

2 Automating reasoning: Formal inference

Modelling mathematical reasoning

- Drawing *certain* conclusions from facts
- More facts \rightarrow strictly more conclusions

(Note: not modelling plausible reasoning (yet):

- Drawing plausible conclusions from evidence
- More evidence \rightarrow change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions

- Primitive propositions p, q, r, \dots
- Compound propositions
 - Logical symbols $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \perp, \top$
 - Composition: $\alpha \wedge \beta, \alpha \vee \beta, \neg \alpha, \alpha \rightarrow \beta, \alpha \leftrightarrow \beta$
where α, β are propositions, either primitive or compound

2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let w = work, p = pass exam, f = fail course, u = understand concepts, a = do assignments.

Given	Infer ?
$\{w \rightarrow p, w\}$	p ?
$\{e \rightarrow p \vee f, \neg f\}$	$e \rightarrow p$?
$\{over5ft \rightarrow over6ft, over6ft\}$	$over5ft$?
$\{w \rightarrow p, p\}$	w ?
$\{w \rightarrow p, \neg p\}$	$\neg w$?
$\{u \rightarrow (a \rightarrow p)\}$	$(u \rightarrow a) \rightarrow (u \rightarrow p)$?
$\{w \rightarrow p\}$	$(p \rightarrow g) \rightarrow (w \rightarrow g)$?
$\{p\}$	$elvis-lives \rightarrow p$?

2.3 Formal inference

Conclusions drawn depend only on *logical form* of propositions

E.g., Formal rule of inference: *Modus Ponens*

Given $\{\alpha, \alpha \rightarrow \beta\}$, infer β

$$(\text{written } \{\alpha, \alpha \rightarrow \beta\} \vdash \beta \quad \text{or} \quad \frac{\alpha, \alpha \rightarrow \beta}{\beta})$$

Formal inference rules

- are automatable
- “pattern match” rules that depend only on logical form
- antecedent variables match existing propositions
- consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules – encode domain independent rules of logical reasoning

Propositions – encode domain specific facts

2.5 Derivation

Starting with a set of propositions $A = \{\alpha_1, \dots, \alpha_n\}$, can add new propositions β to A by applying available rules of inference. If a proposition γ can be added to A after a finite number of rule applications, then we say that γ is derivable from A ; denoted $A \vdash \gamma$. If no finite number of rule applications can add γ to A , then γ is not derivable from A ; denoted $A \not\vdash \gamma$.

Note that the derivability relation \vdash depends on which inference rules are available.

2.6 E.g. application: automated question answering

Given domain facts $\{\alpha_1, \dots, \alpha_n\} = A$, ask: is it the case that γ ?

If $A \vdash \gamma$ answer *yes*

If $A \vdash \neg\gamma$ answer *no*

If $A \not\vdash \gamma$ and $A \not\vdash \neg\gamma$ answer *I don't know*

E.g.

Given $\{lights_on \rightarrow battery_ok, battery_ok \rightarrow radio_works, lights_on\}$

is it the case that *radio_works* ?

is it the case that $\neg radio_works$?

Given

$\{lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on\}$

is it the case that $radio_works$?

Given

$\{lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on, fuse_ok\}$

is it the case that $radio_works$?

Given

$\{lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on, \neg radio_works\}$

is it the case that $\neg fuse_ok$?

Given

$\{lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \leftrightarrow radio_works, lights_on, radio_works\}$

is it the case that $fuse_ok$?

2.7 Is Modus Ponens adequate?

$$\{a, a \rightarrow b\} \vdash b$$

No! Cannot derive any of the following

$$\begin{array}{ll}
 \{a \rightarrow b, \neg b\} & \vdash \neg a ? \text{ Modus Tollens } \frac{\alpha \rightarrow \beta, \neg \beta}{\neg \alpha} \\
 \{a \wedge b \rightarrow c, a, b\} & \vdash c ? \text{ And Introduction } \frac{\alpha, \beta}{\alpha \wedge \beta} \\
 \{a \vee b \rightarrow c, a\} & \vdash c ? \text{ Or Introduction } \frac{\alpha}{\alpha \vee \beta} \\
 \{a \rightarrow b, \neg a \rightarrow c, b \rightarrow d, c \rightarrow d\} & \vdash d ? \text{ Reasoning by cases } \frac{\alpha \rightarrow \beta, \neg \alpha \rightarrow \beta}{\beta} \\
 \{\neg \neg a\} & \vdash a ? \text{ Double Negation } \frac{\neg \neg \alpha}{\alpha}
 \end{array}$$

