1.283 0.207 ± 0.029 0.501 ± 0.007
LGC 0.90 ± 0.205 22.6 ± 1.870 26.5 ± 2.423 5.20 ± 0.963 0.150 ± 0.008 0.476 ± 0.014
LAPSVM 0 ± 0.0 17.2 ± 1.443 24.8 ± 3.785 4.80 ± 0.606 0.136 ± 0.011 0.479 ± 0.009
LAPRLSC 0 ± 0.0 18.2 ± 1.514 26.5 ± 3.781 3.60 ± 0.521 0.144 ± 0.016 0.504 ± 0.012
HARD EUC 0 ± 0.0 14.3 ± 0.991 27.4 ± 3.537 3.20 ± 0.218 0.130 ± 0.007 0.481 ± 0.019
HARD SIG 2.70 ± 0.296 16.2 ± 0.829 27.1 ± 3.532 3.20 ± 0.218 0.130 ± 0.007 0.445 ± 0.015
HARD SFTMAX 3.40 ± 0.268 13.7 ± 0.554 22.2 ± 4.241 6.00 ± 0.282 0.134 ± 0.007 0.503 ± 0.017
HARD SIG NC 2.70 ± 0.296 16.2 ± 0.829 27.1 ± 3.532 6.80 ± 0.606 0.130 ± 0.007 0.510 ± 0.018
SOFT EUC 0 ± 0.0 12.5 ± 0.803 35.0 ± 4.387 4.40 ± 0.334 0.105 ± 0.007 0.489 ± 0.013
SOFT SIG 0 ± 0.0 12.0 ± 0.902 32.7 ± 4.380 4.40 ± 0.521 0.193 ± 0.030 0.481 ± 0.019
SOFT SFTMAX 1.90 ± 0.584 13.2 ± 0.944 19.0 ± 3.117 5.20 ± 0.456 0.231 ± 0.027 0.481 ± 0.019
SOFT SIG NC 0 ± 0.0 11.6 ± 0.920 33.3 ± 4.637 4.00 ± 0.400 0.114 ± 0.006 0.480 ± 0.014

We compare to three state-of-the-art semi-supervised al-
gorithms: learning with local and global consistency
(LGC) [Zhou et al., 2004], Laplacian SVMs [Sindhwani
et al., 2005] and Laplacian regularized least squares
(RLSC) [Sindhwani et al., 2005]. We test our Breg-
man hard and soft clustering objectives over a variety
of transfer functions, kernels and instance weights. We
tuned the trade-off parameter, µ ∈ [1e-3, 1e-2, 1e-1] and
soft clustering parameter, ρ ∈ [1, 10, 50, 100, 200].
For LGC, we tuned the smoothness parameter α ∈
[1e-5, 1e-3, 0.1, 0.5]. For the Laplacian algorithms, we set
γA = 1e-6 and γI = 0.01 and tuned the Laplacian degree
in [1, 2, 5] and number of nearest neighbours in [5, 20].
All algorithms were tuned over no kernel, a linear kernel
and a Gaussian kernel with widths in [0.01, 0.1, 1, 5, 10].

As with regression, the transfer has an impact on perfor-
mance (Table 2). Though all algorithms performed well on
the Gaussian data, we can see that the incorrect sigmoidal
and softmax transfers did decrease performance. We see a
corresponding result for the synthetic sigmoidal and soft-
max data. Interestingly, for the sigmoidal transfer and for
the WBC dataset, the normalized cut extension improved
performance. Moreover, it seems to be the case that the
normalized cut extension performs better with the soft clus-
tering algorithm rather than the hard clustering algorithm.
On the three real-world datasets, it is interesting that there
is no obvious trend of hard over soft clustering or one trans-
fer over another. On WBC, hard clustering with a euclidean

(linear) or sigmoidal transfer performs the best; on LINK,
soft clustering with a euclidean transfer performs the best;
and on SetStr, hard clustering with a sigmoidal transfer per-
forms the best. Overall, we can see that the variety of op-
tions provided by the reverse prediction framework enables
us to tailor our objective to the given data. Using prior
knowledge alongside empirical selection of transfers, pre-
diction accuracy can be dramatically improved.

8 Conclusion

In this paper, we demonstrated that reframing supervised
and unsupervised learning as reverse prediction permits key
algorithmic insights and empirical benefits. With one learn-
ing paradigm, unsupervised objectives can be designed to
obtain certain properties by varying the constraints on the
unknown labels and using different transfer functions, ker-
nels, regularizers and instance weights. The resulting prin-
cipled semi-supervised algorithm outperforms state-of-the-
art, particularly when Gaussian assumptions are not met.

