14 Inference in complex models

What if graph is not a tree?
NP-hard even to approximate marginals and conditionals

General strategies

1. Exact methods - exponential time, but can still try to be smart
2. Approximation methods
3. Heuristic methods
4. Monte Carlo methods - estimate by random sampling

14.1 Exact methods

Elimination ordering

Try to find a good variable order that reduces work in summation

- push variable in
- eliminate variables by summing and pull result out

Variable clustering

Cluster variables to create a tree structured Bayesian network

- exponential in the size of the largest cluster

Cut sets

Choose a cut set of variables that turn factor graph into a tree

- sum over cut set configurations
- exponential in size of cut set

14.2 Approximation methods

"Variational approximation"

- Pick simple model structure (i.e. a tree)
- Set values in new CP tables so that new distribution approximates original distribution as closely as possible
- Perform efficient inference on simpler approximate distribution

A bit complicated to implement sometimes, but can be very effective

14.3 Heuristic methods

"Loopy probability propagation"
Ignore loops and use same message passing algorithm as for trees

- random initial messages
- keep passing messages around graph
- wait for product of incoming messages to converge
- if so, is the answer accurate?

This works way better than it should!

14.4 Monte Carlo methods

Use random sampling to estimate answers

14.4.1 Estimating marginals

To estimate $\mathrm{P}\left(X_{i}=x_{i}\right)$, draw joint configurations

x_{11}	x_{12}	\ldots	$x_{1 n}$
x_{21}	x_{22}	\ldots	$x_{2 n}$
\vdots	\vdots	\ddots	\vdots
$x_{t 1}$	$x_{t 2}$	\ldots	$x_{t n}$

Use estimate: $\hat{\mathrm{P}}\left(X_{i}=x_{i}\right)=\frac{\# \text { matches }\left(X_{i}=x_{i}\right)}{t}$
Unbiased: $\mathrm{E} \hat{\mathrm{P}}\left(X_{i}=x_{i}\right)=\mathrm{P}\left(X_{i}=x_{i}\right)$

14.4.2 Estimating conditionals

Estimate $\mathrm{P}\left(X_{k+1}=y_{k+1} \mid X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)$
Draw joint configurations:

$$
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{t 1} & x_{t 2} & \ldots & x_{t n}
\end{array}
$$

Use estimate:

$$
\begin{aligned}
& \hat{\mathrm{P}}\left(X_{k+1}=y_{k+1} \mid X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right) \\
& \quad=\frac{\# \operatorname{matches}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}, X_{k+1}=y_{k+1}\right)}{\# \operatorname{matches}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)}
\end{aligned}
$$

This technique is called "logic sampling"
It is a bad estimator if $\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}, X_{k+1}=y_{k+1}\right)$ is unlikely:

- small effective sample size

14.4.3 Aside: General "importance sampling"

Consider estimating the expectated value of some function $f(x)$, where x is drawn randomly according to the distribution $\mathrm{P}(x)$. That is, assume the expectation of $f(x)$ is defined

$$
\mathrm{E}_{\mathrm{P}(x)}(f(x))=\sum_{x} f(x) \mathrm{P}(x)
$$

Many problems (including estimating conditional probabilities) can be expressed as estimating the expected value of a function f.

The simplest way to estimate $\mathrm{E}_{\mathrm{P}(x)} f(x)$ is the Monte Carlo method

- Draw $x_{1}, x_{2}, \ldots, x_{t}$ from P
- Use estimate:

$$
\hat{f}=\frac{1}{t} \sum_{i=1}^{t} f\left(x_{i}\right)
$$

Problem: what if you cannot sample from P efficiently?
First assume that we can at least efficiently evaluate $\mathrm{P}(x)$ at given points x.

Idea: Pick a proposed distribution Q that you can sample from

- Draw $x_{1}, x_{2}, \ldots, x_{t}$ from Q.
- Weight points by $w\left(x_{i}\right)=\frac{\mathrm{P}\left(x_{i}\right)}{\mathrm{Q}\left(x_{i}\right)}$
- Use estimate: $\hat{f}=\frac{1}{t} \sum_{i=1}^{t} f\left(x_{i}\right) w\left(x_{i}\right)$

This gives an unbiased estimate

$$
\begin{aligned}
\frac{1}{t} \sum_{i=1}^{t} f\left(x_{i}\right) w\left(x_{i}\right) & \xrightarrow{t \rightarrow \infty} \mathrm{E}_{\mathrm{Q}(x)} f(x) w(x) \\
& =\sum_{x} f(x) w(x) \mathrm{Q}(x) \\
& =\sum_{x} f(x) \frac{\mathrm{P}(x)}{\mathrm{Q}(x)} Q(x) \\
& =\sum_{x} f(x) \mathrm{P}(x) \\
& =\mathrm{E}_{\mathrm{P}(x)} f(x) .
\end{aligned}
$$

More realistically: You cannot even evaluate $\mathrm{P}(x)$ efficiently
However, in these cases, you often still have a function $\mathrm{R}(x)=\beta \mathrm{P}(x)$ that you can evaluate efficiently (up to some unknown value β). In which case you can use following indirect importance sampling procedure.

