

23 Generalization theory / Overfitting

Generalization

How well does a learned function predict on future test examples?

How to choose hypothesis space H ?

If H is too complex

- over-fitting
- small training error
- large test error
- very different functions have similar training error
- perturbing training data slightly yields very different optimal hypotheses

If H is too restricted

- under-fitting
- large training error
- large test error

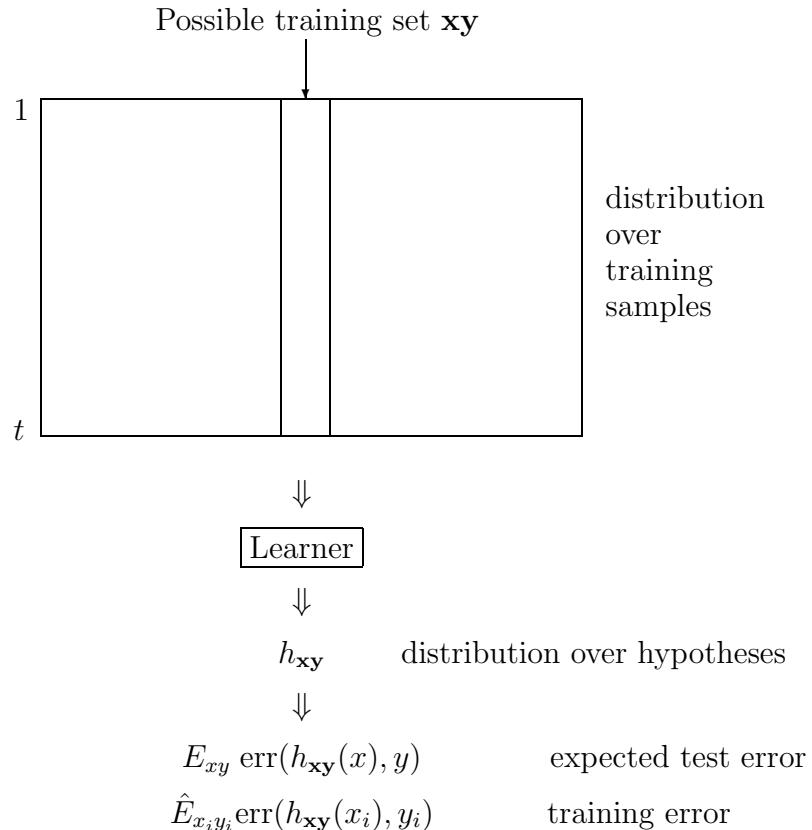
23.1 Introduction to statistical generalization theory

Mathematical model

independent identically distributed (IID) random examples

- Assume a fixed joint distribution P_{XY} over $X \times Y$
- Training examples $(x_1, y_1), \dots, (x_t, y_t)$ independently drawn from P_{XY}
- Test examples independently drawn from same P_{XY}

Learner maps $(x_1, y_1) \dots (x_t, y_t)$ to a hypothesis $h : X \rightarrow Y$



For squared prediction error

$$\text{err}(\hat{y}, y) = (\hat{y} - y)^2$$

get

$$\begin{aligned}
 & E_{\mathbf{xy}} E_{xy} (h_{\mathbf{xy}}(x) - y)^2 && \text{test error} \\
 & = E_{\mathbf{xy}} \hat{E}_{x_i y_i} (h_{\mathbf{xy}}(x_i) - y_i)^2 && \text{train error} \\
 & + E_{\mathbf{xy}} \hat{E}_{x_i} (h_{\mathbf{xy}}(x_i) - h^*(x_i))^2 && \text{train variance} \\
 & + E_{\mathbf{xy}} E_x (h_{\mathbf{xy}}(x) - h^*(x))^2 && \text{variance}
 \end{aligned}
 \quad \left. \begin{array}{l} \text{opt test} \\ \text{err in } H \end{array} \right\} \begin{array}{l} \text{hypothesis} \\ \text{test err} \end{array}$$

