
Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

16 Syntactic disambiguation

Given word sequence,
extract hidden syntactic structure:

• objects

• relations

(arguments of relation)

• modifiers

(who modifies who)

16.1 Recover “phrase structure” of sentence

E.g.

time flies like an arrow

N V P D N

NPNP

PP

VP

S

(standard “metaphorical” interpretation)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

16.2 Syntactic ambiguity

“Command” interpretation

VP

S

time flies like an arrow

P D N

NP

PP

V N

NP

“Strange species of flies” interpretation

time flies like an arrow

D N

NP

NN V

VP

NP

NP

S

16.3 Capture phrase structure with a CFG

Context Free Grammar (CFG) consists of:

• Terminal symbols (words) A = {w1, w2, ...}

• Non-terminal symbols N1, N2, ...

• Special start symbol S

• Context free rules N → α

– N a single non-terminal

– α a finite string of terminals/non-terminals

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 3

E.g.
S → NP VP V → flies
S → VP V → like

NP → N V → time
NP → D N N → flies
NP → NP N N → arrow
VP → V NP N → time
VP → V PP P → like
VP → V NP PP D → an
PP → P NP

Sequences a grammar can produce are legal
Sequences a grammar cannot produce are illegal

In natural language

• Legal sequences can have many different parses (derivations)

• Selecting a parse is important

→ gives argument structure

Will select “right” parse with probability models

Build a joint distribution P(sentence, parse)

interp = argmax
parse

P(parse|sentence)

= argmax
parse

P(parse, sentence)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

16.4 Probabilistic Context Free Grammar

Add probabilities to a context free grammar

• For each non-terminal Ni

Assign probability distribution over its rules

Ni → α1 p1

Ni → α2 p2

...

Ni → αk pk

Where
∑

j pj = 1

E.g.
S → NP VP .6 V → flies .5
S → VP .4 V → like .3

NP → N .5 V → time .2
NP → D N .3 N → flies .5
NP → NP N .2 N → arrow .3
VP → V NP .5 N → time .2
VP → V PP .3 P → like 1
VP → V NP PP .2 D → an 1
PP → P NP 1

16.5 Generate

Sample random tree, sentence) configurations by

• Starting with S

• Expand non-terminals independently by selecting rules according to
probabilities

This assumes subtrees are conditionally independent given their root
Generates random trees

leaves = word sequence

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

16.6 Evaluation

Calculate probability of a complete (tree, sentence) configuration by taking
products of the individual probabilities

E.g. Let sentence1 = “time flies like an arrow” and let tree1, tree2 and tree3
be the three different parse trees shown before (respectively). Then we have

P(tree1, sentence1) = .6 .5 .2 .3 .5 1 1 .3 1 .3 = .00081

P(tree2, sentence1) = .4 .2 .2 .5 .5 1 1 .3 1 .3 = .00036

P(tree3, sentence1) = .6 .2 .5 .2 .5 .5 .3 .3 1 .3 = .000081

16.7 Inference

Marginalization

P (sentence) =
∑

trees

P(sentence, tree)

Conditioning

P (tree|sentence) =
P(sentence, tree)

P(sentence)

Completion

interpretation = argmax
tree

P(tree|sentence)

= argmax
tree

P(tree, sentence)

16.8 Polynomial time algorithms for PCFGs

First, we will assume CFG is in Chomsky Normal Form (CNF).
That is, rules are restricted to be of form:

• S → Ni

• Ni → NjNk

• Ni → w

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

Note For any PCFG there is an equivalent PCFG in Chomsky normal form
E.g.

• Eliminate unit chains N1 → N2, N2 → N3, ..., Nk → w,
by replacing each chain with a single rule N1 → w.

Probability of new rule = product of probabilities in original chain

• Eliminate non-binary rules N1 → N2N3...Nk,
by replacing this with a set of binary rules on new non-terminals
N1 → N2A2, A2 → N3A3, ... Ak → Nk.

Where probability of N1 → N2A2 = probability of original rule,
remaining probabilities = 1

Efficient marginalization

Compute P(w1...wn|S)

S

w1 wn

Consider recursive divide and conquer approach:

Ni

w` wm

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

P(w`...wm|Ni)

=























P(Ni → w`) if m = `

∑

Nj

∑

Nk

P(Ni → NjNk)
m−`−1
∑

q=0

P(w`...w`+q|Nj) P(w`+q+1...wm|Nk)

otherwise

Ni

w` wm

=⇒

Ni

w` wm

Nj Nk

w`+q w`+q+1

• Note that the rightmost product encodes the assumption that the sub-
trees generated below Nj and Nk are independent once Nj and Nk are
chosen.

• Unfortunately the computation time of this recursive procedure is ex-
ponential (because subtree computations can be repeated)

Efficient bottom-up dynamic programming

Compute all Time

P(w`|Ni) n×N

P(w`w`+1|Ni) (n− 1)× 1×N 3

P(w`w`+1w`+2|Ni) (n− 2)× 2×N 3

...
P(w`...w`+j|Ni) (n− j)× j ×N 3

Total time = N 3
∑n

j=1
(n− j)j = O(N 3n3)

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

Note N 3 ≥ G where G is the number of non-terminal rules in the grammar,
so the running time is actually more like O(Gn3)

16.9 Completion

tree∗ = argmax
tree

P(w1...wn, tree)

Same algorithm as above!

Just replace
∑

Nj

∑

Nk

m−`−1
∑

q=0

with max
Nj

max
Nk

m−`−1
max
q=0

Readings

Russell and Norvig: Chapter 23
Dean, Allen, Aloimonos: Sections 10.2-10.5

