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2 Automating reasoning: Formal inference

Modelling mathematical reasoning
e Drawing certain conclusions from facts
e More facts — strictly more conclusions
(Note: not modelling plausible reasoning (yet):
e Drawing plausible conclusions from evidence
e More evidence — change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions
e Primitive propositions p,q,r, ...
e Compound propositions

— Logical symbols A, V,—, —,«, L, T
— Composition: a A S, aV 3, ma, a — 3, a < 3

where «, [ are propositions, either primitive or compound
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2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let w = work,
p = pass exam, f = fail course, u = understand concepts, a = do assignments.

Given Infer ?
{w— p, w} p ?
{e—=pVf ~f} e—p ?
{oversft — over6ft, over6ft} overdft 7
{w—p, p} w ?
{w — p, —p} —w ?
{u—(a—p)} (u—a) = (u—p) ?
{w — p} p—9)—(w—g) 7

{p} elvis-lives — p ?
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2.3 Formal inference

Conclusions drawn depend only on logical form of propositions

E.g., Formal rule of inference: Modus Ponens

Given {a, a — [}, infer
(written {a, a = B} F[F  or xHa=f

5 )

Formal inference rules — are automatable
— “pattern match” rules that depend only on logical form
— antecedent variables match existing propositions
— consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules — encode domain independent rules of logical reasoning

Propositions — encode domain specific facts

2.5 Derivation

Starting with a set of propositions A = {ay, ..., a,, }, can add new propositions
£ to A by applying available rules of inference. If a proposition v can be
added to A after a finite number of rule applications, then we say that ~ is
derivable from A; denoted A F . If no finite number of rule applications
can add v to A, then ~ is not derivable from A; denoted A I ~.

Note that the derivability relation - depends on which inference rules are
available.

2.6 E.g. application: automated question answering

Given domain facts {1, ...,a,} = A, ask: is it the case that v ?
If Ak~  answer yes
If AF -y answer no
If AF¥~y and At/ -y answer I dont know
E.g.
Given {lights_on — battery_ok, battery_ok — radio_works, lights_on}
is it the case that radio_works 7
is it the case that —radio_works 7
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Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on}
is it the case that radio_works ?

Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on, fuse_ok}
is it the case that radio_works 7

Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on, —radio_works}
is it the case that —fuse_ok ?

Given

{lights_on — battery_ok, battery ok A fuse_ok < radio_works, lights_on, radio_works}
is it the case that fuse_ok ?

2.7 Is Modus Ponens adequate?
{a, a — b} - b

No! Cannot derive any of the following

{a — b, —b} F =a? Modus Tollens LW
. a,
? J
{anb—c, a, b} o ¢? And Introduction N
a
0 :
{aVvb—c a} F ¢ ? Or Introduction Wi
a— 3, a—f

{a = b, ~a—c¢, b—d, c—d} F d7? Reasoning by cases

&

T

{——a} F a? Double Negation
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2.8 Formal inference system
Set of inference rules

(plus, possibly, a restriction on the language)
E.g. 1: Modus Ponens

E.g. 2: Resolution

e Assumes propositions are in clausal form:
prVope Ve Ve Vi Vg Ve Ve

i.e., a disjunction of literals, where each [literal is either p or —p

e Single rule of inference: Resolution rule

aV-p, BVp .
av i (where «, 3 are also in clausal form)
Note: special case when «, 3 are empty
% (contradiction)

e (Generalizes Modus Ponens

—pV G, p
B

Note: we will often use intuitive equivalences

pﬁ@p)

(Which is intuitively equivalent to 3

pVyq = P—q
Ve VeV Ve Vg DN AP —=q V-V

(You will be able to prove when and why these are equivalent later)

e Strict clausal form:

— No repeated literals
— No opposing literals

— Simplification rules
aV-—pV-p aVqVq aV-—pVp
aV-p aVyg T

(just remove T clauses)
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e Can reason by cases:
E.g., Given {pVr, p—gq, ¢ — s, 7 — s}, can derive s.

Equivalent to {pV r, =pV q, 7qV s, —rV s},

pVyq pVvr
~N

qVvr —qV s

N
sVr Vs
N
sVs
L

e However, still missing some “reasonable” inferences?

e.g., {} I/ =p V p under resolution

E.g. 3: Natural deduction system

Restrict propositions to any form using A, V, —, -, T, L.

. a N ﬁ . o, 6

And elim o 3 And intro N
) «Q

Or intro W

. a, a— f3 . IfAU{a}Fp
Impl elim — 5 Impl intro p—
Reductio AU {o(j} e
Cases If Au{a}Fpgand AU{-a}t G

5}

Tautology a\/%a
Contradiction @,

L



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

E.g., given {p — q, -p — r, ¢ — s, r — s} can derive s.

1 p—q

2 -p—Tr

3 q— s

4 r—s

5.0 Assume p

5.1 q by Impl elim on 1 and 5.0
5.2 S by Impl elim on 3 and 5.1
) p— s by Impl intro

6.0 Assume —p

6.1 r by Impl elim on 2 and 6.0
6.2 s by Impl elim on 4 and 6.1
6 p— s by Impl intro

7a.0 Assume p

Ta.l S by Impl elim on 5 and 7a.0
75.0 Assume —p

70.1 S by Impl elim on 6 and 7b.0
7 S by Cases

E.g., given {} can derive p — p

1.0 Assume p
1.1 P
1 p—p by Impl intro on 1.0 and 1.1

2.9 Characterizing inference systems

For a given inference system:
— Take a given set of propositions A = {a,...,a,} and consider
applying all available inference rules to A repeatedly:

— Get a monotonically growing set

(Note: inference rules do not block each other, can always add
conclusions in any order)

A set A is closed if no available inference rule can introduce any new
propositions to A.

— The closure of a set A, close(A), is called the theory of A.



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

— Monotonicity: A C B implies that close(A) C close(B)

(That is, adding new facts and new rules will only strictly increase
the theory.)

— Monotonicity gives modularity: It is clear how new facts affect the
theory. You never lose old conclusions. (This is a special feature of
logical reasoning as opposed to plausible reasoning, which usually
doesn’t obey monotonicity.)

A proposition 7 is called a tautology if {} F . Such a -~y is contained in
every closure.

A set of propositions A is said to contain a contradiction if A contains
any of L, T — L, or both a and —« for some «.

2.10 Computational complexity and search

Sometimes, even give that form of logical reasoning can be automated in prin-
ciple, it can still be computationally hard to reach the desired conclusions. A
surprising example of this is trying to prove the “pigeonhole principle” (that
N +1 pigeons cannot be placed solitarily in NV pigeonholes) using resolution:

E.g., 3 pigeons, 2 holes

pigeons

A B C

holes 1| A1 Bl (C1
2| A2 B2 (C2

Constraints:
AlvV A2 Bl1vV B2 C1v(C2
—-(A1ANB1) =(A1AC1) ~(B1AC1)
—(A2 A B2) —=(A2NC2) —=(B2AC2)

Re-expressed in clausal form:

Al vV A2 Bl1V B2 C1vC2
-Alv-Bl1 —-Alv-Cl1 -Blv-Cl1
A2V -B2 A2V -C2 —-B2V -C2

Ezercise: derive L from these facts using resolution.

Hint: it can be done, but it is surprisingly hard!
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2.11 Readings

Burris, Chapter 1 and 2.
Dean, Allen, Aloimonos, Chapter 3.
Russell and Norvig 2nd Ed., Section 7.5.



