Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

16 Syntactic disambiguation

Given word sequence,
extract hidden syntactic structure:

e objects

e relations

(arguments of relation)

e modifiers

(who modifies who)

16.1 Recover “phrase structure” of sentence
E.g.

time flies like an arrow

I
D N

I

N VvV P

| N
NP NP

PP
ot
VP
Y

S

(standard “metaphorical” interpretation)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

16.2 Syntactic ambiguity
“Command” interpretation

time flies like an arrow

I S
V N P D N

| N
NP NP
PP
VP

|
S

“Strange species of flies” interpretation

time flies like an arrow

I |
N N V D N

7
=

16.3 Capture phrase structure with a CFG

Context Free Grammar (CFG) consists of:
e Terminal symbols (words) A = {wq,w,, ...}
e Non-terminal symbols Ny, Ny, ...
e Special start symbol S
e Context free rules N — «

— N a single non-terminal

— « a finite string of terminals/non-terminals

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

E.g.

S — NPVP V — flies

S — VP V — like
NP — N V — time
NP — DN N — flies
NP — NPN N — arrow
VP — V NP N — time
VP — V PP P — like
VP — V NP PP D — an
PP — P NP

Sequences a grammar can produce are legal
Sequences a grammar cannot produce are illegal
In natural language
e Legal sequences can have many different parses (derivations)

e Selecting a parse is important

— gives argument structure

Will select “right” parse with probability models

Build a joint distribution P(sentence, parse)

interp = arg %gsfP(parsdsentence)

= argmax P(parse, sentence)
parse

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

16.4 Probabilistic Context Free Grammar

Add probabilities to a context free grammar

e For ecach non-terminal N;

Assign probability distribution over its rules

N; — oy b1
N; — ay b2

Ni — o, pi

Where >, p; =1

E.g.

S — NP VP .6 V — flies)

S — VP 4V — like 3
NP — N) V — time .2
NP — DN 3 N — flies .5
NP — NPN 2 N — arrow .3
VP — V NP D N — time .2
VP — VPP 3 P — like 1
VP — V NPPP 2 D — an 1
PP — PNP 1

16.5 Generate

Sample random tree, sentence) configurations by
e Starting with S

e Expand non-terminals independently by selecting rules according to
probabilities

This assumes subtrees are conditionally independent given their root
Generates random trees

leaves = word sequence

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

16.6 Evaluation

Calculate probability of a complete (tree, sentence) configuration by taking
products of the individual probabilities

E.g. Let sentencel = “time flies like an arrow” and let treel, tree2 and tree3
be the three different parse trees shown before (respectively). Then we have

P(treel, sentencel) = .6.5.2.3.511.31.3 = .00081
P(tree2, sentencel) = 4.2.2.5.511.31.3 = .00036
P(tree3, sentencel) = .6.2.5.2.5.5.3.31.3 = .000081

16.7 Inference

Marginalization
P(sentence) = ZP(sentence, tree)
trees
Conditioning
P t t
P(tree|sentence) = (sentence, tree)
P(sentence)
Completion
interpretation = argmax P(tree|sentence)

tree

= argmax P(tree, sentence)
tree

16.8 Polynomial time algorithms for PCFGs

First, we will assume CFG is in Chomsky Normal Form (CNF).
That is, rules are restricted to be of form:

.SHNl
.Ni—>Nij

.NZ'—>U}

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

Note For any PCFG there is an equivalent PCFG in Chomsky normal form
E.g.

e Eliminate unit chains N7 — Ny, N3 — N3, ..., N, — w,
by replacing each chain with a single rule Ny — w.

Probability of new rule = product of probabilities in original chain

e Eliminate non-binary rules Ny — Ny N3... Ny,
by replacing this with a set of binary rules on new non-terminals

N1 — NQAQ, A2 — N3A3, Ak — Nk
Where probability of Ny — Ny Ay = probability of original rule,
remaining probabilities = 1

Efficient marginalization

Compute P(w;...w,|S)

wq W,

Consider recursive divide and conquer approach:

N;

Wy Wy,

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

P(wg...w,, | N;)
P(N; — wy) itm=1¢
m—_—1
= 4 >) P(N; = NiNo) > P(wpeewesq| Nj) P(wergr .| Ni)
Nj N q=0
otherwise
N; N;
N; Ng
—
Wy W Wy Wprq Wegg+1 W,

e Note that the rightmost product encodes the assumption that the sub-
trees generated below N; and N are independent once N; and NV, are
chosen.

e Unfortunately the computation time of this recursive procedure is ex-
ponential (because subtree computations can be repeated)

Efficient bottom-up dynamic programming

Compute all Time
P(we|N;) nx N
P(U]gﬂ)ngl‘Ni) (77, — 1) x1x N3

P(woweg1wega|N;) (n—2) x 2 x N3

P(wy...wes | N;) (n—j) xjx N3
Total time = N3>."_(n—j)j = O(N3n?)

=1

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

Note N?® > G where G is the number of non-terminal rules in the grammar,
so the running time is actually more like O(Gn?)

16.9 Completion

tree* = argrglr%s(P(wl...wn,tree)

Same algorithm as above!

m—~_—1
Just replace E E E
N; Ny q=0
. m—~£—1
with max max max

N; Ny, q=0

Readings

Russell and Norvig: Chapter 23
Dean, Allen, Aloimonos: Sections 10.2-10.5

