COST SENSITIVE CLASSIFICATION

Batch policy optimization

- **Target objective**: expected reward \(\max \sum x \cdot \pi(x) \)
- **Assume given complete data**
- **Target:**
 - \(\pi(x) \)
 - \(\pi(x) \)
- **Target vs surrogate optimization**
 - **Misclassification error on MNIST training data**

Recall: supervised classification

- **Target objective**: expected accuracy \(\max \sum x \cdot \log(\pi(x)) \)
- **Special case: engineered classification**
 - \(\pi(x) \)
 - \(\pi(x) \)
 - \(\pi(x) \)
- **What’s going on?**
 - \(\pi(x) \)
 - \(\pi(x) \)
 - \(\pi(x) \)
- **Useful properties of maximum likelihood**
 - \(\log(\pi(x)) \)
 - \(\log(\pi(x)) \)
 - \(\log(\pi(x)) \)

Target vs surrogate optimization

- **Misclassification error on MNIST training data**

Comparing objectives

BATCH CONTEXTUAL BANDITS

- **Coping with missing data**
 - **Optimization policy: \(\pi(x) \)**
 - **Missing data inference**
 - **Unified approach**

BATCH CONTEXTUAL BANDITS

- **Reward estimation**
 - For any \(x, c \), parameters \(\log(c) \cdot \hat{r} \)
 - \(\tilde{r}(x, c) = I_{(x)}(c) + 0c(x) \cdot \tilde{r}(x, c) \)

Surrogate objectives

- **Definition**: Optimal imputed local risk and suboptimality gap
 - \(\tilde{r}(x, c) = \min_{\hat{c}(x)} \tilde{r}(x, c) \)
 - \(\tilde{r}(x, c) \)

- **Proportion**: \(r \) \(\tilde{r}(x, c) \)
- **Theorem**: \(r \) \(\tilde{r}(x, c) \)
- **Optimization goal**: \(\tilde{r}(x, c) \)

Unified approach

- **Unified approach**:
 - \(\pi(x) \)
 - \(\pi(x) \)
 - \(\pi(x) \)

1. Google Brain, 2. University of Alberta