There are still many open questions about how to further
generalize the reverse prediction framework. One useful
extension would be to relax the restrictions on the trans-
fer function: there are several useful nonsmooth, non-
invertible transfers, like the sign transfer for hinge loss.
Another avenue is to systematically determine which other
unsupervised algorithms are instances of Bregman reverse
prediction, with potential novel insights for generalization.

Martha White and Dale Schuurmans

References
A Argyriou, C Micchelli, and M Pontil. When is there a

representer theorem? Vector versus matrix regularizers.
JMLR, 10:2507–2529, 2009.

P Auer, M Herbster, and MK Warmuth. Exponentially
many local minima for single neurons. Advances in Neu-
ral Information Processing Systems, 1996.

M-F. Balcan and A. Blum. A PAC-style model for learning
from labeled and unlabeled data. In Annual Conference
on Computational Learning Theory (COLT), 2005.

A Banerjee, S Merugu, IS Dhillon, and J Ghosh. Cluster-
ing with bregman divergences. The Journal of Machine
Learning Research, 6:1705–1749, 2005.

M Belkin, P Niyogi, and V Sindhwani. Manifold regu-
larization: A geometric framework for learning from la-
beled and unlabeled examples. JMLR, 2006.

S Ben-David, T Lu, and David Pal. Does unlabeled data
provably help? worst-case analysis of the sample com-
plexity of semi-supervised learning. Annual Conference
on Computational Learning Theory, pages 33–44, 2008.

T De Bie and Nello Cristianini. Convex methods for trans-
duction. Advances in Neural Information Processing
Systems, 16:73–80, 2003.

CM Bishop. Pattern recognition and machine learning.
Springer, 2006.

A Blum and T Mitchell. Combining labeled and unlabeled
data with co-training. Annual Conference on Computa-
tional Learning Theory, pages 92–100, 1998.

S Canu and A Smola. Kernel methods and the exponential
family. Neurocomputing, 2006.

M Collins, S Dasgupta, and R E Schapire. A generalization
of principal component analysis to the exponential fam-
ily. Advances in Neural Information Processing Systems,
2002.

A Corduneanu and T Jaakkola. Data dependent regulariza-
tion. Semi-Supervised Learning, 2006.

C Cortes and M Mohri. On transductive regression.
Advances in Neural Information Processing Systems,
19:305, 2007.

G Druck and A McCallum. High-performance semi-
supervised learning using discriminatively constrained
generative models. International Conference on Ma-
chine Learning, 2010.

Gregory Druck and Andrew McCallum. High-performance
semi-supervised learning using discriminatively con-
strained generative models. In International Conference
on Machine Learning, 2010.

Gregory Druck, Chris Pal, Xiaojin Zhu, and Andrew Mc-
Callum. Semi-supervised classification with hybrid gen-
erative/discriminative methods. In International Confer-
ence on Knowledge Discovery and Data Mining, 2007.

W. Ehm, M.G. Genton, and T. Gneiting. Stationary covari-
ances associated with exponentially convex functions.
Bernoulli, 9(4):607–615, 2003.

C Gentile and M Warmuth. Linear hinge loss and aver-
age margin. Advances in Neural Information Processing
Systems, 1999.

G Gordon. Generalized2 linear2 models. Advances in Neu-
ral Information Processing Systems, Jan 2003.

DP Helmbold, J Kivinen, and MK Warmuth. Relative loss
bounds for single neurons. IEEE Transactions on Neural
Networks, 10(6):1291–1304, 2002.

T Joachims. Transductive inference for text classification
using support vector machines. International Confer-
ence on Machine Learning, 1999.

T Joachims. Transductive learning via spectral graph parti-
tioning. International Conference on Machine Learning,
pages 290–297, 2003.

G. Kimeldorf and G. Wahba. Some results on tchebychef-
fian spline functions. Journal of Mathematical Analysis
and Applications, 33(1):82–95, 1971.

J Kivinen and MK Warmuth. Relative loss bounds for mul-
tidimensional regression problems. Journal of Machine
Learning Research, 45(3):301–329, 2001.

B Kulis, S Basu, I Dhillon, and R Mooney. Semi-
supervised graph clustering: a kernel approach. Journal
of Machine Learning Research, 74:1–22, 2009.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P.
Minka. Principled hybrids of generative and discrimina-
tive models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

Y Li and Z Zhou. Towards making unlabeled data never
hurt. International Conference on Machine Learning,
2011.

N Murata, T Takenouchi, T Kanamori, and S Eguchi. In-
formation geometry of u-boost and bregman divergence.
Neural Computation, 16(7):1437–1481, 2004.

