Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

18 Optimal cyclic decision making

What if the state space has cycles?

18.1 Example: Optimal behavior strategy for a mouse
Assignment 4

e A mouse and a cat live in a 4 x 4 grid

0 1 2 3

e Cheese is sitting at the corners (0,0) and (3, 3)
e The mouse’s goal is to eat cheese while avoiding the cat

0 if mouse not on cheese and cat not on mouse
1 if mouse on cheese and cat not on mouse
—3 if mouse not on cheese but cat on mouse
—2 if mouse on cheese but cat also on mouse

Reward(s) =

e A state can be described by four numbers (m;, m;, ¢;, ¢;)

— (m;, m;) gives the coordinates of the mouse
— (¢i,¢j) gives the coordinates of the cat

— Thus, there are a total of 4* = 256 states



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

e The cat and the mouse can execute one of five actions
(0,-1) move left
-1,0) move up

(

(0, 0) stay

(1, 0) move down
(0, 1)  move right

To make implementation easier:
— state vectors recoded into state numbers, 1 to 256
— action vectors recoded into numbers, 1 to 5
— Matlab functions statedecode.m, statencode.m, actdecode.m, acten-
code.m convert between numerical and vector-based representations
Two types of environment

Environment R Cat is blind and moves randomly

Given

e 256 X 1 matrix Reward

e 256 x 256 x 5 matrix Probs where
Probs(sg, sn,a) = P(sn|sg, a)
e Gamma (default value 0.95)

Environment A Cat can see and is clairvoyant (can guess your move!)

Given
e 256 x 1 matrix Reward
e 256 X 256 x 5 matrix Possibs where

1 if sn is possible from taking a in sg

Possibs(sg, sn, a) = { 0 otherwise

e Gamma (default value 0.95)

e rho (probability cat takes random move, specified in Probs)

In each case return an optimal Policy: 256 x 1 vector with entries in {1,2,3,4,5}



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 3

18.2 Optimizing reward in a cyclic R-environment

How to define utility of a policy 7 in a given state s?

Problem total expected future reward can be infinite (summing total future
expected reward diverges)

Two standard criteria
1. Maximize asymptotic rate of expected reward

t

1
lim p R(time;)

t—o0
=1

2. Maximize expected discounted reward
R(timey) + yR(time;) + Y2 R(timey) + > R(times) + - - -
for a discount factor v < 1

We will use discounted reward, because it is actually much easier
18.3 Value function

Vz(s) = expected discounted reward of following 7 from s

= R(s)+7 Y _P(s|s,m(s)) Va(s)

Objective

Given R(s), P(S|s,a), v
Calculate 7* that maximizes V- (s) for all s

Two ways to do this (“generalized dynamic programming”)
1. Policy iteration

2. Value iteration



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

18.4 Policy evaluation

Given a policy 7, how to calculate value function V(s)?

Value function is defined to be

Va(s) +72V P(s|s, 7 (s))

Strategy 1 Solve linear system of equations (256 equations, 256 unknowns)
for 256 x 1 vector V,
V7r =R+ ,}/Pﬂ'vﬂ'

Strategy 2 Iterative procedure

e Initialize V, arbitrarily
e Jterate
Vie(s) = +VZVOM (s']s,m(s))
for each s

e Halt when V" and V%! are sufficiently close

Guaranteed to converge to correct value function

18.5 Policy iteration
[terative procedure to calculate optimal policy
e Initialize 7 arbitrarily and evaluate V

e Iterate

T (s) = arg max R(s +72V7rozd (&'|s,a)

= argmax g Vaa(s") P(s']s, a)
a
S/

for each s
e Use policy evaluation to calculate Vinew for 7%
and repeat policy update

e Halt when 7% = 7°'? (or more generally when Vinew = Vo)

Guaranteed to converge to an optimal solution



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

18.6 Value iteration

Iterative procedure to calculate value function of optimal policy
(without explicitly calculating the optimal policy!)

A less obvious approach than policy iteration, but often works better
e Initialize V arbitrarily

e [terate

View(s) = R(s)+ymax » V() P(s/|s,a)

for each s

e Halt when V"% and V°4 are sufficiently close

Guaranteed to converge to the value function of an optimal policy
(but does not explicitly use optimal policy!)

Each iteration is cheaper than policy iteration because no policy evaluation
is required, only value update

18.7 Recovering greedy policy

Given a value function V', the one-step greedy policy 7 for V' can be recovered

w(s) = arg max R(s)+72V(s’) P(s'|s, a)

for each s

If V is the value function for an optimal policy then 7 guaranteed optimal

Readings
Russell and Norvig: Chapter 17



