Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

7 Planning Algorithms

Planning: Exploiting representation structure in problem solving search

7.1 Some approaches
Heuristics (examine representation)

E.g., h(s) = Hamming distance from goal
g(s) = Hamming distance from initial state

Approximate divide and conquer

e Actions only affect small part of state
e Solve subgoals independently

e merge sub-plans

E.g. —
B|[C| D B D
Tablé Table////

Solve subgoals ‘AonB’ and ‘ConD’ independently, merge resulting actions.

Problem: Sub-goals can interfere:

E.g. — |B]
C
Table //Tablé

Getting A on B interferes with getting B on C.

Problem: We might even have to undo satisfied sub-goals:

E.g. — E
B C
Table /[Table

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

Problem: We may even have to avoid satisfying subgoals
(“Sussman anomaly” due to Allen Brown):

— |B]
Gl :

Table / Table

7.2 Partial order planning

For example:

Bl[c|p] B D
Table Table////

We can represent the plan as:
put A on B

Start < > End
put C on D

Any total ordering of the partial plan is a valid plan.

Another example:

N
D] B
//tabie// /)] /] Table////

A backtracking algorithm may waste time back-tracking the action ‘putBonC’.

The partial ordering plan can be represented as

put Eon D — put A on E
Start k) End
put B on C

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 3

Representing a partial order plan

e set of actions: {ay,...,ax}

e set of ordering constraints between actions: {a; < a;}

e set of reasons for actions (links, causal links): {a; 4 aj}

a; establishes [for a;:

— [is effect of a;

— [is precondition for a;

Partial order planning

e start with artificial start and goal actions ag and a., with effect of ag
being sg, and precondition of a., being ~

e build a plan by adding actions where effects are desired preconditions:
a; LR G Wwherel € y
But add preconditions of a; as new sub-goals

e If action a; threatens a link a; L as (i.e., =l is an effect of a;) then a;
must be ordered before a; or after a,.

e “Least commitment planning”
Do not commit to ordering until forced
(avoids backtracking on bad decisions)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

7.3 POP algorithm

Algorithm 1 POP _main

1:

Create start and end actions ag and a:
effect(ag) = so and precond(as,) = ¥

. Initialize plan (actions, ordering constraints, links):

plan «— ({ao, oo }; {@0 < aoo}, {})
sub-goal list «— {~}
return POP(subgoal list, plan)

Algorithm 2 POP (subgoal list, plan)

1:
2:
3:
4:
5:

10:
11:
12:
13:
14:
15:
16:
17:

if subgoal list empty then
return plan
end if
pick next sub-goal [,, from sub-goal list
for all actions as that establish /,, do

la
plan’ « plan + ({az}, {ag < ag, a2 < a1, a3 < ase}, {az = a1})
subgoal list” «— subgoal list U preconditions(as)
for all consistent choices of order constraints in Step 9 do

for each action a threatening link b L ¢ choose a < borc<a
plan” « plan’ + additional order constraints
result «— POP(subgoal list’, plan”)
if POP successful then
return result
end if
end for
end for
return fail

— Step 4 avoids backtracking (to some extent)

— For each sub-goal, have to keep track of the action requiring the sub-goal
as precondition

— In Step 5 we can choose an action from plan, or introduce a new action
— If there are no threats in Steps 8-9, then loop 8-15 is iterated only once
with an empty set of additional constraints.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu
7.4 Example: Sussman anomaly

— [B]
Gl

Table

Actions:

start: AonT —AonB —=AonC BonT =BonA =BonC =ConT ConA -ConB

end: AonB BonC

. —AonC —=BonC
pU_tCOIlT. ConT =ConA —ConB

. —AonB -ConB -AonC -BonC
putBonC : BonC —=BonA —BonT

. —AonB —-ConB -BonA —=ConA
putAonB. AonB -AonC -AonT

Algorithm trace:

Sub-goal list: AonBenay, BonCena

Lend |

Pick sub-goal: BonCepnq)

Sub-goal list: AonBendy, 7AonBputBoncy,
putBonC —\COHB(putBonC), _‘Aonc(putBonC), _'Bonc(putBonC)

BonC

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

For all sub-goals that are preconditions of putBonC, we can choose action
start, and obtain:

start

—=AonB, =ConB,

—AonC, -BonC Sub-goal list: AonB
DiibonC | g -

BonC

end

(Let * = =AonB, =ConB, =AonC, —=BonC)

Sub-goal AonB is picked, and action putAonB is chosen:

start

*
Y

~~~, Threat Sub-goal list: =BonA uta0nB);
pUtBOHC puvtAOIlB _'COHA(putAOnB)7 _'AOHB(putAonB)a

-ConB
BonC (putAonB)

There is a threat: action putAonB threatens the link start “AonB putBonC.
We have to put additional ordering constraints:

l*

Sub-goal list: ~BonA utaonB),

BonC QUJCAOHB ~ConA (putaons), TAONB(putaonB),

AonB —ConB (putAonB)

end



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

All sub-goals except =ConA are post-conditions of the start action:

l*

~BonA, ~ConB, ~AonB

Sub-goal list: ~ConA puta0nB)
BonC
AonB

end
(Let ** = =BonA, =ConB, -AonB)

We pick the subgoal =ConA and choose action putConT that has this
post-condition:

wn

—+
-~
=
*ﬁ

=
=
-+
=
®)
=
Q

Kok

/ /
BonC “Cond
AonB Sub-goal list: ~AonC putconT),
_‘Bonc(putConT)

end

The remaining sub-goals are post-conditions of the action start:

!

star
* =AonC —BonC

>
ConA

BonC | |putAonB -

AonB Sub-goal list:

-~

end
(Let *** = =AonC —BonC)



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

The action putBonC threatens the link start ~Bon@ putConT, so we have

to reorder:

start
* *N
putConT | |

\
uonC] ]-frond

utAonB
BonC B Sub-goal list:

end

Done! No backtracking!

Plain goal regression (backward search)

Let us see how the same problem could be solved with backward search:

end AonB, BonC
putBonC
! AonB, =AonB -ConB —=AonC —BonC
end

Stuck! (AonB and —AonB)

end AonB, BonC

putAonB
! BonC, =BonA =ConA —ConB —=AonB
end

start

|
putAonB BonC —ConA

l

end



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

Stuck!

putAonB
1 BonC, -BonA -ConA —ConB —AonB

end

putBonC

|
putAonB —-ConA -ConB -AonB

l

end

Pick start, stuck, backtrack

putConT

|
putBonC

1 -AonB
putAonB

l

end

start

|
putConT

|
putBonC

|
putAonB

l

end




Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 10

Advantage of least commitment vs. plain backward search:

Smaller branching factor.

Backward search: branching factor = number of actions that can achieve
some sub-goal

Least commitment: branching factor = number of actions that satisfy
next sub-goal, does not backtrack through subgoal

7.5 Modern planning algorithms
e POP (1991)

e Graph Plan (1995)
e SAT plan (1996)

e Forward search with heuristics (2000)

Readings

Weld, AI Magazine 15(4)
ftp://ftp.cs.washington.edu/pub/ai/pi.ps

Also see: Recent advances in Al planning by Weld for a survey
ftp://ftp.cs.washington.edu/pub/ai/pi2.ps
http://www.cs.washington.edu/homes/weld/pubs.html