B Nadler, N Srebro, and X Zhou. Semi-supervised learning
with the graph laplacian: The limit of infinite unlabelled
data. Advances in Neural Information Processing Sys-
tems, 2009.

K Nigam, A McCallum, S Thrun, and T Mitchell. Text
classification from labeled and unlabeled documents us-
ing em. Journal of Machine Learning Research, 39:103–
134, 2000.

V Sindhwani, P Niyogi, and M Belkin. Beyond the point
cloud: from transductive to semi-supervised learning.
International Conference on Machine Learning, 2005.

L Xu, M White, and D Schuurmans. Optimal reverse pre-
diction: a unified perspective on supervised, unsuper-
vised and semi-supervised learning. International Con-
ference on Machine Learning, 2009.

Generalized Optimal Reverse Prediction

D Zhou, O Bousquet, TN Lal, J Weston, and B Scholkopf.
Learning with local and global consistency. Advances in
Neural Information Processing Systems, 2004.

X Zhu. Semi-supervised learning literature survey. Com-
puter Science, 2006.

Martha White and Dale Schuurmans

9 Appendix

9.1 Proofs

Lemma 4 DF (ẑ||z) = DF∗(y||ŷ) where ŷ = f(ẑ) and y = f(z).

Proof: Recall that F ∗(y) = maxz z
Ty − F (z), and solving for the maximum z we obtain

d

dz
= y −∇F (z) = y − f(z) = 0

=⇒ z = f−1(y)

giving

F ∗(y) = f−1(y)Ty − F (f−1(y))

Now we can rewrite DF∗(y||ŷ) in terms of F and f−1 = f∗

DF∗(y||ŷ) = F ∗(y)− F ∗(ŷ)− f∗(ŷ)T (y − ŷ)

= f−1(y)Ty − F (f−1(y))− f−1(ŷ)T ŷ + F (f−1(ŷ))− f−1(ŷ)T (y − ŷ)

= f−1(y)Ty − F (f−1(y)) + F (f−1(ŷ))− f−1(ŷ)Ty

Finally, recall that ŷ = f(ẑ) and y = f(z), giving us

DF∗(y||ŷ) =

= f−1(y)Ty − F (f−1(y)) + F (f−1(ŷ))− f−1(ŷ)Ty

= f−1(f(z))T f(z)− F (f−1(f(z))) + F (f−1(f(ẑ)))− f−1(f(ẑ))T f(z)

= zT f(z)− F (z) + F (ẑ)− ẑT f(z)

= F (ẑ)− F (z)− f(z)T (ẑ− z)

= DF (ẑ||z)

Theorem 1 Given rank n input t × n matrix, X , and rank k output t × k matrix, Y , with t > n and t > k, there exist
unique global minimizers, W ∗ and U∗ for L(XW,Y) and R(X,Y U) respectively:

W ∗ = argmin
W

DF (XW ||f−1(Y)) (28)

U∗ = argmin
U

DF∗(Y U ||f(X)) (29)

Moreover, W ∗ and U∗ are related in the following way

XT f(XW ∗) = f−1(Y U∗)TY (30)

Proof: Let F be a strictly convex function with Dom(F) = {XW : W ∈ Rn}, with any full rank X (i.e., X such that
XW1 6= XW2 for W1 6= W2). Then G = F (X·) has Dom(G) = Rn (which is convex). For W1,W2 in Dom(G) such
that W1 6= W2

G(λW1 + (1− λ)W2) = F (X(λW1 + (1− λ)W2))

= F (λXW1 + (1− λ)XW2)

< λF (XW1) + (1− λ)F (XW2) because F is strictly convex and XW1 6= XW2.
= λG(W1) + (1− λ)G(W2)

Therefore, G is strictly convex. The optimization minW G(W) therefore has a unique minimum. Notice that we can
always linearize X, W and Y to make sure that we are working with vectors.

Generalized Optimal Reverse Prediction

For the relation, since W ∗ and U∗ are global minimizers of L(XW,Y) and R(X,Y U), we know that the gradients

d

dW
L(XW ∗, Y) = XT (f(XW ∗)− Y) = 0 (n× k)

d

dU
R(X,Y U∗) = Y T (f∗(Y U∗)−X) = 0 (k × n)

giving

XT (f(XW ∗)− Y) = (Y T (f∗(Y U∗)−X))T

XT f(XW ∗)−XTY = f∗(Y U)TY −XTY

=⇒

XT f(XW ∗) = f∗(Y U∗)TY

Theorem 11 For any XL, XU , YL, U and transfer function, f , with resulting affine feature set, Z , then for R(X,Y U) =
DF∗(Y U ||f(X))

