
Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

13 Efficient probabilistic inference

Poly time inference algorithms for tree-structured Bayesian networks
– marginalization, conditioning, completion

How is this done?

13.1 Example

/ ^ /

X1

X3 X4

X2

Compute P (X4 = x4)

=
∑

x1

∑

x2

∑

x3

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4)

=
∑

x1

∑

x2

∑

x3

P (X1 = x1) P (X2 = x2) P (X3 = x3|X1 = x1)

P (X4 = x4|X1 = x1, X2 = x2)

3V 3 multiplications, V 3 − 1 additions

Now think of conditional probabilities as functions

f1(x1) = P (X1 = x1)

f2(x2) = P (X2 = x2)

f3(x1, x3) = P (X3 = x3|X1 = x1)

f4(x1, x2, x4) = P (X4 = x4|X1 = x1, X2 = x2)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

Then we obtain

P (X4 = x4) =

=
∑

x1

∑

x2

∑

x3

f1(x1) f2(x2) f3(x1, x3) f4(x1, x2, x4)

=
∑

x1

f1(x1)
∑

x3

f3(x1, x3)
∑

x2

f2(x2) f4(x1, x2, x4)

︸ ︷︷ ︸

g2(x1, x4)

=
∑

x1

f1(x1)

(
∑

x2

f2(x2) f4(x1, x2, x4)

)
∑

x3

f3(x1, x3)

2V + V 2 multiplications, (V − 1) + 2V (V − 1) additions

13.2 Efficient inference in trees

A famous algorithm achieves polynomial time inference in tree structured
Bayesian networks. (This algorithm has been re-invented over a dozen times
in various guises)

• hidden Markov models (forward-backward algorithm, Viterbi algorithm)

• Kalman filters

• error correcting codes

• graphical probability models

• etc.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 3

13.3 Polynomial time marginalization algorithm for trees

Step 1 Convert the Bayesian network into a factor graph: an undirected
graph that has one “round” node for each variable and one “square” node
for each conditional probability function that is connected to each of the
participating variables.

E.g.

/ ^ /

X1

X3 X4

X2

=⇒

P(X1) P(X2)

X1 X2

P(X3|X1) P(X4|X1, X2)

X3 X4

f4

f2

f3

f1

An important property of this transformation is that if the original Bayes
net is a tree then the resulting factor graph will also be a tree.

Given a factor graph with nodes X1, ..., Xn and functions f1, ..., fk, we can
evaluate the probability of a complete configuration of the variables by

P(X1=x1, ..., Xn=xn) =
k∏

`=1

f`(x`)

where x` = the values of variables connected to f`.

E.g.

P(X1=x1, X2=x2, X3=x3, X4=x4) = f1(x1) f2(x2) f3(x1, x3) f4(x1, x2, x4)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

Efficient marginalization for tree structured factor graphs

Consider the following tree structured factor graph and consider computing
the marginal probability P(X6=x6).

6

ªR

?

? ¾f1

X1

f2

X6

f5

X3

X5

f4

f3X2

X4

f6

X7 X8

m1

m3

m2

m4

m6m5

The way to think about this computation is to first note that computing
the marginal probability that P(X6=x6) requires us to sum over all possible
instantiations of the other variables, but that this sum can be factored into
a product of sums over variables in each independent subtree, and each of
these sums can then be recursively decomposed into a product of sums over
independent subtrees, and so on. So, in particular, in this case we obtain

P(X6=x6) =

=
∑

x1,x2,x3,x4,x5,x7,x8

f1(x1)f2(x1, x6)f3(x2, x3)f4(x3, x4)f5(x3, x5, x6)f6(x6, x7, x8)

=

[
∑

x1

f2(x1, x6)f1(x1)

][
∑

x2,x3,x4,x5

f3(x2, x3)f4(x3, x4)f5(x3, x5, x6)

]

[
∑

x7,x8

f6(x6, x7, x8)

]

= m1(x6) ·m2(x6) ·m3(x6)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

Where now m2(x6) further decomposes into

m2(x6) =
∑

x2,x3,x4,x5

f3(x2, x3)f4(x3, x4)f5(x3, x5, x6)

=
∑

x3,x5

f5(x3, x5, x6)
∑

x2,x4

f3(x2, x3)f4(x3, x4)

=
∑

x3,x5

f5(x3, x5, x6) ·m4(x3)

And m4(x3) decomposes into

m4(x3) =
∑

x2,x4

f3(x2, x3)f4(x3, x4)

=

[
∑

x2

f3(x2, x3)

][
∑

x4

f4(x3, x4)

]

= m5(x3) ·m6(x3)

And so on.
This factoring works because the sets of variables in each subtree are

disjoint (in fact, this is precisely the reason why having a tree structure
is significant). In general, we obtain an efficient marginalization procedure
using the following message passing algorithm.

