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14 Inference in complex models

What if graph is not a tree?

NP-hard even to approximate marginals and conditionals

General strategies

1. Exact methods — exponential time, but can still try to be smart

2. Approximation methods

3. Heuristic methods

4. Monte Carlo methods — estimate by random sampling

14.1 Exact methods

Elimination ordering

Try to find a good variable order that reduces work in summation

• push variable in

• eliminate variables by summing and pull result out

Variable clustering

Cluster variables to create a tree structured Bayesian network

• exponential in the size of the largest cluster

Cut sets

Choose a cut set of variables that turn factor graph into a tree

• sum over cut set configurations

• exponential in size of cut set
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14.2 Approximation methods

“Variational approximation”

• Pick simple model structure (i.e. a tree)

• Set values in new CP tables so that new distribution approximates
original distribution as closely as possible

• Perform efficient inference on simpler approximate distribution

A bit complicated to implement sometimes, but can be very effective

14.3 Heuristic methods

“Loopy probability propagation”
Ignore loops and use same message passing algorithm as for trees

• random initial messages

• keep passing messages around graph

• wait for product of incoming messages to converge

• if so, is the answer accurate?

This works way better than it should!

14.4 Monte Carlo methods

Use random sampling to estimate answers

14.4.1 Estimating marginals

To estimate P(Xi = xi), draw joint configurations

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xt1 xt2 . . . xtn

Use estimate: P̂(Xi = xi) =
# matches(Xi = xi)

t

Unbiased: EP̂(Xi = xi) = P(Xi = xi)



CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

14.4.2 Estimating conditionals

Estimate P(Xk+1 = yk+1|X1 = x1, . . . , Xk = xk)

Draw joint configurations:

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xt1 xt2 . . . xtn

Use estimate:

P̂(Xk+1 = yk+1|X1 = x1, . . . , Xk = xk)

=
# matches(X1 = x1, . . . , Xk = xk, Xk+1 = yk+1)

# matches(X1 = x1, . . . , Xk = xk)

This technique is called “logic sampling”
It is a bad estimator if (X1 = x1, . . . , Xk = xk, Xk+1 = yk+1) is unlikely:

• small effective sample size

14.4.3 Aside: General “importance sampling”

Consider estimating the expectated value of some function f(x), where x is
drawn randomly according to the distribution P(x). That is, assume the
expectation of f(x) is defined

EP(x)(f(x)) =
∑

x

f(x)P(x)

Many problems (including estimating conditional probabilities) can be ex-
pressed as estimating the expected value of a function f .

The simplest way to estimate EP(x)f(x) is the Monte Carlo method

• Draw x1, x2, . . . , xt from P

• Use estimate:

f̂ =
1

t

t∑
i=1

f(xi)

Problem: what if you cannot sample from P efficiently?

First assume that we can at least efficiently evaluate P(x) at given points x.
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Idea: Pick a proposed distribution Q that you can sample from

• Draw x1, x2, . . . , xt from Q.

• Weight points by w(xi) = P(xi)
Q(xi)

• Use estimate: f̂ = 1
t

∑t
i=1 f(xi)w(xi)

This gives an unbiased estimate

1

t

t∑
i=1

f(xi)w(xi)
t→∞−→ EQ(x)f(x)w(x)

=
∑

x

f(x)w(x)Q(x)

=
∑

x

f(x)
P(x)

Q(x)
Q(x)

=
∑

x

f(x)P(x)

= EP(x)f(x).

More realistically: You cannot even evaluate P(x) efficiently

However, in these cases, you often still have a function R(x) = β P(x) that
you can evaluate efficiently (up to some unknown value β). In which case
you can use following indirect importance sampling procedure.

• Draw x1, x2, . . . , xt from Q.

• Weight points by u(x) = R(x)
Q(x)

• Use the estimate

f̂ =

∑t
i=1 f(xi)u(xi)∑t

i=1 u(xi)

This procedure is biased, but it is asymptotically unbiased:

1

t

t∑
i=1

f(xi)u(xi)
t→∞−→

∑
x

f(x)u(x)Q(x) =
∑

x

f(x)R(x) = β
∑

x

f(x)P(x)
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1

t

t∑
i=1

u(xi)
t→∞−→

∑
x

u(x)Q(x) =
∑

x

R(x) = β
∑

x

P(x) = β

Therefore

f̂
t→∞−→ β

∑
x f(x)P(x)

β
= EP(x)f(x).

14.4.4 Estimating conditionals using importance sampling

Want to estimate P(Xβ = yβ|Xα = xα) where α and β are sets of indices
from {1, . . . , n} such that α ∩ β = ∅ and α ∪ β = {1, . . . , n}. unfortunately
it is both hard to sample from and evaluate P(Xβ = yβ|Xα = xα) directly.
we proceed as follows

• clamp the variables Xα = xα

• sample the remaining “free” variables in the usual way (keeping the
clamped variables at their assigned values)

• repeat t times to create a sample of configurations x1, ...,xt

• Define the function

f(xβ) =

{
1 if xβ = yβ

0 otherwise

• Calculate weights

u(xβ,i) =
R(xβ,i)

Q(xβ,i)

where R(xβ,i) = P(Xα = xα,i,Xβ = xβ,i)

and Q(xβ,i) =
∏
j∈β

P(Xj = xj,i|Xπ(j) = xπ(j),i)

• Use the estimate

P̂(Xβ = yβ|Xα = xα) =

∑t
i=1 f(xβ,i)u(xβ,i)∑t

i=1 u(xβ,i)

This method has larger effective sample size than logic sampling.

Works even if P (Xα = xα) is small.
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Readings

Russell and Norvig 2nd Ed: Section 14.5
Dean, Allen, Aloimonos: Section 8.3


