Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1

17 Optimal behavior: Decision theory
How to act optimally under uncertainty?
Given

e set of states: S

e set of actions: A

e state dynamics: executing a in s leads to s’

Goal

e Maximize reward or achieve a goal

e Reward function R(s)

Generalizes the concept of goal states. Goal states can be expressed
using a reward function

| 1 ifsisagoal
R(s) = { 0 otherwise

Task
e Given state dynamics and reward function

e Need to determine best actions to take

Why is this hard?
e Uncertainty in state dynamics

— world could be random

— world could be adversarial

e May have to tradeoff short term versus long term reward



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 2

17.1 Easiest case: Planning

Actions are deterministic: s = a(s)

Given an initial state and goal condition:
1. can precompute an optimal action sequence

2. execute sequence blindly

17.2 Slightly harder case: Conditional planning

Actions are non-deterministic
S'(a,s) = set of possible next states when a executed in s

Have to plan for multiple outcomes (conditional/contingency planning)

Have to monitor plan and choose future actions based on future states (exe-
cution monitoring)

17.3 General case

Have to plan an action for every possible state
A total policy (or controller) is given by m: S — A

Optimal behavior: precompute optimal policy

Two cases:

Decision theory: State dynamics are random: Living in an oblivious stochas-
tic environment

Game theory: State dynamics are adversarial: The world (or your oppo-
nents) are out to get you



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

17.4 Optimal decision theory

Given
e state space S
e actions A
e reward function R:S — R
e state transition model P(s'|s,a)

Assume for now that we can identify the current state
In this case, the optimal policy is a function of state: 7* : S — A

Simplest case: optimize immediate expected reward

Only look one step ahead
Given current state s

For each action a, the expected total reward in the next state is
R(s)+ Y _P(s|s,a) R(s)
Optimal action
a* = argmax R(s)+ ZP(S’|S, a) R(s")

= argmax ZP(3’|s,a) R(s")



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 4

17.5 Harder case: Sequential decision problem

Have to choose several actions in sequence, depending on resulting states.
Goal is to maximize the total reward accumulated.

However, there is a trade-off between short term and long term reward.
That is, simply taking the action that maximizes immediate reward does not
always lead to the best policy

R =100 R=-100
_al :
@
a2

(05} e aq
Q

a2

Here the optimal policy makes the decision 7*(sg) = as, even though the
optimal action for one step is ay

17.6 Computing optimal policies: Acyclic case

Assume S finite
Assume no action sequence causes loop in state space

In particular, assume
. . . 1 O
e 1nitial state s

e terminal state s

0 we go to one of the states

e after executing action in s
11 1
505515+ Sp,

and after executing the second action, we go to one of the states

2 2 2
505815+ 5 Shy

and so on, until after the ¢th action we arrive in state s’



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 5

This is represented by

Thus, the state dynamics move forward level by level P(s/*1|s/ a)

Given

e R(s) — a lookup table of length |S]|

e P(s'|s,a) — a lookup table (matrix) of size |S| x |S| for each a
Compute

o ™ : 5 — A — alookup table of size |S| — that maximizes expected
future reward from each state

Task
: p ~[opmiza] =
|S] x 1 |S] x |S] x |A] |S] x 1




Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 6

Utility function

U(s,m) = total expected reward obtained by policy 7 starting in state s

= R(s)+ Y _U(s,7) P(s/|s,7(s))

Compute 7* that maximizes U(s, ) for all s

Naive algorithm
e Enumerate policies (| A|!¥! possible policies)

e Evaluate each one  (O(]4] x |S[?))

e Pick winner

Too expensive!

Efficient algorithm: Dynamic programming
Solve for U(s, ) in last states first, and then recursively back up
7*(s') = argmax R(s')+ Z U(s™ 1) P(s" s, a)
sitl
= arg maXZU<Si+1,7T*) P(s"ts", a)
gitl
U(s',7) = R(s')+ Y _ U(s™,7%) P(s s, 7%(s"))
sitl

where U(s"t!, 7*) is already computed



Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu

Algorithm 1 Sequential decision problem: acyclic case

1. U(st, m*) «— R(s");

2: for j «— 0 to k;_1 do

3: W*(Sé_l) « any action, because they all lead to s
4 U@y m) — R(s5 ) + U(s", 7%)

5: end for

6: for i < t — 2 down to 1 do

7.  for 7 «+— 0 to k; do

8: m*(s}) «— argmax, zk”ol U(sy™, ) P(s;Hs%, a)
9: U (s}, m) — R(si) + 30 Ulsy™, 7) (s, 7(s1))
10: end for

11: end for

12: 7*(s%) « argmax, Zk = (S}C,ﬂ' ) P(st|s%, a)

13: U(s%, %) — R(s%) + 4L, Usp, m) P(stls®, 7(s"))

Time complexity < |S| x |S] x |A| x levels

Readings

Russell and Norvig: Chapter 12, Section 16.1
Dean, Allen, Aloimonos: Section 8.4



