CMPUT 366 — Intelligent Systems: Dale Schuurmans

14 Inference in complex models
What if graph is not a tree?

NP-hard even to approximate marginals and conditionals

General strategies

1. Exact methods — exponential time, but can still try to be smart
2. Approximation methods
3. Heuristic methods

4. Monte Carlo methods — estimate by random sampling

14.1 Exact methods

Elimination ordering

Try to find a good variable order that reduces work in summation
e push variable in

e climinate variables by summing and pull result out

Variable clustering

Cluster variables to create a tree structured Bayesian network

e exponential in the size of the largest cluster

Cut sets

Choose a cut set of variables that turn factor graph into a tree
e sum over cut set configurations

e exponential in size of cut set
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14.2 Approximation methods

“Variational approximation”

e Pick simple model structure (i.e. a tree)

e Set values in new CP tables so that new distribution approximates
original distribution as closely as possible

e Perform efficient inference on simpler approximate distribution

A bit complicated to implement sometimes, but can be very effective

14.3 Heuristic methods

“Loopy probability propagation”
Ignore loops and use same message passing algorithm as for trees

e random initial messages
e keep passing messages around graph
e wait for product of incoming messages to converge

e if so, is the answer accurate?

This works way better than it should!

14.4 Monte Carlo methods

Use random sampling to estimate answers

14.4.1 Estimating marginals

To estimate P(X; = z;), draw joint configurations

r11 12 ... Tin
o1 T92 ... Topn
1 T2 .. Tin

5 tches(X; = x;
Use estimate: P(X; = x;) = # matches( x;)

Unbiased: Ef’(X, =ux;) = P(X; = 1;)
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14.4.2 Estimating conditionals
Estimate P(Xyy1 = yp1| Xa = 21, ..., Xk = %)

Draw joint configurations:

Tr11 12 ... Tip
o1 X992 ... Top
1 T2 .. Tin

Use estimate:

~

P(Xit1 = yp1| Xa =21, .., X = )

# matches(X; = x1,..., Xy = 2, Xpr1 = Ykt1)
# matches(X; = xq,..., Xy = xy)
This technique is called “logic sampling”
It is a bad estimator if (X; = z1,..., X = Tk, Xp4r1 = Y1) is unlikely:

e small effective sample size

14.4.3 Aside: General “importance sampling”

Consider estimating the expectated value of some function f(x), where z is
drawn randomly according to the distribution P(z). That is, assume the
expectation of f(x) is defined

Ep(f(2)) = ) flz)P(x)

Many problems (including estimating conditional probabilities) can be ex-
pressed as estimating the expected value of a function f.

The simplest way to estimate Ep(, f(x) is the Monte Carlo method

e Draw z,29,...,2; from P

e Use estimate:
t

fe i s

Problem: what if you cannot sample from P efficiently?

First assume that we can at least efficiently evaluate P(x) at given points x.
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Idea: Pick a proposed distribution Q that you can sample from

e Draw x1,x9,...,2; from Q.

e Weight points by w(x;) =

e Use estimate: f = S f@)w(z)

This gives an unbiased estimate

%Zf(%)w(%) = Eqe) f(7)w(x)

More realistically: You cannot even evaluate P(z) efficiently

However, in these cases, you often still have a function R(z) = # P(x) that
you can evaluate efficiently (up to some unknown value (). In which case
you can use following indirect importance sampling procedure.

e Draw x1, 2o, ..., x; from Q.
e Weight points by u(x) = ggg

e Use the estimate .
22:1 u(z;)

This procedure is biased, but it is asymptotically unbiased:

f=

Y faule) SX 3 f@u@@) = Y f@RE) = 5 f@)P@)
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Y ute) 5F Y u@)Q@) = YRE@) = 53 Pa) = 0

xT

Therefore

s O3, f@)P()
B

14.4.4 Estimating conditionals using importance sampling

Want to estimate P(Xs = y3|X, = X,) where a and 3 are sets of indices
from {1,...,n} such that « NG =0 and a U B = {1,...,n}. unfortunately
it is both hard to sample from and evaluate P(X3 = y3|X, = x,) directly.
we proceed as follows

clamp the variables X, = x,

sample the remaining “free” variables in the usual way (keeping the
clamped variables at their assigned values)

repeat t times to create a sample of configurations x, ..., x;

Define the function

_ J 1 ifxs=ys
flxs) = {0 otherwise

Calculate weights
R(xs,)
ulx 71') = :
N CTER
where R(xg,) = P(Xo = Xq,i, Xg = Xg,)
and Q(xg) = [ [ P(X; = 24 Xnj) = Xn())

Jjes

Use the estimate

P(Xp = yplXo =x) = Zizl {(XZ&Z(-?ﬁ’i)
=1 N

This method has larger effective sample size than logic sampling.

Works even if P(X, = x,) is small.
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Readings

Russell and Norvig 2nd Ed: Section 14.5
Dean, Allen, Aloimonos: Section 8.3



