CMPUT 366 — Intelligent Systems: Dale Schuurmans

13 Efficient probabilistic inference

Poly time inference algorithms for tree-structured Bayesian networks
— marginalization, conditioning, completion

How is this done?

13.1 Example

Compute P(X, = x4)

— ZZZP(Xl =21, Xo = 29, X3 = x3, Xy = 14)

r1 X2 X3

- ZZZP(Xl =11) P(Xy = x3) P(X3 = 23| X; = 11)
xr1 X2 X3
P(X4 = $4|X1 =11, Xy = xz)
3V multiplications, V3 — 1 additions

Now think of conditional probabilities as functions

filz1) = P(Xi=m)
f2(9€2) = P(XQ = $2)
fa(z1,23) = P(X3=13X, =1)
f4($1,$2,$4) = P(X4 = $4|X1 =x1, Xy = $2)

CMPUT 366 — Intelligent Systems: Dale Schuurmans 2

Then we obtain
P(X4 = x4) —
= S35 Al@) folws) falarws) fulanwa,a)

x1 T2 X3

= > A1) D fa(wrws) Y falw) falwn, w2, 24)

J/

92($17 5174)

= Zﬁ(&?l) (Z fa(z2) f4(131,l‘2,$4)> Zf?»(fl,xs)
T T2 x3
2V + V? multiplications, (V — 1) + 2V(V — 1) additions

13.2 Efficient inference in trees

A famous algorithm achieves polynomial time inference in tree structured
Bayesian networks. (This algorithm has been re-invented over a dozen times
in various guises)

e hidden Markov models (forward-backward algorithm, Viterbi algorithm)
e Kalman filters

e crror correcting codes

graphical probability models

e ctc.

CMPUT 366 — Intelligent Systems: Dale Schuurmans 3

13.3 Polynomial time marginalization algorithm for trees

Step 1 Convert the Bayesian network into a factor graph: an undirected
graph that has one “round” node for each variable and one “square” node
for each conditional probability function that is connected to each of the
participating variables.

E.g.

fi [P(X1) P(Xy)| fo

- B

@ @ fs | P(X5|X1) P(X4| X1, Xo)| fa

An important property of this transformation is that if the original Bayes
net is a tree then the resulting factor graph will also be a tree.

Given a factor graph with nodes Xj,..., X,, and functions fi, ..., fx, we can
evaluate the probability of a complete configuration of the variables by

=

P(Xi=zy,..., Xp=2,) = fo(x)

/=1

where x, = the values of variables connected to f,.
E.g.

P(X1=l’1,X2=$2>X3=1’3,X4=3C4) = f1(3€1) f2(9€2) f3(9€1>$3) f4($1,$2,l’4)

CMPUT 366 — Intelligent Systems: Dale Schuurmans 4

Efficient marginalization for tree structured factor graphs

Consider the following tree structured factor graph and consider computing
the marginal probability P(Xg=1x¢).

The way to think about this computation is to first note that computing
the marginal probability that P(Xg=x¢) requires us to sum over all possible
instantiations of the other variables, but that this sum can be factored into
a product of sums over variables in each independent subtree, and each of
these sums can then be recursively decomposed into a product of sums over
independent subtrees, and so on. So, in particular, in this case we obtain

P(X@ZJTG) =
= Z f1(961)f2(371,wﬁ)f:z(xz,$3)f4(133,374)f5($3,$57336)f6(956,$7,SU8)

x1,72,23,T4,L5,27,T8

= [Zfz(fhil?ﬁ)fl(l"l) [Y falws,ws) fulws, wa) fo(ws, w5, x6)

X2,T3,L4,T5

[Z fﬁ(l‘b‘, x7, xs)

Z7,T8

= my(xg) - ma(xg) - ms(xe)

CMPUT 366 — Intelligent Systems: Dale Schuurmans 5

Where now mas(xg) further decomposes into

ma(zs) =) fo(wa,xs) falws, 24) f5 (w5, 25, 26)

T2,%3,L4,T5

= Z f5(x3, x5, 26) Z f3(@2, x3) fa(ws, x4)

3,25 Z2,T4
= Z fs(xs, @5, 6) - ma(x3)
Z3,T5

And my(z3) decomposes into

my(x3) = Zf3($27$3)f4($3,904)

2,24

= [Z fa(@, 373)] [Z falxs, 374)]

= m5(x3) . mﬁ(.ﬁﬂg)

And so on.

This factoring works because the sets of variables in each subtree are
disjoint (in fact, this is precisely the reason why having a tree structure
is significant). In general, we obtain an efficient marginalization procedure
using the following message passing algorithm.

