
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

4 Constraint satisfaction search

Applications of propositional logic: automated reasoning about simple facts

4.1 Question answering

How to answer A |= γ?

Could implement with resolution:

A |= γ iff A ∪ {¬γ} unsatisfiable
iff A ∪ {¬γ} ` ⊥ using resolution

Could also implement with evaluations:

Search for a satisfying assignment for A ∪ {¬γ}
If none found, assert A |= γ

4.2 Can represent constraint satisfaction problems

Examples

1. Pigeonhole principle

2. N-queens problem

Ψ♥†
Ψ♥†

Ψ♥†

Ψ♥†

3. Designing crossword puzzles

Given dictionary: aardvark
abdomen
...
zebra
zygote

CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

4. Circuit testing

Boolean circuit ≡ propositional formula

y

x1 . . . xn

Fx→y(x) original circuit

y

x1 . . . xn

•z = 1
Fx→y|z=1(x) z stuck at 1

y

x1 . . . xn

•z = 0
Fx→y|z=0(x) z stuck at 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

y

x1 . . . xn

•z
Fx→z(x) internal circuit to z

Can use satisfiability search to design test inputs to identify faults:

– To test if z is stuck at 0

Need x such that Fx→z(x) = 1 and Fx→y|z=1(x) 6= Fx→y|z=0(x)
so find assignment x that satisfies prop’n Fx→z∧(Fx→y|z=1⊕Fx→y|z=0)

– To test if z is stuck at 1

Need x such that Fx→z(x) = 0 and Fx→y|z=1(x) 6= Fx→y|z=0(x)
so find x that satisfies proposition ¬Fx→z ∧ (Fx→y|z=1 ⊕ Fx→y|z=0)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

5. Channel routing (VLSI design)

Connect labelled pins

B C AB

A B B C

Can only go along fixed set of channels

Must make perpendicular crossings

6. Polyhedral scene interpretation (R&N2 Sect 24.4)

label junction types (e.g. “innies” vs. “outies”)

4.3 Implementing propositional reasoning

Search
– search space of resolution derivations
– search space of truth value assignments to primitive propositions

4.4 Constraint satisfaction search

Searching a finite product space

variables p1 . . . pn

values v11 . . . vn1
...

...
v1k1

. . . vnkn

Given a set of constraints α1, . . . , αk

Looking for assignment p1 = v1 . . . pn = vn that satisfies all of the constraints

CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

Systematic strategy 1: Enumerate assignments

Dumb
Exponential time 2n

But complete

– if satisfying assignment exists, guaranteed to find it
– if none exists, then proves non-existence

Constraint satisfaction is NP-complete
Can we be clever about exponential time algorithms?

Systematic strategy 2: Backtrack search

Search partial assignments
p1 = v1 p2 = v2 p3 =? . . . pn =?
−→
if any constraint becomes violated, backup and try alternative value
if all constraints satisfied, halt immediately

procedure backtrack (pj . . . pn)
for each value vj of pj

pj := vj

if no constraint violated
backtrack(pj+1 . . . pn)
if succeeds, return satisfying assignment

if all fail, return fail

E.g. is {¬a ∨ b, ¬b ∨ c, ¬c, ¬a} satisfiable?

Enumerate a b c
1 1 1 ×
1 1 0 ×
1 0 1 ×
1 0 0 ×
0 1 1 ×
0 1 0 ×
0 0 1 ×
0 0 0

√

Backtrack a b c
1 - - ×
0 1 1 ×
0 1 0 ×
0 0 1 ×
0 0 0

√

CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

Speedup 1: Constraint propagation (forward checking)

Every time a variable is assigned, eliminate values from forward variables
if possible

E.g. {¬a ∨ b, ¬b ∨ c, ¬c, ¬a}
a b c
1 1 1 (b, c forced) ×
0 1 1 (c forced) ×
0 0 1 ×
0 0 0

√

Speedup 2: Take free moves

If a constraint can be satisfied by a variable assignment, without making
other constraints tighter, do so.

Other speedups

• Variable/value ordering heuristics

• More elaborate constraint propagation

• Lemmas: remember resolvents from each backtrack

• Conflict directed backjumping: backtrack as high as possible in search
tree given conflict and reasons for forced moves

4.5 Unsystematic search

Unsystematic strategy 1: Random search

Global random: sample independent random assignments

Local random: start with a random assignment, then follow random
walk by flipping single variable value

Actually works well if there is a large proportion of satisfying assignments!
But never halts if a solution does not exist

CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

Unsystematic strategy 2: Greedy local search

Use heuristic = # violated constraints

while solution not found and not bored
take random assignment
while solution not found and walk length bound not exceeded

evaluate neighboring assignments under heuristic
step to best neighbor

Dumb?

Although unsystematic search runs forever if a solution doesn’t exist, it can
be astonishingly fast if a solution exists.

E.g. Hard random 3-SAT problems

4.3 times as many constraints as variables
Each constraint involves 3 variables

backtrack heuristic
vars +tricks greedy

50 1.5s 0.5s
100 3m 10s
150 10h 25s
200 2m
250 3m
300 13m
350 20m

Speedup 1: Simulated annealing

Take bad moves randomly:

If neighbor better than current assignment under h, move to neighbor,
else move to neighbor with probability e(h(curr)−h(neigh))/temp

temp is a parameter that controls randomness vs. greediness

CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

Speedup 2: Minimax optimization

Putweights on constraints

repeat

Primal search: update assignment to minimize weighted violation,
until stuck

Dual step: update weights to increase weighted violation,
until unstuck

until solution found, or bored

backtrack heuristic
vars +tricks greedy minimax

50 1.5s 0.5s 0.001s
100 3m 10s 0.01s
150 10h 25s 0.1s
200 2m 0.25s
250 3m 0.4s
300 13m 1s
350 20m 2.5s

4.6 Readings

Russell and Norvig 2nd Ed., Chapter 5.
Dean, Allen, Aloimonos, Section 4.4.

Mitchell, Selman and Levesque, Hard and easy distributions of SAT prob-
lems, Proceedings AAAI-92.

Selman, Levesque and Mitchell, A new method for solving hard satisfiability
problems, Proceedings AAAI-92.

Schuurmans, Southey and Holte, The exponentiated subgradient algorithm
for heuristic Boolean programming, Proceedings IJCAI-01.

