
Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

22 Function learning algorithms

Important general learning problem:

Learning a function from examples

• Given a finite set of training pairs (x1, y1), (x2, y2), . . . , (xt, yt)

• Attempt to learn a rule for predicting y given x

x1, y1

x2, y2

...
xt, yt

⇒ Learner ⇒ h : X → Y

• Want to minimize prediction error, err(h(x), y), on test examples (x, y)

• The function err(ŷ, y) depends on the problem

For classification problems, use

err(ŷ, y) =

{

0 ŷ = y

1 ŷ 6= y

For real-valued prediction (regression) problems, use

err(ŷ, y) = (ŷ − y)2

Generic learning algorithm

1. Fix a hypothesis space H = {set of h’s}

2. Given (x1, y1) . . . (xt, yt), calculate h∗ ∈ H that minimizes

1

t

t
∑

i=1

err(h(xi), yi)

(average training error)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

22.1 Special case: real valued prediction

Learn h : <n → < to minimize the prediction error

err(ŷ, y) = (ŷ − y)2

Assume

H = {linear functions}

= {hw : w ∈ <n}

where hw(x) = w · x =
∑n

i=1
wixi

Given training data










x11 x12 . . . x1n y1

x21 x22 . . . x2n y2

...
...

. . .
...

...
xt1 xt2 . . . xtn yt











Calculate w that minimizes

SSE =
t
∑

i=1

(w · xi − yi)
2

where xi = (xi1, xi2, . . . , xin)

Can solve for this w by taking derivatives of SSE with respect to each wj

and setting them to zero

∂

∂wj

SSE =
t
∑

i=1

2(w · xi − yi)xij

= 2

(

t
∑

i=1

n
∑

k=1

wkxikxij −
t
∑

i=1

yixij

)

Thus, consider whole vector of derivatives

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 3

∇wSSE =















∂SSE
∂w1

∂SSE
∂w2

...

∂SSE
∂wn















=















2
(
∑t

i=1

∑n

k=1
wkxikxi1 −

∑t

i=1
yixi1

)

2
(
∑t

i=1

∑n

k=1
wkxikxi2 −

∑t

i=1
yixi2

)

...

2
(
∑t

i=1

∑n

k=1
wkxikxin −

∑t

i=1
yixin

)















= 2















∑t

i=1

∑n

k=1
wkxikxi1

∑t

i=1

∑n

k=1
wkxikxi2

...
∑t

i=1

∑n

k=1
wkxikxin















− 2















∑t

i=1
yixi1

∑t

i=1
yixi2

...
∑t

i=1
yixin















= 2XT















∑n

k=1
wkx1k

∑n

k=1
wkx2k

...
∑n

k=1
wkxtk















− 2XTy

= 2XTXw − 2XTy

Now solve for w that makes this vector of derivatives equal to zero

2XTXw − 2XTy = 0

XTXw = XTy

w = (XTX)−1XTy

Or in Matlab

w = (XTX) \ (XTy)

This w is unique if the columns of X are independent

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

22.2 Geometric derivation

Think of columns of X as vectors






 v1







 v2



 . . .



 vn









Looking for linear combination of columns that best approximates y

For any weight vector w get

ŷ = w1v1 + w2v2 + . . .+ wnvn

Any such ŷ lies in span(v1, . . . ,vn)

The element ŷ of span(v1, . . . ,vn) that minimizes ||ŷ − y||2 is given by the
orthogonal projection of y onto span(v1, . . . ,vn)

6

ª

-

*

q

3

-

6

v1

v2

y

ŷ

y − ŷ

Since the vector y − ŷ is orthogonal to span(v1, . . . ,vn), the inner products
vi(y − ŷ) are zero. That is, vi · ŷ = vi · y for all i = 1 . . . n