2.8 Formal inference system

Set of inference rules
(plus, possibly, a restriction on the language)

E.g. 1: Modus Ponens

E.g. 2: Resolution

- Assumes propositions are in *clausal form*:

$$\neg p_1 \vee \neg p_2 \vee \cdots \vee \neg p_k \vee q_1 \vee q_2 \vee \cdots \vee q_\ell$$

i.e., a disjunction of *literals*, where each *literal* is either p or $\neg p$

- Single rule of inference: Resolution rule

$$\frac{\alpha \vee \neg p, \beta \vee p}{\alpha \vee \beta} \quad (\text{where } \alpha, \beta \text{ are also in clausal form})$$

Note: special case when α, β are empty

$$\frac{\neg p, p}{\perp} \quad (\text{contradiction})$$

- Generalizes Modus Ponens

$$\frac{\neg p \vee \beta, p}{\beta} \quad \left(\text{which is intuitively equivalent to } \frac{p \rightarrow \beta, p}{\beta} \right)$$

Note: we will often use intuitive equivalences

$$\begin{aligned} \neg p \vee q &\equiv p \rightarrow q \\ \neg p_1 \vee \cdots \vee \neg p_k \vee q_1 \vee \cdots \vee q_\ell &\equiv p_1 \wedge \cdots \wedge p_k \rightarrow q_1 \vee \cdots \vee q_\ell \end{aligned}$$

(You will be able to prove when and why these are equivalent later)

- *Strict clausal form*:

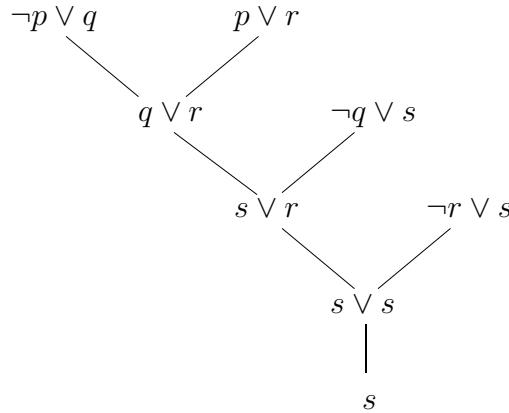
- No repeated literals
- No opposing literals
- Simplification rules

$$\frac{\alpha \vee \neg p \vee \neg p}{\alpha \vee \neg p} \quad \frac{\alpha \vee q \vee q}{\alpha \vee q} \quad \frac{\alpha \vee \neg p \vee p}{\top} \quad (\text{just remove } \top \text{ clauses})$$

- Can reason by cases:

E.g., Given $\{p \vee r, p \rightarrow q, q \rightarrow s, r \rightarrow s\}$, can derive s .

Equivalent to $\{\neg p \vee q, \neg q \vee s, \neg r \vee s\}$,



- However, still missing some “reasonable” inferences?

E.g., $\{\}$ $\not\vdash \neg p \vee p$ under resolution

E.g. 3: Natural deduction system

Restrict propositions to any form using $\wedge, \vee, \rightarrow, \neg, \top, \perp$.

$$\text{And elim} \quad \frac{\alpha \wedge \beta}{\alpha, \beta} \quad \text{And intro} \quad \frac{\alpha, \beta}{\alpha \wedge \beta}$$

$$\text{Or intro} \quad \frac{\alpha}{\alpha \vee \beta}$$

$$\text{Impl elim} \quad \frac{\alpha, \alpha \rightarrow \beta}{\beta} \quad \text{Impl intro} \quad \frac{\text{If } A \cup \{\alpha\} \vdash \beta}{\alpha \rightarrow \beta}$$

$$\text{Reductio} \quad \frac{\text{If } A \cup \{\alpha\} \vdash \perp}{\neg \alpha}$$

$$\text{Cases} \quad \frac{\text{If } A \cup \{\alpha\} \vdash \beta \text{ and } A \cup \{\neg \alpha\} \vdash \beta}{\beta}$$

$$\text{Tautology} \quad \frac{\alpha \vee \neg \alpha}{\top}$$

$$\text{Contradiction} \quad \frac{\alpha, \neg \alpha}{\perp}$$

E.g., given $\{p \rightarrow q, \neg p \rightarrow r, q \rightarrow s, r \rightarrow s\}$ can derive s .