where

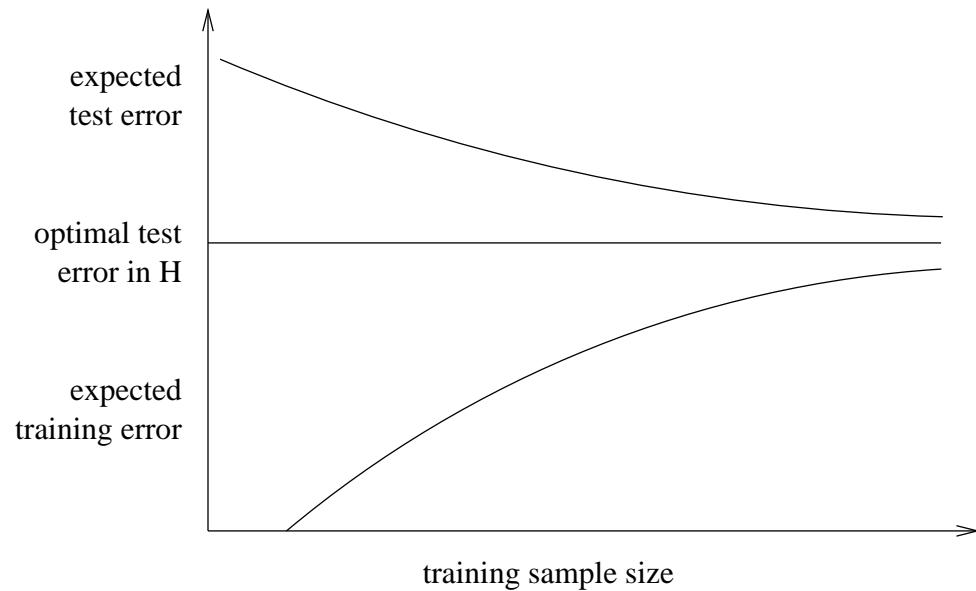
$$h^* = \arg \min_{h \in H} E_{xy} (h(x) - y)^2$$

H is a closed linear space

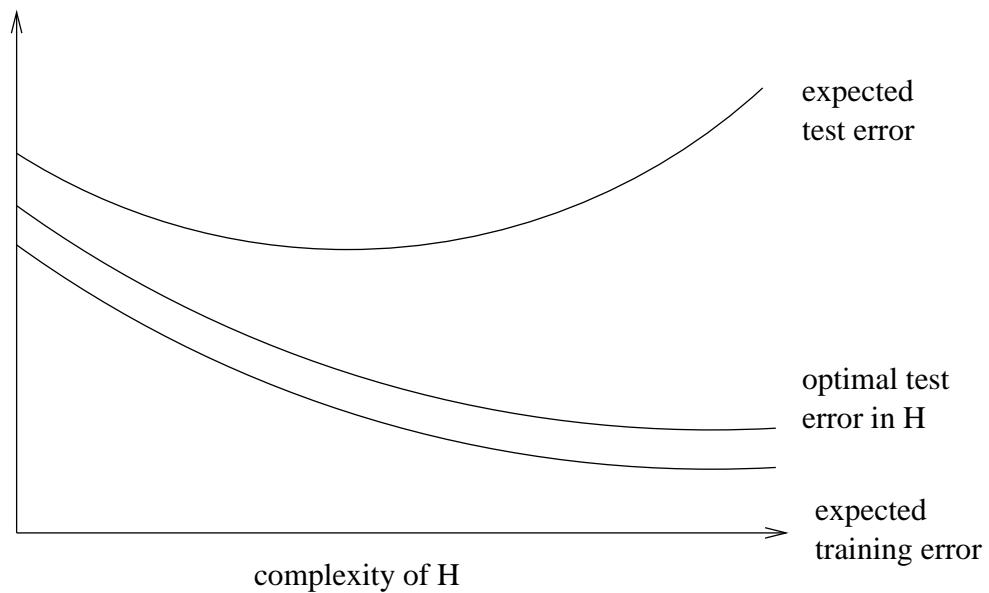
Immediate consequence

$$\begin{array}{ccc}
 \text{expected} & \text{optimal} & \text{expected} \\
 \text{hypothesis} & \geq & \text{test} \\
 \text{test} & & \geq \\
 \text{error} & & \text{in } H \\
 & & \text{train} \\
 & & \text{error}
 \end{array}$$