E[R(XL, YLU)/tL] = E[R(X,Z∗U)/tS]+

E[R(Z∗LU, YLU)/tL] (31)

where X = [XL;XU] and Z∗ = argmin
Z∈Z

DF∗(ZU ||f(X))

Proof: From the Generalized Pythagoras Theorem, we know that

E[DF∗(YLU ||f(XL))/tL] =

E[DF∗(Z∗LU ||f(XL))/tL] + E[DF∗(Z∗LU ||YLU)/tL]

Since

E[DF∗(Z∗LU ||f(XL))/tL] = E[DF∗(Z∗U ||f(X))/tS]

= E[R(X,Z∗U)/tS]

we get the above result.

9.2 Algorithms for clustering

To obtain the simplifications used for our modified clustering algorithms, we provide the following lemmas.

Lemma 12 DF∗(Y U ||f(X)) = DF (X||f∗(Y U)) = DF (X||Y f∗(U))

Proof: From Lemma 4, we know that DF (X||f∗(Y U)) = DF∗(Y U ||f(X)). Now, since Y ∈ {0, 1}t×k and Y 1 = 1,
we can see that Y U simply selects rows of U , i.e. if there is a one at position 1 ≤ j ≤ k, then row j in U is selected.
Therefore,

f∗(Y U) = Y f∗(U)

and we conclude that DF (X||f∗(Y U)) = DF (X||Y f∗(U)). We can now optimize over M for DF (X||YM).

Lemma 13 For a given Y ∈ {0, 1}t×k with Y 1 = 1 and class j with X ∈ Dom(f),

1

1TY:j

∑
i:Yij=1

Xi: = argmin
M∈Dom(f)

∑
i:Yij=1

DF (Xi:||M:j)

Martha White and Dale Schuurmans

Proof: Let nj be the number of instances with class j, m = M:j , x̄ = 1
nj

∑
i:Yij=1Xi:, (m, x̄ ∈ Rn×1) and F̄ =

1
nj

∑
i:Yij=1 F (Xi:). Now to simply 1

nj

∑
i:Yij=1DF (Xi:||m)

1

nj

∑
i:Yij=1

DF (Xi:||m) =
1

nj

∑
i:Yij=1

F (Xi:)− F (m)− f(m)T (Xi: −m)

= F̄ − 1

nj

∑
i:Yij=1

F (m)− f(m)T
1

nj

∑
i:Yij=1

(Xi: −m)

= F̄ − F (m)− f(m)T (x̄−m)

and by definition

DF (x̄||m) = F (x̄)− F (m)− f(m)T (x̄−m)

=⇒
1

nj

∑
i:Yij=1

DF (Xi:||m) = F̄ − F (x̄) +DF (x̄||m)

=⇒ ∑
i:Yij=1

DF (Xi:||m) = njF̄ − njF (x̄) + njDF (x̄||m)

=⇒

min
m

∑
i:Yij=1

DF (Xi:||m) = min
m

DF (x̄||m)

Since the Bregman divergence is guaranteed to be greater than or equal to zero, the minimum value for DF (x̄||m) is
zero, obtained by setting m = x̄. Therefore, for each instance i, the optimal setting for the inner minimization of M:j =
1
nj

∑
i:Yij=1Xi:.

Notice that the objective value therefore is njF̄ − njF (x̄), which is always non-negative because F is strictly convex so:

F (x̄) = F

 ∑
i:Yij=1

Xi:

nj

 <
∑

i:Yij=1

1

nj
F (Xi:) = F̄

From Lemmas 12 and 13, we get the following simplifications for Bregman hard clustering with non-linear transfers
(Equations (22) and (24) in the main paper).

min
Z∈Z

min
U∈Dom(f∗)

DF∗(ZU ||f(X)) =

= min
Z∈Z

min
M∈Dom(f)⊂Rn×k

DF∗(X||ZM)

= min
Z∈Z

min
M∈Dom(f)

k∑
j=1

∑
i:Zij=1

DF∗(Xi:||YM:j)

= min
Z∈Z

k∑
j=1

1

1TZ:j

∑
i:Zij

Xi:

For mixture model clustering using standard EM, the unsimplified optimization given by Banerjee et al. [2005], with
S = {Z ∈ [0, 1] | Z1 = 1}

min
Z∈S

min
U

t∑
i=1

k∑
j=1

− log(PF∗(Xi|Uj))Zij (32)

= min
Z∈S

min
U∈Dom(f)

t∑
i=1

k∑
j=1

− log
(
e−DF (Xi||Uj)

)
Zij (33)