1	$p \rightarrow q$		
2	$\neg p \rightarrow r$		
3	$q \rightarrow s$		
4	$r \rightarrow s$		
5.0		Assume p	
5.1		q	by Impl elim on 1 and 5.0
5.2		s	by Impl elim on 3 and 5.1
5	$p \rightarrow s$		by Impl intro
6.0		Assume $\neg p$	
6.1		r	by Impl elim on 2 and 6.0
6.2		s	by Impl elim on 4 and 6.1
6	$\neg p \rightarrow s$		by Impl intro
7a.0		Assume p	
7a.1		s	by Impl elim on 5 and 7a.0
7b.0		Assume $\neg p$	
7b.1		s	by Impl elim on 6 and 7b.0
7	s		by Cases

E.g., given $\{\}$ can derive $p \rightarrow p$

1.0		Assume p	
1.1		p	
1	$p \rightarrow p$		by Impl intro on 1.0 and 1.1

2.9 Characterizing inference systems

For a given inference system:

- Take a given set of propositions $A = \{\alpha_1, \dots, \alpha_n\}$ and consider applying all available inference rules to A repeatedly:
- Get a monotonically growing set
(Note: inference rules do not block each other, can always add conclusions in any order)

A set A is *closed* if no available inference rule can introduce any new propositions to A .

- The closure of a set A , $\text{close}(A)$, is called the *theory* of A .

- Monotonicity: $A \subset B$ implies that $\text{close}(A) \subset \text{close}(B)$
(That is, adding new facts and new rules will only strictly increase the theory.)
- Monotonicity gives modularity: It is clear how new facts affect the theory. You never lose old conclusions. (This is a special feature of *logical* reasoning as opposed to *plausible* reasoning, which usually doesn't obey monotonicity.)

A proposition γ is called a *tautology* if $\{\} \vdash \gamma$. Such a γ is contained in every closure.

A set of propositions A is said to contain a *contradiction* if A contains any of \perp , $\top \rightarrow \perp$, or both α and $\neg\alpha$ for some α .

2.10 Computational complexity and search

Sometimes, even if that form of logical reasoning can be automated in principle, it can still be computationally hard to reach the desired conclusions. A surprising example of this is trying to prove the “*pigeonhole principle*” (that $N + 1$ pigeons cannot be placed solitarily in N pigeonholes) using resolution:

E.g., 3 pigeons, 2 holes

		pigeons		
		A	B	C
holes	1	A1	B1	C1
	2	A2	B2	C2

Constraints:

$$\begin{array}{lll}
 A1 \vee A2 & B1 \vee B2 & C1 \vee C2 \\
 \neg(A1 \wedge B1) & \neg(A1 \wedge C1) & \neg(B1 \wedge C1) \\
 \neg(A2 \wedge B2) & \neg(A2 \wedge C2) & \neg(B2 \wedge C2)
 \end{array}$$

Re-expressed in clausal form:

$$\begin{array}{lll}
 A1 \vee A2 & B1 \vee B2 & C1 \vee C2 \\
 \neg A1 \vee \neg B1 & \neg A1 \vee \neg C1 & \neg B1 \vee \neg C1 \\
 \neg A2 \vee \neg B2 & \neg A2 \vee \neg C2 & \neg B2 \vee \neg C2
 \end{array}$$

Exercise: derive \perp from these facts using resolution.

Hint: it can be done, but it is surprisingly hard!

2.11 Readings

Burris, Chapter 1 and 2.

Dean, Allen, Aloimonos, Chapter 3.

Russell and Norvig 2nd Ed., Section 7.5.