

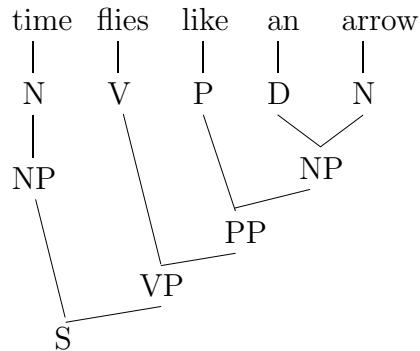
16 Syntactic disambiguation

Given word sequence,
extract hidden syntactic structure:

- objects
- relations
(arguments of relation)
- modifiers
(who modifies who)

16.1 Recover “phrase structure” of sentence

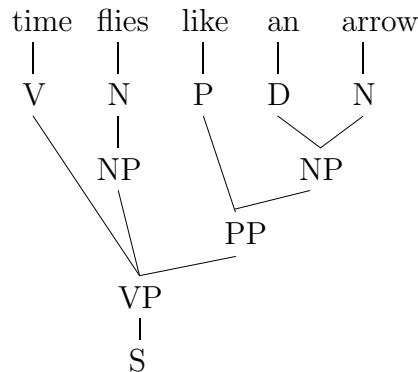
E.g.



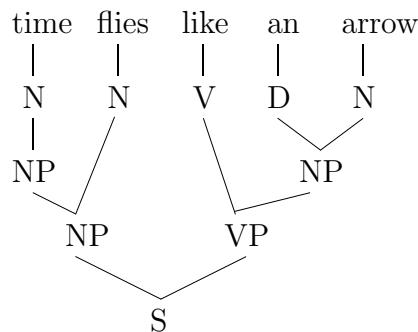
(standard “metaphorical” interpretation)

16.2 Syntactic ambiguity

“Command” interpretation



“Strange species of flies” interpretation



16.3 Capture phrase structure with a CFG

Context Free Grammar (CFG) consists of:

- Terminal symbols (words) $A = \{w_1, w_2, \dots\}$
- Non-terminal symbols N_1, N_2, \dots
- Special start symbol S
- Context free rules $N \rightarrow \alpha$
 - N a single non-terminal
 - α a finite string of terminals/non-terminals

E.g.

$S \rightarrow NP VP$	$V \rightarrow$	flies
$S \rightarrow VP$	$V \rightarrow$	like
$NP \rightarrow N$	$V \rightarrow$	time
$NP \rightarrow D N$	$N \rightarrow$	flies
$NP \rightarrow NP N$	$N \rightarrow$	arrow
$VP \rightarrow V NP$	$N \rightarrow$	time
$VP \rightarrow V PP$	$P \rightarrow$	like
$VP \rightarrow V NP PP$	$D \rightarrow$	an
$PP \rightarrow P NP$		

Sequences a grammar can produce are *legal*Sequences a grammar cannot produce are *illegal*

In natural language

- Legal sequences can have many different parses (derivations)
- Selecting a parse is *important*
→ gives argument structure

Will select “right” parse with probability models

Build a joint distribution $P(sentence, parse)$

$$\begin{aligned} \text{interp} &= \arg \max_{\text{parse}} P(\text{parse} | \text{sentence}) \\ &= \arg \max_{\text{parse}} P(\text{parse}, \text{sentence}) \end{aligned}$$

16.4 Probabilistic Context Free Grammar

Add probabilities to a context free grammar

- For each non-terminal N_i

Assign probability distribution over its rules

$$\begin{aligned}
 N_i \rightarrow \alpha_1 & \quad p_1 \\
 N_i \rightarrow \alpha_2 & \quad p_2 \\
 & \vdots \\
 N_i \rightarrow \alpha_k & \quad p_k
 \end{aligned}$$

Where $\sum_j p_j = 1$

E.g.

S	\rightarrow	NP VP	.6	V	\rightarrow	flies	.5
S	\rightarrow	VP	.4	V	\rightarrow	like	.3
NP	\rightarrow	N	.5	V	\rightarrow	time	.2
NP	\rightarrow	D N	.3	N	\rightarrow	flies	.5
NP	\rightarrow	NP N	.2	N	\rightarrow	arrow	.3
VP	\rightarrow	V NP	.5	N	\rightarrow	time	.2
VP	\rightarrow	V PP	.3	P	\rightarrow	like	1
VP	\rightarrow	V NP PP	.2	D	\rightarrow	an	1
PP	\rightarrow	P NP	1				

16.5 Generate

Sample random *tree, sentence*) configurations by

- Starting with S
- Expand non-terminals independently by selecting rules according to probabilities

This assumes subtrees are conditionally independent given their root

Generates random trees

leaves = word sequence

16.6 Evaluation

Calculate probability of a complete $(tree, sentence)$ configuration by taking products of the individual probabilities

