
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

5 Automated problem solving

Last time: represented problem as a CSP

This time: represent problem as a state space search problem

5.1 State space search problem

Given:

• initial state s0

• set of possible actions: a1, . . . , ak where ai : s 7→ s′

• goal test

Goal: find a sequence of actions that transforms initial state into a goal state.

(Thus, the search space is an implicit graph generated by objects and oper-
ators on objects.)

5.2 Generalizes CSPs

• state = partial assignment

• action = assign value to an unassigned variable

• initial state = empty assignment

• goal test = conjunction of constraints

But, now solutions may not have a bounded length.

5.3 Examples

Water jugs problem 1

Given a 3 liter jug and a 4 liter jug, where jugs can be filled with water,
emptied, or water can be poured from one jug into another until either the
source jug is empty or the destination jug is full. Consider a problem where
the jugs are initially empty and the goal is to achieve 2 gallons in the 4 gallon
jug.

CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

Solution: Systematically expand a search tree for the problem to find the
solution as follows

00

30

34

04 30

00 03

33

24

20

02

30 04 00

04

. . .

In general, the search graph for this problem is given as follows

Water jugs problem 2

Given three jugs of capacity 2, 5, and 7 gallons respectively. Initially the
7 gallon jug is full and the other jugs are emtpy. The goal is to achieve 1
gallon of water in some jug, without spilling any water, and using no external
sources of water.

Solution: (Ignoring repeated states, 007 is crossed out for the sake of il-
lustration.)

007

205

025

223

043

241

007
250

052

Missionaries and cannibals problem

3 missionaries and 3 cannibals want to cross a river using a boat that holds
2 people. Cannibals can never outnumber missionaries, and an empty boat

CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

cannot cross the river.

Initial state: MMMCCCB|

Goal state: |BMMMCCC

Action: take 1 or 2 people across the river

Solution:

Other examples:

• towers of Hanoi

• Rubik’s cube

• 8 puzzle

5.4 Automating problem solving search: Graph search

Automated problem solving search is graph search:
states = vertices
actions = labeled edges

General graph search strategies

5.5 Depth-First Search(DFS)

Algorithm 1 Depth-First Search(DFS)

1: list ← {s0}
2: while list is not empty do
3: s← head(list)
4: list← rest(list)
5: if s is a goal then
6: return s
7: else
8: newstates ← apply actions to s
9: list ← prepend(newstates, list)

10: end if
11: end while
12: return fail

Problem: - graph may be infinite, or have cycles

5.6 Breadth-first search (BFS)

Same as DFS, except:

9: list ← append(list, newstates)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

5.7 DFS versus BFS

BFS:

• guaranteed to find solution (if one exists)

• not space efficient |b|solution depth, where b is the branching factor

DFS:

• space efficient

• not guaranteed

How to be space efficient and guaranteed?

5.8 Iterative deepening search (IDS)

Space efficient BFS

Algorithm 2 Iterative deepening search (IDS)

1: for depth bound = 1, 2, . . . do
2: list ← {s0}
3: while list is not empty do
4: s← head(list)
5: list← rest(list)
6: if s is a goal then
7: return s
8: else if depth(s) < depth bound then
9: newstates ← apply actions to s

10: list ← prepend(newstates, list)
11: end if
12: end while
13: end for

• Same space as DFS

• Guaranteed to find solution like BFS

CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

• Almost the same time as BFS:

BFS running time = bd where b is the branching factor

(i.e., the number of actions per state)

IDS running time = 1 + b + b2 + . . . + bd =
bd+1 − 1

b− 1
≈ bd

5.9 Speedups

Pruning:

• May determine that goal constraints are already violated

• Do not revisit states!
Put states in a hash table; check if visited already

Heuristics:

• Use heuristic function ĥ(s) that estimates distance from s to goal

5.10 Best first search

Same as DFS, except that lines 3 and 4 are replaced by:

3: s ← extract best ĥ value(list)

• Allows big speedups
e.g., if ĥ is perfect, walk straight to the goal

• Problem: can be space inefficient

Note For DFS the appropriate data structure for the list is a stack, for
BFS it is a FIFO queue, and for best first search it is a heap (i.e., a priority
queue).