- Draw $x_{1}, x_{2}, \ldots, x_{t}$ from Q.
- Weight points by $u(x)=\frac{\mathrm{R}(x)}{\mathrm{Q}(x)}$
- Use the estimate

$$
\hat{f}=\frac{\sum_{i=1}^{t} f\left(x_{i}\right) u\left(x_{i}\right)}{\sum_{i=1}^{t} u\left(x_{i}\right)}
$$

This procedure is biased, but it is asymptotically unbiased:

$$
\frac{1}{t} \sum_{i=1}^{t} f\left(x_{i}\right) u\left(x_{i}\right) \xrightarrow{t \rightarrow \infty} \sum_{x} f(x) u(x) \mathrm{Q}(x)=\sum_{x} f(x) \mathrm{R}(x)=\beta \sum_{x} f(x) \mathrm{P}(x)
$$

$$
\frac{1}{t} \sum_{i=1}^{t} u\left(x_{i}\right) \xrightarrow{t \rightarrow \infty} \sum_{x} u(x) \mathrm{Q}(x)=\sum_{x} \mathrm{R}(x)=\beta \sum_{x} \mathrm{P}(x)=\beta
$$

Therefore

$$
\hat{f} \xrightarrow{t \rightarrow \infty} \frac{\beta \sum_{x} f(x) \mathrm{P}(x)}{\beta}=\mathrm{E}_{\mathrm{P}(x)} f(x) .
$$

14.4.4 Estimating conditionals using importance sampling

Want to estimate $\mathrm{P}\left(\mathbf{X}_{\beta}=\mathbf{y}_{\beta} \mid \mathbf{X}_{\alpha}=\mathbf{x}_{\alpha}\right)$ where α and β are sets of indices from $\{1, \ldots, n\}$ such that $\alpha \cap \beta=\emptyset$ and $\alpha \cup \beta=\{1, \ldots, n\}$. unfortunately it is both hard to sample from and evaluate $\mathrm{P}\left(\mathbf{X}_{\beta}=\mathbf{y}_{\beta} \mid \mathbf{X}_{\alpha}=\mathbf{x}_{\alpha}\right)$ directly. we proceed as follows

- clamp the variables $\mathbf{X}_{\alpha}=\mathbf{x}_{\alpha}$
- sample the remaining "free" variables in the usual way (keeping the clamped variables at their assigned values)
- repeat t times to create a sample of configurations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}$
- Define the function

$$
f\left(\mathbf{x}_{\beta}\right)= \begin{cases}1 & \text { if } \mathbf{x}_{\beta}=\mathbf{y}_{\beta} \\ 0 & \text { otherwise }\end{cases}
$$

- Calculate weights

$$
u\left(\mathbf{x}_{\beta, i}\right)=\frac{\mathrm{R}\left(\mathbf{x}_{\beta, i}\right)}{\mathrm{Q}\left(\mathbf{x}_{\beta, i}\right)}
$$

where $\mathrm{R}\left(\mathbf{x}_{\beta, i}\right)=\mathrm{P}\left(\mathbf{X}_{\alpha}=\mathbf{x}_{\alpha, i}, \mathbf{X}_{\beta}=\mathbf{x}_{\beta, i}\right)$
and $\mathrm{Q}\left(\mathbf{x}_{\beta, i}\right)=\prod_{j \in \beta} \mathrm{P}\left(X_{j}=x_{j, i} \mid \mathbf{X}_{\pi(j)}=\mathbf{x}_{\pi(j), i}\right)$

- Use the estimate

$$
\hat{\mathrm{P}}\left(\mathbf{X}_{\beta}=\mathbf{y}_{\beta} \mid \mathbf{X}_{\alpha}=\mathbf{x}_{\alpha}\right)=\frac{\sum_{i=1}^{t} f\left(\mathbf{x}_{\beta, i}\right) u\left(\mathbf{x}_{\beta, i}\right)}{\sum_{i=1}^{t} u\left(\mathbf{x}_{\beta, i}\right)}
$$

This method has larger effective sample size than logic sampling.
Works even if $P\left(\mathbf{X}_{\alpha}=\mathbf{x}_{\alpha}\right)$ is small.

Readings

Russell and Norvig 2nd Ed: Section 14.5
Dean, Allen, Aloimonos: Section 8.3

