

8 General first order representation

8.1 First order language

Propositional core

- **constants** A, B, C, D
- **predicates** $on(\cdot, \cdot)$
 - associated arity, e.g., arity of on is 2
- **atomic ground sentence** is equivalent to atomic proposition; it is created by applying predicate to constants; e.g., $on(A, B)$
- true and false symbols \top, \perp
- **compound ground sentence** built using operations: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$; e.g., $on(A, B) \wedge \neg on(B, C)$

This is equivalent to propositional logic. For example, instead of writing $on(A, B)$, we used the notation AonB.

Extension: propositional schema

Instead of repeating the same rules for AonB, BonC, etc., we can use variables and the predicate $on(x, y)$.

- **variables** x, y, z
- **atomic formula** apply predicate to constants and variables; e.g., $on(A, x)$, $on(A, B)$, $on(x, y)$
- **compound formula** use operators of propositional calculus; e.g., $on(A, X) \wedge \neg on(x, B)$
- special equality predicate $=$
(Note that instead of writing $= (x, B)$, write $x = B$)
- **quantifiers** \forall and \exists . If $\varphi(\dots x \dots)$ is a formula, then $\forall x \varphi(\dots x \dots)$ and $\exists x \varphi(\dots x \dots)$ are formulas.

In such a formula, x is called a **bound** variable, and variables that are not bound are **free**.

- **open formula:** has free variables.
- **closed formula:** no free variables (all variables bound). A closed formula is also called a **sentence**.

Note: Sentences have truth values (open formulas do not).

This defines the basic first order language. Note that the first order language strictly extends the representational capacity of propositional logic.

Further extension: functions

- **function symbols** $f(\cdot, \cdot)$
- **term** composition of functions, constants, and variables; e.g.

$$f(g(x), h(A, B))$$

- **ground term** is a term with no variables. Ground terms can represent complex objects like strings, trees, expressions.
- **open term** contains variables (a term does not contain quantifiers)

8.2 Formal inference rules

Operate on sentences. For example:

\forall elimination:

$$\frac{\forall x \varphi(x)}{\varphi(t)} \quad \text{for any ground term } t$$

\exists elimination:

$$\frac{\exists x \varphi(x)}{\varphi(A')} \quad \text{for a new constant } A'$$

\exists introduction:

$$\frac{\varphi(t)}{\exists x \varphi(x)} \quad t \text{ is a ground term}$$

8.3 A simple formal inference system: Resolution

Rules: resolution, substitution, simplification

Assume facts (sentences) represented in *clausal form*:

Clausal form

$$\forall x_1 \dots \forall x_n \quad \neg p_1(t_1) \vee \dots \vee \neg p_k(t_k) \vee q_1(t_{k+1}) \vee \dots \vee q_\ell(t_{k+\ell})$$

where the t_i are terms that have all variables x_j bound by a \forall

Conjunctive normal form Conjunction of clauses

$$\forall x_1 \dots \forall x_n \quad c_1 \wedge c_2 \wedge \dots \wedge c_m$$

where each c_i is in clausal form

Note: any sentence can be converted into conjunctive normal form:

- eliminate implications (\rightarrow) and equivalences (\leftrightarrow)
- move negations inward (DeMorgan's laws)
- standardize variables apart
- move \forall and \exists to left (in order)
- remove \exists by “Skolemization”:
Go from outside in, and for each $\forall x_1 \forall x_2 \dots \forall x_n \exists y$, eliminate the $\exists y$ by substituting y with $f'(x_1, x_2, \dots, x_n)$, where f' is a new function symbol (or constant symbol if $n = 0$)
- distribute \wedge over \vee
- flatten, e.g., $(p \vee q) \vee r$ becomes $(p \vee q \vee r)$
- drop $\forall x$ and assume all variables are universal

(The general conversion procedure can be found in Russell and Norvig, P.296-297.)

Inference rules**Specialization (substitution):**

$$\frac{\varphi}{[\varphi]_{x/t}}$$

replace x by term t **Resolution:**

$$\frac{\alpha \vee \neg p(\underline{v}) \quad \beta \vee p(\underline{v})}{\alpha \vee \beta}$$

Simplification:

$$\frac{\alpha \vee \neg p \vee \neg p}{\alpha \vee \neg p} \quad \frac{\alpha \vee p \vee p}{\alpha \vee p} \quad \frac{\alpha \vee \neg p \vee p}{\top}$$

(same as for propositional logic)

