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9 Correct/exhaustive first order inference

Given a first order formal inference system
e Are the formal inference rules correct?

e [s the formal inference system exhaustive?

Same strategy as propositional logic:
e Create an independent evaluation scheme

— Specify possible states of affairs
— Assign truth values to atomic sentences

— Recursively evaluate compound sentences
e Then try to show

— Correctness A~y implies A |= v
— Exhaustiveness A |= v implies A -~y

9.1 Possible state of affairs: A structure

Map language elements to a possible domain and relations

Language Domain
constants Domain objects
terms

predicates Relations

ground sentenc
variables {true, false}

quantified sentence
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9.2 Structures

We evaluate sentences by referring to a given structure I = (D, C, F, R)
D a set
C' a function: constant symbols — D
F a function: functions symbols — (D™ — D)
R a function: predicate symbols — S C D"

Given such a structure I, we can begin to evaluate sentences as follows

Ground terms can be evaluated recursively to a specific element of D

E.g., for constant symbols a, b and function symbol f, we obtain

e /(a) = C(a) = a specific object in D

e [(f(a,b)) = F(f)(C(a),C(b)) = a specific object in D
Predicate symbols are assigned a specific relation S C D"

E.g., for predicate symbol P we obtain
e [(P) = R(P) = a specific set of tuples {(dy1...d1,), (do1...dan), ...}

9.3 Evaluating ground sentences

Atomic ground sentences are assigned true or false, depending on whether
the tuple of arguments is in the predicate symbol’s assigned relation

I(P(ty, . ty)) = true iff (I(t)), ..., I(t)) € I(P)

Compound ground sentences are evaluated recursively using the same
rules as propositional logic

I(—a) = true iff I(a)
I{a A pB) =true iff I(a)=true and () = true
I(aV (@) =true iff I(a)=true or I(() = true
o — )=

I( B) = false iff I(a) = true and I(3) = false
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9.4 Evaluating quantified sentences
We first need to introduce an auxiliary structure in addition to [
Variable assignment V': variables — D

Given a structure I and a variable assignment V we can now evaluate open
formulas because the assigned variables can now be treated like constants.
First to evaluate atomic formulas we use

Io(P(ty,....t) = true  iff  (Iy(t)),....Iv(t,)) € R(P)

Next to evaluate compound formulas (without quantifiers) we use the same
recursive rules as above

E.g., Iy(-a)=true iff Iy(a)=true, etc.

Then using these auxiliary variable assignments, we can evaluate quantified
sentences as follows.

Universally quantified sentences

Iy(Vx o(...z...)) = true iff Iy(p(...z...)) = true for all variable assign-
ments U that agree with V' except possibly
on x

I(Vz @) =true iff Iy (Vz ) = true for all variable assign-
ments V'

Existentially quantified sentences

Iy(3x o(...z...)) = true iff Iy(p(...z...)) = true for some variable as-
signment U that agrees with V' except pos-
sibly on x

I(3z ¢) = true iff Iy(3z ¢) = true for some variable assign-
ment V'

Therefore, given an interpretation I, we can evaluate any sentence.
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9.5 Terminology

Same as propositional logic

e [ satisfies a if I(«) = true

I falsifies o if I(«) = false

a is satisfiable if exists I such that [(a) = true

a is falsifiable if exists I such that I(«) = false

« is unsatisfiable (or inconsistent) if I(«) = false for all T

« is unfalsifiable (or valid) if I(«) = true for all [

a entails (3 if every I that makes o evaluate to true, makes 3 evaluate
to true as well. Written a = .

9.6 Resolution is correct

Recall the resolution rule for first order logic
aV-p(y) pl)Ve
aV

As with propositional logic, we must show that any structure I that makes
the antecedents o V —p(v) and p(v) V (3 evaluate to true, must also make the
consequent « V (3 evaluate to true.

Proof. Same proof as with propositional logic. That is, assume a structure
I that makes both antecedents evaluate to true, and consider the two cases
I(p(v)) = true and I(p(v)) = false. Argue that in each case I must force
a 'V 3 to evaluate to true. [

9.7 Specialization is correct

Recall the specialization rule for first order logic
a

]t

We must show that any structure I that makes the antecedent o evaluate to
true, also must make the consequent [a],/; evaluate to true.
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Proof. Assume I(«) = true. Hence, Iy (a) = true for all V. We want to
show that Iy ([al,/:) = true for all U.

Let U be an arbitrary assignment, and let d = Iy(t). Let V' be an
assignment that agrees with U on all variables except z, and Iy (z) = d. Then
Iv/(o) = Iy ([alsye). By assumption, Iy/(«) = true, so Iy([ay/) = true. =

9.8 Resolution exhaustive w.r.t. deriving contradictions

The formal inference system resolution+specialization—+simplification is ex-
haustive w.r.t. deriving contradictions. That is, if A is unsatisfiable, then
AF L.

Proof. (sketch) Let A be a set of sentences in conjunctive normal form.
First we need two definitions

Herbrand universe of A = ground terms constructable from the constant
and function symbols mentioned in A

Herbrand base of A = set of all ground sentences constructible by us-
ing ground terms in Herbrand universe of A

Lemma (Herbrand’s theorem) If A is unsatisfiable, then HB(A) is un-
satisfiable.

Lemma (Compactness theorem) If B is unsatisfiable, then there exists
a finite subset B’ C B such that B’ is unsatisfiable.

Now to prove the theorem, assume A is unsatisfiable. Then by Herbrand’s
theorem HB(A) must be unsatisfiable, and by the compactness theorem there
must be some finite subset H of HB(A) that is unsatisfiable. Now realize that
A F H just by applying substitution steps. Finally, if H is unsatisfiable then
H F L by using resolution steps (using the same argument as for proposi-
tional resolution). [

Readings

Russell and Norvig: Chapter 8
Genesereth and Nilsson: Sections 2.3, 4.10
Burris: Chapter 4 (especially 4.10)