E.g. Let $sentence1$ = “time flies like an arrow” and let $tree1$, $tree2$ and $tree3$ be the three different parse trees shown before (respectively). Then we have

$$\begin{aligned} P(tree1, sentence1) &= .6 .5 .2 .3 .5 1 1 .3 1 .3 = .00081 \\ P(tree2, sentence1) &= .4 .2 .2 .5 .5 1 1 .3 1 .3 = .00036 \\ P(tree3, sentence1) &= .6 .2 .5 .2 .5 .5 .3 .3 1 .3 = .000081 \end{aligned}$$

16.7 Inference

Marginalization

$$P(sentence) = \sum_{trees} P(sentence, tree)$$

Conditioning

$$P(tree|sentence) = \frac{P(sentence, tree)}{P(sentence)}$$

Completion

$$\begin{aligned} interpretation &= \arg \max_{tree} P(tree|sentence) \\ &= \arg \max_{tree} P(tree, sentence) \end{aligned}$$

16.8 Polynomial time algorithms for PCFGs

First, we will assume CFG is in *Chomsky Normal Form (CNF)*.

That is, rules are restricted to be of form:

- $S \rightarrow N_i$
- $N_i \rightarrow N_j N_k$
- $N_i \rightarrow w$

Note For any PCFG there is an equivalent PCFG in Chomsky normal form
E.g.

- Eliminate unit chains $N_1 \rightarrow N_2, N_2 \rightarrow N_3, \dots, N_k \rightarrow w$,
by replacing each chain with a single rule $N_1 \rightarrow w$.

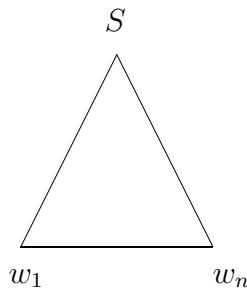
Probability of new rule = product of probabilities in original chain

- Eliminate non-binary rules $N_1 \rightarrow N_2N_3\dots N_k$,
by replacing this with a set of binary rules on new non-terminals
 $N_1 \rightarrow N_2A_2, A_2 \rightarrow N_3A_3, \dots A_k \rightarrow N_k$.

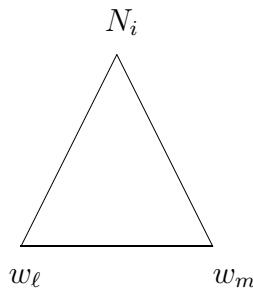
Where probability of $N_1 \rightarrow N_2A_2$ = probability of original rule,
remaining probabilities = 1

Efficient marginalization

Compute $P(w_1\dots w_n | S)$

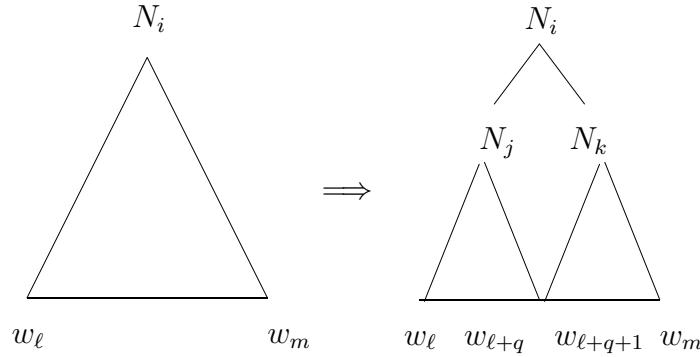


Consider recursive divide and conquer approach:



$$P(w_\ell \dots w_m | N_i)$$

$$= \begin{cases} P(N_i \rightarrow w_\ell) & \text{if } m = \ell \\ \sum_{N_j} \sum_{N_k} P(N_i \rightarrow N_j N_k) \sum_{q=0}^{m-\ell-1} P(w_\ell \dots w_{\ell+q} | N_j) P(w_{\ell+q+1} \dots w_m | N_k) & \text{otherwise} \end{cases}$$



- Note that the rightmost product encodes the assumption that the subtrees generated below N_j and N_k are independent once N_j and N_k are chosen.
- Unfortunately the computation time of this recursive procedure is exponential (because subtree computations can be repeated)

Efficient bottom-up dynamic programming

Compute all	Time
$P(w_\ell N_i)$	$n \times N$
$P(w_\ell w_{\ell+1} N_i)$	$(n-1) \times 1 \times N^3$
$P(w_\ell w_{\ell+1} w_{\ell+2} N_i)$	$(n-2) \times 2 \times N^3$
\vdots	
$P(w_\ell \dots w_{\ell+j} N_i)$	$(n-j) \times j \times N^3$
Total time	$= N^3 \sum_{j=1}^n (n-j)j = O(N^3 n^3)$

Note $N^3 \geq G$ where G is the number of non-terminal rules in the grammar, so the running time is actually more like $O(Gn^3)$

16.9 Completion

$$tree^* = \arg \max_{tree} P(w_1 \dots w_n, tree)$$

Same algorithm as above!

Just replace $\sum_{N_j} \sum_{N_k} \sum_{q=0}^{m-\ell-1}$

with $\max_{N_j} \max_{N_k} \max_{q=0}^{m-\ell-1}$

Readings

Russell and Norvig: Chapter 23

Dean, Allen, Aloimonos: Sections 10.2-10.5