Example

$$\begin{array}{ll} 1: \neg on(x, y) \vee \neg on(y, z) \vee \neg on(z, x) & \text{given} \\ 2: on(A, A) \vee on(B, B) & \text{given} \end{array}$$

$$\begin{array}{ll} 3: \neg on(w, w) \vee \neg on(w, w) \vee \neg on(w, w) & \text{apply substitution } x/w, y/w, z/w \text{ on 1} \\ 4: \neg on(w, w) & \text{apply simplification on 3} \\ 5: \neg on(A, A) & \text{substitution } w/A \text{ on 4} \\ 6: on(B, B) & \text{resolution on 2 and 5} \\ 7: \neg on(B, B) & \text{substitution } w/B \text{ on 4} \\ 8: \perp & \text{resolution on 6 and 7} \\ & \text{Contradiction!} \end{array}$$

8.4 Unification

Unification is matching formulas by substitution (specialization)

Example

1: $\forall x P(A, x)$	given
2: $\forall y \forall z \neg P(y, z) \vee P(z, y)$	given
3: $\forall z P(A, z)$	substitution x/z on 1
4: $\forall z \neg P(A, z) \vee P(z, A)$	substitution y/A on 2

Two sub-formulas are unified, and we can apply resolution:

5: $\forall z P(z, A)$

It is useful to have procedure $\text{UNIF}(\varphi, \chi)$ which returns either:

- a substitution (binding list) $s = \{x_1/y_1, \dots, x_n/y_n\}$ such that $[\varphi]_s = [\chi]_s$, or
- fail, if none exists

s is a unifier of φ and χ

Example

$\text{UNIF}(on(A, x), on(A, B))$	$= x/B$
$\text{UNIF}(on(A, x), on(y, B))$	$= x/B, y/A$
$\text{UNIF}(on(A, x), on(y, f(y)))$	$= y/A, x/f(A)$
$\text{UNIF}(on(x, y), on(y, f(y)))$	$= \text{fail}$
$\text{UNIF}(on(A, x), on(x, B))$	$= \text{fail}$ (but could standardize apart)
$\text{UNIF}(on(x, f(x)), on(g(y), y))$	$= \text{fail}$

8.5 Most general unifier

There can be more than one substitution; e.g.

$$\text{UNIF}(\text{on}(A, x), \text{on}(y, z))$$

could return $\{y/A, x/z\}$, or $\{y/A, z/x\}$, or $\{y/A, x/B, z/B\}$, or $\{y/A, x/A, z/A\}$, etc.

We are interested in the *most general unifier*:

$$\text{MGU}(\text{on}(A, x), \text{on}(y, z)) = \{y/A, x/z\}$$

Most General Unifier:

- makes least commitments
- exists and is unique up to variable renaming (if the terms are unifiable)
- can be turned into any other unifier by applying additional substitutions

With MGU, we can merge substitution and resolution into one step:

Resolution with unification

$$\frac{\alpha \vee \neg p(\underline{v}) \quad \beta \vee p(\underline{u})}{[\alpha \vee \beta]_{\text{MGU}(p(\underline{v}), p(\underline{u}))}}$$

Unification Algorithm

- Robinson 1965: exponential algorithm
- Huet 1976: almost linear time algorithm $O(n\alpha(n))$
- Paterson and Wegman 1976: improved Huet's algorithm to linear time

A few more examples:

$$\text{UNIF}(f(x, g(y, y), x), f(z, z, g(w, f(t)))) = ?$$

Answer: $x/g(f(t), f(t)) \ z/g(f(t), f(t)) \ y/f(t) \ w/f(t)$

$$\text{UNIF}(f(x, h(A, t), g(x)), f(g(y), h(z, y), t)) = ?$$

Answer: fail

Robinson's algorithm

Algorithm 1 UNIFY(t_1, t_2)

```

1: current substitution  $\leftarrow$  empty substitution
2: if  $t_1$  or  $t_2$  is a variable then
3:   if  $t_1 = t_2$  then
4:     return (true, empty substitution)
5:   end if
6:   let  $t_1$  be variable
7:   if  $t_1$  occurs in  $t_2$  then
8:     return false
9:   end if
10:  return (true,  $t_1/t_2$ )
11: else
12:   if terms  $t_1$  and  $t_2$  cannot be matched then
13:     return false
14:   end if
15:    $t_1 = f(a_1, \dots, a_n)$ ,  $t_1 = f(b_1, \dots, b_n)$ 
16:   for all pairs  $(a_i, b_i)$  ( $i = 1 \dots n$ ) do
17:     make current substitution on  $a_i$  and  $b_i$  and call UNIFY on them
18:     if UNIFY successful then
19:       apply returned substitution to current substitution
20:     else
21:       return false
22:     end if
23:   end for
24: end if
25: return (true, current substitution)

```

Readings

Russell and Norvig: Chapters 8 and 9

Genesereth and Nilsson: Chapter 4

Burris: 3.12

Knight, Kevin: Unification: a multidisciplinary survey, *ACM computing surveys*, March 1989