Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

19 Optimal behavior: GGame theory

Adversarial state dynamics
— have to account for worst case

Compute policy 7 : S — A that maximizes minimum reward

Let S'(a,s) = { set of possible states s’ reachable by doing a in s }

(Assume you can identify current state)

19.1 Single step case: Maxi-min reward

E.g.

S0
/\ max

ay
a9 as

min
3 12 5 6 8 11 11
S1 S9 S3 S4 S5 S6 S7

Sets of possible next states

S'(a1,80) = {s1, 82,83}

S,(a2,30) = {53,34785}
S/<a3;50) = {55736757}

Solve
a* = argmax min R(s')

a s'eS'(a,so)
= a3

Obtain a reward of 8

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

19.2 Sequential acyclic case

Assume leveled acyclic model (as in acyclic decision theory case)

Assume
e Start at state s and finish at state s* after ¢ actions
e Model is acyclic:

0

e after executing action in s” we go to one of the states

1 .1 1
30,31,... ’sk‘l

and after executing the second action, we go to one of the states
oy STy -y Shy
and so on, until after the tth action, we arrive in state s
Given
e State dynamics S'(a, s)
e Reward function R(s)
Compute

e Optimal policy 7*: S — A
maximizes minimum total future reward for each state

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

Utility function

U(s,7) = minimum future reward obtained by running 7 from s

= R(s)+ min U(s,7
() s'eS’(m(s),s) ()

Compute 7* that maximizes U(s,7*) for all s

Efficient algorithm: Dynamic programming

Solve for U(s,) in last states first, and then recursively back up
m(s") = argmaxR(s')+ min U(s, 7"
() = mgmaxR(s)+ min UG

= argmax min U(s" 7%)
a SH'IGS/(CL,SI)

U(s',7*) = R(s")+ min U(s"™ 7%)

sit1leS’(a,s?)

where U(s"1, 7*) is already computed

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

19.3 Special case: Two-person Zero-sum game

Assume
e Acyclic state dynamics
e 2 players

— MAX player A tries to mazimize reward

— MIN player V tries to minimize reward

e RR(s) =0 except at leaf states

Then can dramatically speed up dynamic programming by «-3 pruning

Note: slight augmentation in dynamics

Now explicitly model opponent’s moves

general case 2 player
s s
a a
5P
S'(a, s) a°PP

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

a-(pruning
Not every path has to be explored
E.g.

3 128 2 4 6 14 5 2

Assume the nodes are explored left to right in a depth first fashion. Once
the children of the left MIN node are explored, the left MIN node will choose
reward 3. The MAX node at the top will then know that it can obtain
reward at least 3. The second MIN node (in the middle) will then start to
explore its children. Once it sees that its first child has value 2, it knows that
whatever the other children return, it can only return a reward that is 2 or
smaller. But this means the rest of the children of the middle MIN node are
irrelevant, because they cannot cause this node to obtain a larger value than
2. So the top MAX node will ignore the rest of the middle subtree because
the MAX node can already achieve reward 3 elsewhere. Therefore, the leaves
with rewards 4 and 6 are irrelevant and we do not need to check them.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

a-cutoff
Y
87
irrelevant
a = cutoff value for MIN node (if current best value < «, stop)
= current highest value of MAX ancestor
= lower bound on value MIN can hope to back up to root
= 10 in this example
[-cutoff
%
12,
irrelevant
B = cutoff value for MAX node (if current best value > 3, stop)

current lowest value of MIN ancestor
upper bound on value MAX can hope to back up to root
= 10 in this example

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 7

This method is called a-f pruning, and it is implemented by calculating
the bounds o and (3 of “interesting” values:

not interesting

QJMLB

interesting values

7_77777 (67

not interesting

Algorithms 1 and 2 describe operations in max and min nodes for a-f3
pruning.