23.2 Learning curves

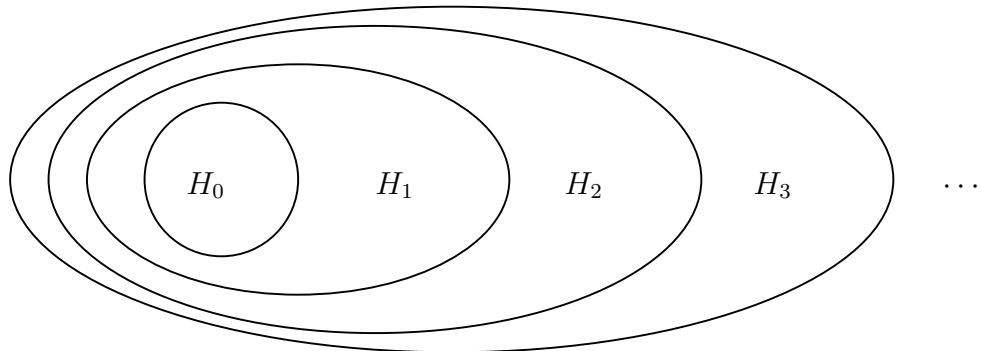


23.3 Overfitting curves



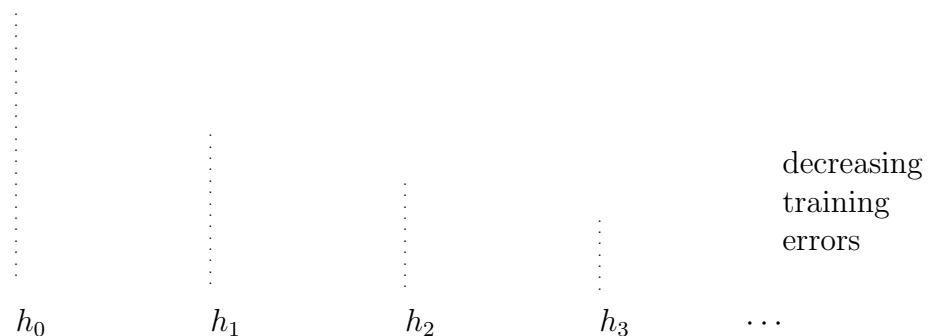
23.4 Automatic complexity control

Model selection



How to choose the right complexity level?

Given data, get



which hypothesis to choose?

- choose too early: under-fit
- choose too late: over-fit

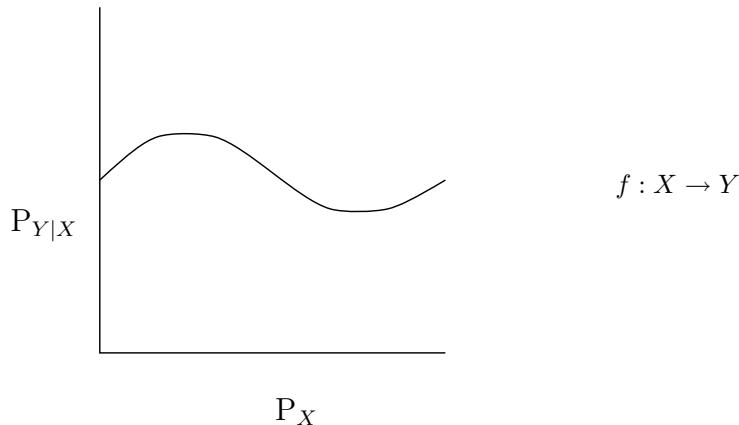
strategy 1: complexity penalization

- guess at variances
- training errors say nothing about variances
- $\text{penalty}(i)$ approximates variance at complexity level i
- minimize: $\text{training_error}(i) + \text{penalty}(i)$

Strategy 2: Hold out testing

- Split training data into pseudo-train and pseudo-test set
- Train on pseudo-train and test each hypothesis h_0, h_1, \dots on the held-out pseudo-test
- Hold-out test gives an *unbiased* estimate of test error
- Pick i with best hold-out test
- Re-train at complexity level i on all the data

Strategy 3: Metric space



Assume we know P_X (which can be estimated from unlabeled data x_1, x_2, \dots)

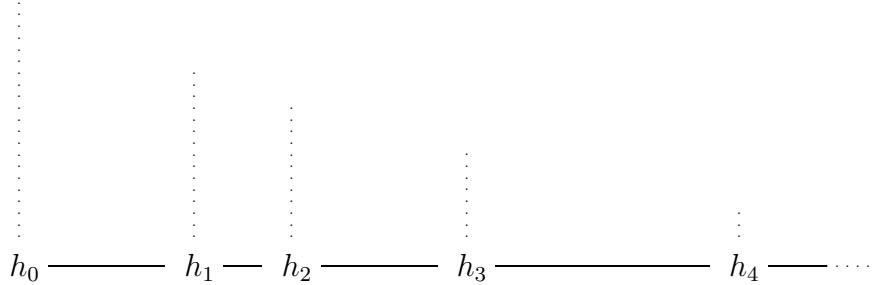
Defines a *metric* on H

$$d(h, g) = \sqrt{\int_x (h(x) - g(x))^2 dP_X}$$

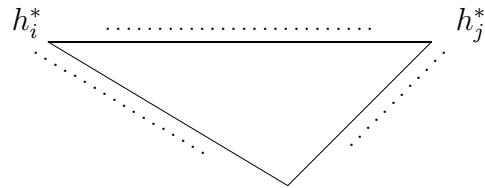
$$d(h, P_{Y|X}) = \sqrt{\int_x \int_y (h(x) - y)^2 dP_{Y|x} dP_X}$$

Goal is to minimize $d(h, P_{Y|X})$

Given data, get



Have 2 metrics, real and estimated



Adjust $\hat{d}(h_i, P_{Y|X})$ by multiplying it by $\max_{j < i} \frac{d(h_i, h_j)}{\hat{d}(h_i, h_j)}$

Readings

Hastie, Tibshirani, Friedman: Sections 2.9, 5.1–5.5

Schuurmans, D. and Southery, F. (2001) Metric-based methods for adaptive model selection and regularization. *Machine Learning*, 48(1-3): 51–84.