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12 Structured probability models

12.1 Bayesian networks

Bayesian networks are an important method for representing restricted forms
of joint distributions that have certain conditional independence structures.
To define a Bayesian network we will exploit the general fact that for any

joint distribution we have the following chain rule of probability

P(X1=x1, ..., Xn=xn)

= P(X1=x1) P(X2=x2|X1=x1) P(X3=x3|X2=x2, X1=x1) · · ·

· · ·P(Xn=xn|Xn−1=xn−1, ..., X2=x2, X1=x1)

Definition A Bayesian network is defined by a directed acyclic graph
(DAG) and a collection of conditional probability tables

• Nodes in the graph represent random variables

• Directed edges in the graph represent direct dependencies between vari-
ables (which indirectly specifies conditional independence assumptions)

Order the variables so that Xj’s parents appear before Xj in the graph.
Let π(j) denote the indices of the parents of Xj in the graph.

Then the conditional independence assumptions encoded by the graph are:
Any random variable Xk is independent of any ancestor variable Xj, j < k,
given Xk’s parents, Xπ(k). That is,

P(Xk=xk|Xπ(k)=xπ(k), Xj=xj) = P(Xk=xk|Xπ(k)=xπ(k))

for any Xj such that j < k.
To represent a Bayesian network we first need to store the graph, and then

store a lookup table for each variable Xj which represents the conditional
probability of Xj given each possible configuration of its parents.
Note that for a random variable Xj, we can represent P(Xj=xj|Xπ(j)=

xπ(j)) by a lookup table with V × |π(j)| positive numbers, minus one con-
straint for each configuration of the parents Xπ(j). That is, let θj,x,v =
P(Xj = x|Xπ(j)=v). These numbers are positive and satisfy the constraint
∑V

x=1 θj,x,v = 1 for each j and v. Thus, the joint distribution over X1, ..., Xn
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can be represented by
∑n

j=1 V × V |π(j)| positive numbers minus
∑n

j=1 V
|π(j)|

constraints.
If the maximum number of parents in the graph is bounded by k then this

can be a severe restriction on the structure of the joint distribution, since the
number of free parameters defining the distribution is reduced from V n − 1
to n(V − 1)V k.

12.2 Example

/ ^ /

X1

X3 X4

X2

P(X1=x1, X2=x2, X3=x3, X4=x4)

= P(X1=x1) P(X2=x2) P(X3=x3|X1=x1) P(X4=x4|X1=x1, X2=x2)

How many parameters to represent?

V + V + V 2 + V 3 parameters
−1− 1− V − V 2 constraints

For each variable store a conditional probability table of size

V · V #parents (− V #parents constraints)

12.3 Example: Naive Bayes model

In the Naive Bayes model one assumes that there is a single parent variable
and a collection of child variables whose values are conditionally independent
from one another given the parent. The following two graphs show the Naive
Bayes model applied to the spam detection example, and in general

...

Spam

Free Caps

X1

X2 X3 Xn
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These graph structures correspond to the assumption

P(X1 = x1, . . . , Xn = xn)

= P(X1 = x1) P(X2 = x2|X1 = x1) · · · P(Xn = xn|X1 = x1)

Parameters?
V + V 2 + · · ·+ V 2 parameters
−1− V − · · · − V constraints

In the spam detection example, one way to apply the Naive Bayes assumption
is to assume P(Free,Caps, Spam) = P(Spam) P(Free|Spam) P(Caps|Spam).
Assume we have the same sample data as before

Free Caps Spam # messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

Then using direct estimates of the probabilities from this data we obtain

Spam P(Spam)
Y 20+5+20+2

100
= 0.47

N 1+0+3+49
100

= 0.53

Caps Spam P(Caps|Spam)
Y Y 20+20

20+5+20+2
≈ 0.8511

Y N 1+3
1+0+3+49

≈ 0.0755

N Y 5+2
20+5+20+2

≈ 0.1489

N N 0+49
1+0+3+49

≈ 0.9245

Free Spam P(Free|Spam)
Y Y 20+5

20+5+20+2
≈ 0.5319

Y N 1+0
1+0+3+49

≈ 0.0189

N Y 20+2
20+5+20+2

≈ 0.4681

N N 3+49
1+0+3+49

≈ 0.9811
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The probability of a particular configuration can now be calculated in this
model as follows

P(Free = Y,Caps = N, Spam = N)

= P(Spam = N) P(Caps = N |Spam = N) P(Free = Y |Spam = N)

≈ 0.53× 0.9245× 0.0189

≈ 0.0093

12.4 Representational power

Using a Bayesian network representation one can represent: (1) arbitrary
joint distribution, (2) fully independent distribution, and (3) distributions
intermediate between these.

(1)
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(3)

/ ^ /
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Number of parameters in each model:
(1) (V − 1) + (V 2 − V ) + (V 3 − V 2) + (V 4 − V 3) = V 4 − 1
(2) (V − 1) + (V − 1) + (V − 1) + (V − 1) = 4V − 4
(3) solved above: V 3 + V − 2

Bayesian networks cannot represent all possible conditional independence
structures, but they are still very useful.

12.5 Elementary tasks

Simulation

For i = 1, ..., n, draw xj according to P(Xj = xj|Xπ(j) = xπ(j)). Conjoin
(x1, ..., xn) to form a complete configuration.
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Evaluation

To compute the probability of a complete configuration, just multiply the
local probabilities

P(X1=x1, ..., Xn=xn) =
n

∏

j=1

P(Xj=xj|Xπ(j)=xπ(j))

12.6 Inference

For some Bayesian networks inference must be hard (for example, inference
with an arbitrary joint model that has an explicit lookup table represen-
tation) because the size of the representation is exponentially large in the
number of variables n (i.e. a size V n lookup table). On the other hand, in-
ference in trivial Bayesian networks is easy (such as the complete independent
model).
In general, inference (marginalization, conditioning, completion) is NP-

hard for Bayesian networks, even if we restrict the graph to at most 2 parents
per variable which forces a polynomial size representation. If, however, graph
is a tree, then efficient (polynomial time) inference algorithms can be derived.
This will be the topic of the next lecture.

Readings

Russell and Norvig 2nd Ed: Chapters 14-15
Dean, Allen, Aloimonos: Sect 8.3