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

The vectors vi are columns of the matrixX, so the equalities can be rewritten

XT ŷ = XTy

Remembering that ŷ = Xw, we finally get

XTXw = XTy

Same as before

22.3 Other error functions

Sum of squared errors is not always the best error function

For example, could use

err(ŷ,y) =
∑

i(ŷi − yi)
2 L2 error

∑

i |ŷi − yi| L1 error

∑

i |ŷi − yi|
p Lp error

maxi |ŷi − yi| L∞ error

Example: Minimize maximum training error (L∞)

• Choose w to minimize maxi |w · xi − yi|

• Linear programming: find w, δ to minimize δ, subject to constraints

w · x1 ≤ y1 + δ

w · x1 ≥ y1 − δ
...
...
...

w · xt ≤ yt + δ

w · xt ≥ yt − δ

• Can be done in polynomial time

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

Example: Minimize sum of absolute error (L1)

• Choose w to minimize
∑t

i=1
|w · xi − yi|

• Linear programming: choosew, δ to minimize
∑t

i=1
|δi| =

∑t

i=1
δ+
i +δ−i

subject to

w · x1 + δ1 = w · x1 + δ+
1 − δ−1 = y1

w · x2 + δ2 = w · x2 + δ+
2 − δ−2 = y2

...
...

w · xt + δt = w · xt + δ+
t − δ−t = yt

Which objective is best?

• L1 is the most robust against outliers

• L2 is cheapest computationally

• L∞ gives the best upper bound on training set error

L∞

L2

L1

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

22.4 Generalized linear functions

Linear functions may not be expressive enough

Trick expand representation x 7→ ϕ(x)

Define new attributes which are non-linear functions of original attributes

¼ °

w

q

s

x

ϕ1(x) . . . ϕk(x)ϕ2(x)

“basis functions”

Expand training set











x11 . . . x1n y1

x21 . . . x2n y2

...
. . .

...
...

xt1 . . . xtn yt











⇓











ϕ1(x1) . . . ϕk(x1) y1

ϕ1(x2) . . . ϕk(x2) y2

...
. . .

...
...

ϕ1(xt) . . . ϕk(xt) yt











Φ y

Learn a linear function over expanded representation, which is non-linear in
the original representation

E.g. learn non-linear function to minimize L2 error by solving for w such
that ΦTΦw = ΦTy

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

Example: Polynomial regression

Let X = <, and use the expanded set of all powers of x, up to d

x

x2x1 . . . xd

Expand training set

(x1, y1)
(x2, y2)
...

(xt, yt)

⇒











1 x1 x2
1 . . . xd

1 y1

1 x2 x2
2 . . . xd

2 y2

...
...

...
. . .

...
...

1 xt x2
t . . . xd

t yt











To find the best polynomial, solve for w in ΦTΦw = ΦTy
Obtain coefficients of minimal squared error polynomial of degree d

(Can also easily solve for min abosolute error, and min maximum error poly-
nomials, by exploiting the same basis expansion and using the linear pro-
gramming formulations shown earlier to calculate w)

Other basis functions

• spline fitting (basis splines)

• radial basis functions

• Fourier analysis

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 9

22.5 Neural networks

Learning a generalized linear function could be depicted as

. . .x1 x2 xn

ŷ

. . .ϕ1(x) ϕ2(x) ϕk(x)

w1

w2 wk

fixed basis functions

learn weights

However, in addition to the weights w at the final level, we could also try
to learn the basis functions ϕi themselves. So add parameters ui to ϕi, and
attempt to learn ui parameters in addition to w parameters

. . .x1 x2 xn

ŷ

. . .ϕ1(x,u1) ϕ2(x,u2) ϕk(x,uk)

w1

w2 wk

In total, have to learn weights w, U = [u1; . . . ;uk] to minimize SSE

• Unfortunately, the problem is NP-hard. There is no general polynomial
time training procedure.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 10

• Can use gradient descent optimization in w, U to heuristically find a
local minimum

“Backpropagation algorithm”

• Uses efficient scheme for calculating weight gradients using chain rule
of differentiation

Readings

Russell and Norvig: Chapter 20
Dean, Allen, Aloimonos: Sections 5.5, 5.6, 5.8
Hastie, Tibshirani, Friedman: Chapters 2, 3, 11