Algorithm 1 a-f pruning algorithm: alpha_beta_max(s, o, 3)

Require: s is a max-node situation, o and 3 are boundaries
Ensure: the max value and an optimal action is returned, assuming given
boundaries

1: if s is a leaf node then

2: return (R(s),‘no action’)
3: end if

4: opt_action < ‘not important’
5: for all possible actions a do
6: (v,m) < alpha_beta_min(a(s), «,)
7. if v > a then

8: o<

9: opt_action «— a

10: if a > 3 then

11: return (a, opt_action)
12: end if

13: end if

14: end for

15: return (a, opt_action)

If we know the minimal and maximal value of the reward, i.e., ming R(s)
and max, R(s), then those are the initial values for a and [3; otherwise,
a = —oo and [= 400 initially.

The figure 1 illustrates what values of o and [are passed during the
search, and which nodes are visited (circled ones), in o~ pruning (the initial
values are @« = —oo and [= +o0.

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 8

Algorithm 2 a-f pruning algorithm: alpha_beta_min(s, a, 3)

Require: s is a min-node situation, o and 3 are boundaries
Ensure: the min value and an optimal action is returned, assuming given
boundaries

1: if s is a leaf node then

2: return (R(s),‘no action’)
3: end if

4: opt_action < ‘not important’
5: for all possible actions a do
6: (v,m) < alpha_beta_mazx(a(s), c, 3)
7. if v< 3 then

8: B —wv

9: opt_action < a
10: if o > [then
11: return (3, opt_action)
12: end if
13: end if
14: end for

15: return ([, opt_action)

Figure 1: a-f pruning example

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 9

Application to real games

A problem with almost all practical games is that the search tree is too large.
If the game is cyclic, it is infinite. In any case, it is usually impossible in
practice to search the whole tree. On improvement is to use memoization, i.e.,
keep a cache of calculated situations (positions). Additionally, memoization
can prevent us from exploring in an infinite loop in cyclic state spaces.

The leaves of the search tree are usually to far away to be reached by
a search algorithm, so we cannot usually back up exact values from the
leaves. (Remember that the leaves are the terminal states at the very end
of the game!) In practice, one almost always uses a heuristic approach:
search to a bounded depth, evaluate a heuristic function at the states reached
(which estimates the future min-max reward), treat this heuristic value as
the terminal reward, and back up the results.

Combined random-adversarial games

In some games, the sequence of states does not depend on the players’ actions
alone, but also on a random element, such as a dice roll or a card shuffle (e.g.
Backgammon or Poker). In these cases, the game tree contains chance nodes
in addition to MIN and MAX nodes. The value in chance nodes in calculated
as the expected value of the child-nodes’ values, using the probability distri-
bution of the random event. In this case, we use the terms expecti-mini-maz
algorithm, expecti-mini-mazx policy, etc.

19.4 General cyclic case

Maximize discounted sum of minimum future rewards

Value function

V:(s) = minimum discounted reward obtained by 7 starting in s

= R(s)+ min V(s
() ’}/S/ES/(W(S),S) ()

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

Policy evaluation

e Initialize V, arbitrarily
o [terate
VIrer(s) = R(s) + min V(s
()= R(s)+7,_min V()
for each s

e Halt when V" and V%! are sufficiently close

Policy iteration

e Initialize 7 arbitrarily and evaluate V

e Iterate
7" (s) = argmax R(s)+7y Igli(n)Vﬂ-old(S,)
a s'eS’(a,s
= argmax min V(s
& a s'eS’(a,s) ld()
for each s

e Use policy evaluation to calculate Vinew for 7%
and repeat policy update

e Halt when 7% = 7°'¢ (or more generally when Vinew = Vo)

Value iteration

e Initialize V' arbitrarily

o [terate
View(s) = R(s)+~ymax min V(s

a s'eS’'(a,s)

for each s

e Halt when V"% and V° are sufficiently close

10

Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

Recovering greedy policy

Given a value function V', recover 7 by

n(s) = argmax R(s)+7 rgli(n)V(s’)
a s'eS’(a,s

= argmax min V(s)
a s'eS’(a,s)

for each s

Readings
Russell and Norvig: Sections 6.1, 6.2, 6.5

11