Generalized Optimal Reverse Prediction

They simplify the M -step using similar arguments to those for hard clustering. We define a slightly different optimization,
now optimizing for the transfer M = f(U) and then illustrate that we simplify the M -step for non-linear transfers. Note
that in our optimization we move the sum and probability scaling inside the log; this does not change the optimum because
log is monotonic and the probabilities are always greater than or equal to zero. Note that we also add a smoothness
parameter ρ; asρ→∞, the objective approaches the hard clustering objective.

min
Z∈S

min
M∈Dom(f)

−
t∑
i=1

log

 k∑
j=1

e−ρDF (Xi||Mj)Zij

 = (34)

= min
p≥0,pT 1=1

min
M∈Dom(f)

−
n∑
i=1

log

 k∑
j=1

pje
−ρDF (Xi||Mj:)

 (35)

Again, the inner minimization over M simplifies to an expectation

M:j =
1

1TY:j

n∑
i=1

YijXi: (36)

and we get the updates shown in Algorithm 2. For more details, look at the simplifications in Banerjee et al [2005].

9.3 Pseudocode and transfer functions

Below we provide pseudocode for our semisupervised regression approach, in Algorithm 9.3, and our semisupervised
classification approach, Algorithm 9.3. The classification algorithm uses similar tricks from the unsupervised clustering
algorithms provided in the paper. The regression algorithm simply uses a smooth optimizer (like limited memory BFGS)
to alternate between optimizing Z and U according to the objective provided in Equation 26.

Algorithm 3 RevSemiSupRegression(XL, XU , YL, DF ,β)

1: // β is a weighting on samples, e.g. β = [1;µ]
2: Initialize YU and U
3: X = [XL;XU], K = k(X,X), α = 0.1
4: err(YU , U) = βDF∗([YL;YU]||f(K))
5: while (change in err(YU , U)) > tol do
6: U = argminU err(YU , U)
7: YU = argminZ err(Z,U)
8: end while
9: Y = [YL;YU]

10: A∗ = argminADF (KA||f−1(Y)) + αtr(AATK)

Below are the potential functions, inverses, forward losses and reverse losses for the transfers used in the paper. To make
the tables cleaner, sometimes we will refer to x̂ = f−1(yU). We omitDF∗ because it is not used in the clustering algorithm
and is long, making the table difficult to read.

Martha White and Dale Schuurmans

Algorithm 4 RevSemiSupSoftCluster(XL, XU , YL, DF ,β)

1: Initialize M (e.g. k randomly selected rows from X)
2: p = 1/k
3: YU = []
4: X = [XL;XU]

5: err(M,p) = −
∑
i log

(∑
j pj exp(−ρβDF (Xi:||M:j))

)
6: while (change in err(M,p)) > tol do
7: //Shift Breg. divergence with min to avoid underflow
8: E-Step:
9: YU (i, j) = pj exp[−ρµ(DF (XU (i, :)||M:j)−minj DF (XU (i, :)||M:j))]

10: YU (i, j) = YU (i, j)/
∑
j YU (i, j)

11: Z = [YL;YU]
12: M-Step:
13: M = diag(ZT1)ZTX
14: p = 1

tZ
T1

15: end while

Table 3: Transfer functions with their inverses and potential functions.

f(x) f−1(y) F (x) F ∗(y)

IDENTITY x x x2/2 y2/2

SIGMOID σ(x) =(1 + e−x)−1 ln(y/(1− y)) 1T ln(1+ e−x) y ln(y/(1− y)) + 1 ln(1− y)

SOFTMAX ξ(x) = ex/1T ex ln(y)− ln(yk)1 ln(1T ex) [ln(y)− ln(yk)1]y − ln(1T (y − yk1))

EXP ex ln(y) 1T ex [ln(y)− 1]yT

CUBE x3 x1/3 1Tx4/4 y1/3yT − 0.25y4/31

Table 4: Transfer functions with forward and reverse losses.

DF (xW ||f∗(y)) DF∗(yU ||f(x))

IDENTITY (xW − y)2/2 (x− yU)2/2

SIGMOID y ln(y/σ(xW)) + (1− y) ln((1− y)/(1− σ(xW) x((1 − e−x)/(1 + e−x))T − x̂((1 − e−x̂)/(1 +

e−x̂))T + 1 ln((1+ e−x̂)/(1+ e−x))T

SOFTMAX ln(exW1T)− ln(1(y − yk1)
T)− yWTxT + y(y − yk1)

T OMITTED

EXP 1T exW − yWTxT [ln(yU)− x− 1]UTyT + ex

CUBE ((xW)41T)/4− yWTxT (yU)1/3UTyT − 0.25(yU)4/31− xUTyT

