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14 Inference in complex models
What if graph is not a tree?

NP-hard even to approximate marginals and conditionals

General strategies

1. Exact methods — exponential time, but can still try to be smart
2. Approximation methods
3. Heuristic methods

4. Monte Carlo methods — estimate by random sampling

14.1 Exact methods

Elimination ordering

Try to find a good variable order that reduces work in summation
e push variable in

e climinate variables by summing and pull result out

Variable clustering

Cluster variables to create a tree structured Bayesian network

e exponential in the size of the largest cluster

Cut sets

Choose a cut set of variables that turn factor graph into a tree
e sum over cut set configurations

e exponential in size of cut set
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14.2 Approximation methods

“Variational approximation”

e Pick simple model structure (i.e. a tree)

e Set values in new CP tables so that new distribution approximates
original distribution as closely as possible

e Perform efficient inference on simpler approximate distribution

A bit complicated to implement sometimes, but can be very effective

14.3 Heuristic methods

“Loopy probability propagation”
Ignore loops and use same message passing algorithm as for trees

e random initial messages

e keep passing messages around graph

wait for product of incoming messages to converge

e if so, is the answer accurate?

This works way better than it should!

14.4 Monte Carlo methods

Use random sampling to estimate answers

14.4.1 Estimating marginals

To estimate P(X; = z;), draw joint configurations

r11 12 ... Tin
To1 T92 ... Top
Ty T2 .. Tin

_ # matches(X; = z;)

Use estimate: ls(XZ = 1)

Unbiased: Ef’(X, =ux;) = P(X; = ;)
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14.4.2 Estimating conditionals
Estimate P(Xy1 = yp1| Xa = 21, ..., Xk = %)

Draw joint configurations:

Tr11 12 ... Tip
o1 X992 ... Top
Tr T2 .. Tin

Use estimate:

~

P(Xpt1 = yppa| Xn = 21,00, X = 1p)
# matches(X; = x1,..., Xy = 2, Xpr1 = Ykt1)
# matches(X; = xq,..., Xy = x1)

This technique is called “logic sampling”
It is a bad estimator if (X; = x1,..., Xp =z, Xpr1 = ypr1) is unlikely:

e small effective sample size

14.4.3 Aside: General “importance sampling”

Consider estimating the expectated value of some function f(x), where z is
drawn randomly according to the distribution P(x). That is, assume the
expectation of f(z) is defined

Ep(f(2)) = ) flz)P(x)

Many problems (including estimating conditional probabilities) can be ex-
pressed as estimating the expected value of a function f.

The simplest way to estimate Ep(,) f() is the Monte Carlo method

e Draw z,x9,...,2; from P

e Use estimate:
t

fe Y se)

Problem: what if you cannot sample from P efficiently?

First assume that we can at least efficiently evaluate P(x) at given points x.
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Idea: Pick a proposed distribution ) that you can sample from

e Draw x1,2o,...,x; from Q.

e Weight points by w(x;) =
e Use estimate: f = S f@)w(z)

This gives an unbiased estimate

%Zf(azz)w(a:l) = Eq) f(7)w(z)

= X P(x) X
= %jf( ERAR
= D f@)P()

T

=  Epy)f(2).
More realistically: You cannot even evaluate P(z) efficiently

However, in these cases, you often still have a function R(z) = § P(z) that
you can evaluate efficiently (up to some unknown value ). In which case
you can use following indirect importance sampling procedure.

e Draw z1,x,...,x; from Q.
e Weight points by u(x) = ggg

e Use the estimate .
22:1 u(z;)

This procedure is biased, but it is asymptotically unbiased:

f=

Y Fwue) =3 3 f@u@at) = Y f@RE) = 53 f@)P@)
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DY um) =X Q) = YOR() = 53 PE) = 4

xT

Therefore

e G5, [@)P@)
5

14.4.4 Estimating conditionals using importance sampling

Want to estimate P(x3 = ys|Xa = X,) where a and [ are sets of indices
from {1,...,n} such that aNG =0 and c«US = {1,...,n}. unfortunately it
is both hard to sample from and evaluate P(x3 = ys|x, = x,) directly. we
proceed as follows

clamp the variables x, = x,

sample the remaining “free” variables in the usual way (keeping the
clamped variables at their assigned values)

repeat t times to create a sample of configurations x, ..., X;

Define the function

otherwise

1) = { g i

Calculate weights
R(xs,i)
U(Xﬁ,i) = Q(Xﬂ )

where R(xp,;) = P(Xs = Xa., X5 = Xg,)
and Q(xg,) = [ [ P(X; = 24 Xnj) = Xn())

Jjep

Use the estimate

P(x5 = yslxa =%a) = Zizl tf <XZ7(Z‘>)<Z(.))%J>
=1 )

This method has larger effective sample size than logic sampling.

Works even if P(X, = x,) is small.
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Readings

Russell and Norvig: Section 14.5
Dean, Allen, Aloimonos: Section 8.3