13.4 Message passing algorithm for marginalization

• Messages are vectors of real numbers m = (u1, ..., uV), where uk is a
number that summarizes the computation for the case xj = k, and of
course k = 1, ..., V .

• Messages are passed from variable nodes to function nodes, and from
function nodes to variable nodes.

• A node can send a message to its neighbor only when it has received
all of the messages from its other neighbors.

• Given a tree, the algorithm can start by sending messages from each
of the leaves, and stops once every node has passed a message to every
neighbor. (You should convince yourself that in a tree every node will
eventually send a message to every neighbor, and therefore exactly two
messages will be sent across every edge (one in each direction)).

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

• Function to variable messages mf→X(x) are computed by

mf→X(x) =
∑

x1,...,xk

f(x, x1, ..., xk) mX1→f (x1) · · ·mXk→f (xk)

over all other variables X1, ..., Xk (besides X) connected to f . If f
contains only X, then mf→X(x) = f(x).

• Variable to function messages mX→f (x) are computed by

mX→f (x) =

{
1 if only f contains X
mf1→X(x) · · ·mfk→X(x) otherwise

over all other functions f1, ..., fk (besides f) containing X.

• Once all of the messages have been passed, then the final marginal for
any variable Xi can be calculated by

P(Xi=xi) = mf1→Xi
(xi) · · ·mfk→Xi

(xi)

over all f1, ..., fk containing Xj.

This algorithm is efficient because there are n− 1 edges in an undirected
tree containing n nodes (variables), 2(n−1) messages get sent (one in each di-
rection along each edge), each function to variable message can be computed
in time O(V k) where k is the number of function neighbors, each variable
to function message can be computed in time O(V k) where k is the num-
ber of variable neighbors, and the final marginal can be computed in time
O(V k). Thus, the total running time is bounded by O(nV k) where k is the
maximum number of neighbors of any node in the graph. This is linear in
n and polynomial in V (but exponential in k, so the maximum number of
neighbors has to be bounded).

13.5 Computing the marginal of a set

Consider computing the marginal of one particular configuration P(X1 =
x1, ..., Xk =xk). For such a case, call the variables X1, ..., Xk evidence vari-

ables and call the instantiated values observed evidence. Then we can com-
pute the desired probability by using the same message passing algorithm as
above, except:

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

• An evidence-variable to function message is computed by

mXj→f (x) =

{
1 if x = xj (i.e. the observed evidence)
0 otherwise

• Once all of the messages have been passed, then the final marginal can
be determined by taking any evidence variable Xj ∈ {X1, ..., Xk} and
computing

P(X1=x1, ..., Xk=xk) = mf1→Xj
(xj) · · ·mfk→Xj

(xj)

over all f1, ..., fk containing Xj.

13.6 Computing a conditional probability

To compute P(Xk+1=yk+1|X1=x1, ..., Xk=xk), we can use the same message
passing algorithm as above, treating X1, ..., Xk evidence variables, except:

• Once all of the messages have been passed, then the final conditional
probability can be determined by

P(Xk+1=yk+1|X1=x1, ..., Xk=xk)

=
mf1→Xk+1

(yk+1) · · ·mfk→Xk+1
(yk+1)

Z

where Z is a re-normalization constant over choices of yk+1. That is,

Z =
∑

yk+1

mf1→Xk+1
(yk+1) · · ·mfk→Xk+1

(yk+1)

13.7 Computing the conditional probability of a set

To compute an arbitrary conditional probability P(Xα = yα|Xβ = xβ),
where α and β are two disjoint sets of indices from {1, . . . , n}, we can use
the formula

P(Xα = yα|Xβ = xβ) =
P(Xα = yα,Xβ = xβ)

P(Xβ = xβ)

and exploit the fact that we know how to calculate marginal probabilities
P(Xα = yα,Xβ = xβ) and P(Xβ = xβ) using the message passing algorithm
outlined above.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

13.8 Computing the most probable completion

To compute

y∗k+1, ..., y
∗

n = arg max
yk+1,...,yn

P(Xk+1=yk+1, ..., Xn=yn|X1=x1, ..., Xk=xk)

we can use the same message passing algorithm as above, except:

• Function to variable messages mf→X(x) are computed by

mf→X(x) = max
x1,...,xk

f(x, x1, ..., xk)mX1→f (x1) · · ·mXk→f (xk)

over all other variables X1, ..., Xk (besides X) connected to f .

• Once all of the messages have been passed, then the maximum proba-
bility completion for any free variable Xk+j can be calculated by

y∗k+j = argmax
yk+j

mf1→Xk+j
(yk+j) · · ·mf`→Xk+j

(yk+j)

over all f1, ..., f` containing Xk+j.

Readings

Frey: Section 2.1
Dean, Allen, Aloimonos: Section 8.3
Russell and Norvig: Section 14.4