13.4 Message passing algorithm for marginalization

e Messages are vectors of real numbers m = (uy, ..., uy), where uy is a
number that summarizes the computation for the case x; = k, and of
course k=1,...,V.

e Messages are passed from variable nodes to function nodes, and from
function nodes to variable nodes.

e A node can send a message to its neighbor only when it has received
all of the messages from its other neighbors.

e Given a tree, the algorithm can start by sending messages from each
of the leaves, and stops once every node has passed a message to every
neighbor. (You should convince yourself that in a tree every node will
eventually send a message to every neighbor, and therefore exactly two
messages will be sent across every edge (one in each direction)).

CMPUT 366 — Intelligent Systems: Dale Schuurmans 6

e Function to variable messages ms_ x(x) are computed by

mf*X(x) = Z f(l‘,ZL‘l, 71:/6) le-’f(xl) "'kaHf(xk)

L1y Th

over all other variables Xi,..., X} (besides X) connected to f. If f
contains only X, then ms_ x(z) = f(z).

e Variable to function messages mx_ ¢(z) are computed by

1 if onl contains X
mx_y(z) = { I

my—x(x)---mys_x(x) otherwise
over all other functions fi, ..., fx (besides f) containing X.

e Once all of the messages have been passed, then the final marginal for
any variable X; can be calculated by

P(Xi=z;) = mypx, (@) mp—x,(2:)
over all fi,..., fr containing Xj.

This algorithm is efficient because there are n — 1 edges in an undirected
tree containing n nodes (variables), 2(n—1) messages get sent (one in each di-
rection along each edge), each function to variable message can be computed
in time O(V*) where k is the number of function neighbors, each variable
to function message can be computed in time O(Vk) where k is the num-
ber of variable neighbors, and the final marginal can be computed in time
O(V'k). Thus, the total running time is bounded by O(nV*) where k is the
maximum number of neighbors of any node in the graph. This is linear in
n and polynomial in V' (but exponential in k, so the maximum number of
neighbors has to be bounded).

13.5 Computing the marginal of a set

Consider computing the marginal of one particular configuration P(X; =
x1,..., X =x). For such a case, call the variables X1, ..., X} evidence vari-
ables and call the instantiated values observed evidence. Then we can com-
pute the desired probability by using the same message passing algorithm as
above, except:

CMPUT 366 — Intelligent Systems: Dale Schuurmans 7

e An evidence-variable to function message is computed by
" (z) = 1 if x = x; (i.e. the observed evidence)
Xi=t a 0 otherwise

e Once all of the messages have been passed, then the final marginal can
be determined by taking any evidence variable X; € {Xj,..., X}} and
computing

P(Xllew-ka:Ik) = mfl_’Xj(xj)”.mfk_’Xj(xj)

over all fi,..., fr containing Xj;.

13.6 Computing a conditional probability

To compute P(Xy 11 =yr+1|X1=121, ..., X =), we can use the same message
passing algorithm as above, treating X1, ..., X evidence variables, except:

e Once all of the messages have been passed, then the final conditional
probability can be determined by
P(Xipp1=ypp1| X1 =21, ..., X =24)

M X (yk-i-l) M X (yk+l)
A

where Z is a re-normalization constant over choices of y;,;. That is,

zZ = Z M f1— X1 (yk+1) M- X (Z/k+1)

Yk+1

13.7 Computing the conditional probability of a set

To compute an arbitrary conditional probability P(X, = y.|Xsz = Xp),
where « and [are two disjoint sets of indices from {1,...,n}, we can use
the formula
P(Xo = Ya, Xg = Xﬁ)

P(Xjs = xp)

P(X, = ya|Xﬁ = Xﬁ) =

and exploit the fact that we know how to calculate marginal probabilities
P(X, = ya, X3 = x5) and P(X3 = x3) using the message passing algorithm
outlined above.

CMPUT 366 — Intelligent Systems: Dale Schuurmans 8

13.8 Computing the most probable completion

To compute

Yritr Yy = arg max P(Xpp1=vrt1, ..., Xn=Un| X1=21, ..., Xp=14)

Y415+ Yn

we can use the same message passing algorithm as above, except:
e Function to variable messages m_ x(x) are computed by

meX<x> = zrlna}ék f(]:, L1y ey mk)?nXle(ml) o 'kaﬂf(mk)

over all other variables X7, ..., X} (besides X) connected to f.

e Once all of the messages have been passed, then the maximum proba-
bility completion for any free variable X ; can be calculated by

*
Y45 — arg %Ilvax M —Xpy; (yk-i-j) MM Xy (yk'i-j)
+i

over all fi,..., f containing Xj. ;.

Readings

Frey: Section 2.1
Dean, Allen, Aloimonos: Section 8.3
Russell and Norvig 2nd Ed: Section 14.4