5.11 Harder problem: Finding shortest solution

Constrained optimization task

Definition: Algorithm that is guaranteed to find shortest solutions is called
admissible

BFS, IDS admissible
DFS, best first not admissible

CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

How to make best first admissible?

Let:

g(s) = shortest distance from s0 to s

ĝ(s) = shortest distance from s0 to s
(that we know at certain moment during algorithm execution)

h(s) = shortest distance from s to a goal

ĥ(s) = our heuristic function, which approximates h

d(s) = shortest distance from s0 to a goal through s
i.e., d(s) = g(s) + h(s)

d̂(s) = our approximation of d
i.e., d̂(s) = ĝ(s) + ĥ(s)

Definition An admissible heuristic is a heuristic function ĥ(s) that under-
estimates h(s). That is, ĥ(s) ≤ h(s), and it does not lie about the goal, i.e.,
ĥ(s) = 0 iff s is goal, ĥ(s) > 0 otherwise.

5.12 Admissible best first search (A∗)

Uses an admissible heuristic, and it is same as best first search, except:

3: s ← extract min d̂ value(list)

5.13 Proof that A∗ finds shortest path

Proof
Let k be the length of the optimal solution, and let s∗1, . . . , s

∗
k be an optimal

solution path (where s∗1 = s0).
Assume the algorithm finds a non-optimal solution s1, s2, . . . , s` for ` > k.
(Note that ĝ(sj) = j for all 1 ≤ j ≤ `, or else the algorithm would have
found a shorter path.)
Now consider the time when s`−1 is on the list. In this case we must have

d̂(s`−1) = ĝ(s`−1) + ĥ(s`−1)

≥ `− 1 + 1 = `.

CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

Claim 1 The algorithm must expand s∗1 before s`−1.
Pf: Expanding s0 immediately puts s∗1 on the list, therefore

d̂(s∗1) = ĝ(s∗1) + ĥ(s∗1)

= 1 + ĥ(s∗1)

≤ 1 + k − 1 = k < `.

Claim 2 For any s∗i−1, if s∗i−1 is expanded with ĝ(s∗i−1) = i− 1, then s∗i must
be expanded before s`−1.
Pf: Expanding s∗i−1 puts s∗i on the list with ĝ(s∗i) = i, therefore

d̂(s∗i) = ĝ(s∗i) + ĥ(s∗i)

≤ i + k − i = k < `.

This implies that s∗1, s
∗
2, ... must all be expanded before s`−1.

5.14 Generalized A∗

The distance does not have to be expressed as the number of states expanded.
One can associate a weight w(a) (distance or cost) with each action a and
define the distance as the sum of those weights along a path. (Note w(a) = 1
for the previous version of A∗.) The problem is to find a shortest path in
terms of this distance. The basic algorithm is the same, and the proof of
optimality is almost the same, with a couple of details changed.

5.15 Iterative deepening A∗

Problem: A∗ is space inefficient

IDA∗: Iterative deepening on d̂ bound.

• Guaranteed

• Admissible

• Space efficient

• Time efficient? (depends on ĥ)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 8

Algorithm 3 Iterative deepening A∗ search (IDA∗)

1: d̂ limit← d̂(s0)
2: while d̂ limit <∞ do
3: next d̂ limit←∞
4: list ← {s0}
5: while list is not empty do
6: s← head(list)
7: list← rest(list)
8: if d̂(s) > d̂ limit then
9: next d̂ limit← min(next d̂ limit, d̂(s))

10: else
11: if s is a goal then
12: return s
13: end if
14: newstates ← apply actions to s
15: list ← prepend(newstates, list)
16: end if
17: end while
18: d̂ limit← next d̂ limit
19: end while
20: return fail

5.16 Incomplete search

• beam search

• genetic algorithm

5.17 Readings

Russell and Norvig 2nd Ed.: Sect 3.2-3.7, 4.1-4.2
Dean, Allen, Aloimonos: Sect 4.1–4.3

